Optimised Voltage Distribution on Piezoelectric Actuators for Modal Excitations Damping in Tapered Beams
Abstract
:1. Introduction
2. Optimal Voltage Distribution on Piezoelectric Actuators Coupled with Cantilever Tapered Beams
3. Numerical Model and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
piezoelectric coefficient | |
Young’s modulus of the piezoelectric actuator | |
Young’s modulus of the beam | |
L | beam length |
piezoelectric bending moment | |
piezoelectric actuator thickness | |
beam thickness | |
b | beam width |
c | tapering ratio |
w | vertical displacement |
virtual vertical displacement | |
i-th flexural mode of the cantilever beam | |
dimensionless length of the beam: | |
points where the potential changes its sign | |
derivative with respect to the x-axis |
References
- Jacob, K.; Tan, A.S.; Sattel, T.; Kohl, M. Enhancement of Shock Absorption Using Hybrid SMA-MRF Damper by Complementary Operation. Actuators 2022, 11, 280. [Google Scholar] [CrossRef]
- Wei, L.; Lv, H.; Yang, K.; Ma, W.; Wang, J.; Zhang, W. A Comprehensive Study on the Optimal Design of Magnetorheological Dampers for Improved Damping Capacity and Dynamical Adjustability. Actuators 2021, 10, 64. [Google Scholar] [CrossRef]
- Park, Y.H.; Kwon, S.C.; Koo, K.R.; Oh, H.U. High Damping Passive Launch Vibration Isolation System Using Superelastic SMA with Multilayered Viscous Lamina. Aerospace 2021, 8, 201. [Google Scholar] [CrossRef]
- Hu, C.; Behdinan, K.; Moradi-Dastjerdi, R. PVDF Energy Harvester for Prolonging the Battery Life of Cardiac Pacemakers. Actuators 2022, 11, 187. [Google Scholar] [CrossRef]
- Soozandeh, P.; Poudel, G.; Sarkari, M.; Behdinan, K. Foot Drop Stimulation via Piezoelectric Energy Harvester. Actuators 2022, 11, 174. [Google Scholar] [CrossRef]
- Kang, M.G.; Jung, W.S.; Kang, C.Y.; Yoon, S.J. Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies. Actuators 2016, 5, 5. [Google Scholar] [CrossRef]
- Botta, F.; Marx, N.; Gentili, S.; Schwingshackl, C.W.; Mare, L.D.; Cerri, G.; Dini, D. Optimal placement of piezoelectric plates for active vibration control of gas turbine blades: Experimental results. Proc. SPIE 2012, 8345, 83452H. [Google Scholar] [CrossRef]
- Mokrani, B.; Bastaits, R.; Romanescu, I.; Horodinca, M.; Burda, I.; Preumont, A. Passive Damping of Rotationally Periodic Structures with Tuned Piezoelectric Inductive Shunt. Actuators 2018, 7, 41. [Google Scholar] [CrossRef]
- Rossi, A.; Botta, F.; Giovannelli, A.; Belfiore, N.P. High efficiency active damping on a fan rotor blade in case of resonant vibrations by means of piezoelectric actuators. In Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, Virtual, 7–11 June 2021; Volume 9A-2021. [Google Scholar] [CrossRef]
- Botta, F.; Rossi, A.; Schinaia, L.; Scorza, A.; Orsini, F.; Sciuto, S.A.; Belfiore, N.P. Experimental validation on optimal placement of pzt plates for active beam multimode vibrations reduction. In Proceedings of the AIMETA 2017—Proceedings of the 23rd Conference of the Italian Association of Theoretical and Applied Mechanics, Salerno, Italy, 4–7 September 2017; Volume 3, pp. 2258–2269. [Google Scholar]
- Ameduri, S.; Ciminello, M.; Concilio, A.; Dimino, I.; Galasso, B.; Guida, M.; Miceli, M.F.; Riemenschneider, J.; Kalow, S.; Luebker, J.; et al. Whirl Tower Demonstration of an SMA Blade Twist System. Actuators 2022, 11, 141. [Google Scholar] [CrossRef]
- Tsai, C.C.; Chu, S.Y.; Chao, W.H.; Hong, C.S. A Rotary-Linear Ultrasonic Motor Using MnO2-Doped (Ba0.97Ca0.03)(Ti0.96Sn0.005Hf0. 035)O3 Lead-Free Piezoelectric Ceramics with Improved Curie Temperature and Temperature Stability. Actuators 2022, 11, 248. [Google Scholar] [CrossRef]
- Mizuno, A.; Kajiwara, H.; Tamura, H.; Aoyagi, M. Study on Multidegree-of-Freedom Ultrasonic Motor Using Vibration Mode Rotation of Metal Spherical Stator. Actuators 2022, 11, 27. [Google Scholar] [CrossRef]
- Li, T.; Lee, P. Piezoelectric Energy Harvesting with an Ultrasonic Vibration Source. Actuators 2019, 8, 8. [Google Scholar] [CrossRef]
- Aabid, A.; Parveez, B.; Raheman, M.A.; Ibrahim, Y.E.; Anjum, A.; Hrairi, M.; Parveen, N.; Zayan, J.M. A Review of Piezoelectric Material-Based Structural Control and Health Monitoring Techniques for Engineering Structures: Challenges and Opportunities. Actuators 2021, 10, 101. [Google Scholar] [CrossRef]
- Goltz, I.; Böhmer, H.; Nollau, R.; Belz, J.; Grüber, B.; Seume, J. Piezo-Electric Actuation of Rotor Blades in an Axial Compressor. In Proceedings of the ETC 2009—8th European Conference on Turbomachinery, Graz, Austria, 23–27 March 2009. [Google Scholar]
- Choi, B.; Morrison, C.; Duffy, K. An Active Damping at Blade Resonances Using Piezoelectric Transducers. NASA/TM-2008-215212. 2008. Available online: https://ntrs.nasa.gov/api/citations/20080023308/downloads/20080023308.pdf (accessed on 5 September 2021).
- Choi, B.; Kauffman, J.; Duffy, K.; Provenza, A.; Morrison, C. Active Vibration Reduction of Titanium Alloy Fan Blades (FAN1) Using Piezoelectric Materials. NASA/TM-2010-216335. 2010. Available online: https://ntrs.nasa.gov/citations/20100024330 (accessed on 18 June 2020).
- Provenza, A.J.; Morrison, C.R. Control of Fan Blade Vibrations Using Piezoelectrics and Bi-Directional Telemetry. In Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Vancouver, BC, Canada, 6–10 June 2011; pp. 923–930. [Google Scholar] [CrossRef]
- Botta, F.; Rossi, A.; Belfiore, N.P. A novel method to fully suppress single and bi-modal excitations due to the support vibration by means of piezoelectric actuators. J. Sound Vib. 2021, 510, 116260. [Google Scholar] [CrossRef]
- Crawley, E.F.; de Luis, J. Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 1987, 25, 1373–1385. [Google Scholar] [CrossRef]
- Ducarne, J.; Thomas, O.; Deü, J. Placement and dimension optimization of shunted piezoelectric patches for vibration reduction. J. Sound Vib. 2012, 331, 3286–3303. [Google Scholar] [CrossRef]
- Botta, F.; Toccaceli, F. Piezoelectric plates distribution for active control of torsional vibrations. Actuators 2018, 7, 23. [Google Scholar] [CrossRef]
- Botta, F.; Scorza, A.; Rossi, A. Optimal Piezoelectric Potential Distribution for Controlling Multimode Vibrations. Appl. Sci. 2018, 8, 551. [Google Scholar] [CrossRef] [Green Version]
- Migliaccio, G.; Ruta, G. The influence of an initial twisting on tapered beams undergoing large displacements. Meccanica 2021, 56, 1831–1845. [Google Scholar] [CrossRef]
- Migliaccio, G.; Ruta, G. Rotor blades as curved, twisted and tapered beam-like structures subjected to large deflections. Eng. Struct. 2020, 222, 111089. [Google Scholar] [CrossRef]
- Balzarek, C.; Kalow, S.; Riemenschneider, J.; Rivero, A. Manufacturing and Testing of a Variable Chord Extension for Helicopter Rotor Blades. Actuators 2022, 11, 53. [Google Scholar] [CrossRef]
- Banerjee, J.R.; Ananthapuvirajah, A. Free flexural vibration of tapered beams. Comput. Struct. 2019, 224, 106106. [Google Scholar] [CrossRef]
- Rossi, A.; Botta, F.; Giovannelli, A.; Belfiore, N.P. A novel approach to reduce fan rotor blades stress in case of resonance due to inlet flow distortion by means of piezoelectric actuators. J. Sound Vib. 2023, 548, 117552. [Google Scholar] [CrossRef]
- Lumentut, M.F.; Shu, Y.C. Network segmentations of smart plate structure with attached mass and dynamic motions. Eur. J. Mech.-A Solids 2021, 85, 104061. [Google Scholar] [CrossRef]
c | L (m) | b (m) | (m) |
---|---|---|---|
0.5 | 0.4 | 0.05 | 0.008 |
1 | 0.4 | 0.05 | 0.008 |
3 | 0.4 | 0.05 | 0.008 |
5 | 0.4 | 0.05 | 0.008 |
Configuration\PP | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 |
2 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | −1 |
3 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | −1 | +1 |
4 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | −1 | +1 | +1 |
5 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | −1 | +1 | +1 | +1 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … |
−1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 |
Component | Material | Density (kg/m3) | Young’s Modulus (GPa) | Poisson’s Ratio | |
---|---|---|---|---|---|
Beam | Steel | 7850 | 210 | 0.3 | – |
Actuator | PZT-5A | 7750 | 39 | – | 374 |
Mode | A (Hz) | N (Hz) | A (Hz) | N (Hz) | A (Hz) | N (Hz) | A (Hz) | N (Hz) |
1 | 42.79 | 45.23 | 44.36 | 46.47 | 48.45 | 50.39 | 50.88 | 51.91 |
2 | 227.71 | 238.31 | 212.50 | 221.66 | 187.75 | 201.83 | 179.28 | 193.49 |
3 | 607.25 | 642.64 | 548.32 | 590.23 | 449.83 | 495.8 | 412.71 | 456.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, A.; Botta, F. Optimised Voltage Distribution on Piezoelectric Actuators for Modal Excitations Damping in Tapered Beams. Actuators 2023, 12, 71. https://doi.org/10.3390/act12020071
Rossi A, Botta F. Optimised Voltage Distribution on Piezoelectric Actuators for Modal Excitations Damping in Tapered Beams. Actuators. 2023; 12(2):71. https://doi.org/10.3390/act12020071
Chicago/Turabian StyleRossi, Andrea, and Fabio Botta. 2023. "Optimised Voltage Distribution on Piezoelectric Actuators for Modal Excitations Damping in Tapered Beams" Actuators 12, no. 2: 71. https://doi.org/10.3390/act12020071
APA StyleRossi, A., & Botta, F. (2023). Optimised Voltage Distribution on Piezoelectric Actuators for Modal Excitations Damping in Tapered Beams. Actuators, 12(2), 71. https://doi.org/10.3390/act12020071