Modeling of Underactuated Ball and Beam System—A Comparative Study
Abstract
:1. Introduction
2. Ball and Beam System Modeling
- —ball displacement,
- —rotation angle of the ball
- —angle of beam deflection,
- —mass of ball,
- —ball’s moment of inertia,
- —ball radius,
- —rolling radius,
- —eccentricity,
- —gravity acceleration
2.1. Commonly Used Model
2.2. Model with Eccentric Fixation
2.3. Model with the Friction Forces Included
3. Validation of Computational Models
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Suh, C.S. Underactuated Mechanical Systems—A Review of Control Design. J. Vib. Test. Syst. Dyn. 2022, 6, 21–51. [Google Scholar] [CrossRef]
- Li, L.; Tokuda, I.; Asano, F. Energy-Efficient Locomotion Generation and Theoretical Analysis of a Quasi-Passive Dynamic Walker. IEEE Robot. Autom. Lett. 2020, 5, 4305–4312. [Google Scholar] [CrossRef]
- Wu, J.; Ye, W.; Wang, Y.; Su, C.-Y. A General Position Control Method for Planar Underactuated Manipulators with Second-Order Nonholonomic Constraints. IEEE Trans. Cybern. 2021, 51, 4733–4742. [Google Scholar] [CrossRef] [PubMed]
- Deng, K.; Miao, J.; Sun, X. Robust Path-Following Control of Underactuated AUVs with Multiple Uncertainties and State Constraints. J. Phys. Conf. Ser. 2021, 2121, 012042. [Google Scholar] [CrossRef]
- Tian, J.; Wei, C.; Luo, M.; Wang, N.; Tan, C.; Zhao, Y. Parametric Research on Underactuated Tendon-Driven Grasping Mechanism for Space Capture Operation. Int. J. Precis. Eng. Manuf. 2019, 21, 237–247. [Google Scholar] [CrossRef]
- Moradi, R.; Alikhani, A.; Fathi Jegarkandi, M. Ultimate State Boundedness of Underactuated Spacecraft Subject to an Unmatched Disturbance. J. Theor. Appl. Mech. 2017, 55, 1055. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; He, B. Underactuated Rehabilitation Robotics for Hand Function. J. Robot. Control (JRC) 2021, 2, 337–341. [Google Scholar] [CrossRef]
- Muftah, M.N.; Faudzi, A.A.M.; Sahlan, S.; Mohamaddan, S. Intelligent Position Control for Intelligent Pneumatic Actuator with Ball-Beam (IPABB) System. Appl. Sci. 2022, 12, 11089. [Google Scholar] [CrossRef]
- Niro, L.; Kaneko, E.H.; Mollon, M.F.; Chaves, W.D.S.; Montezuma, M.A.F. Control of a Modified Ball and Beam System Using Tracking System in Real Time with a DC Motor as an Actuator. Int. J. Adv. Eng. Res. Sci. 2017, 4, 99–107. [Google Scholar] [CrossRef]
- Wellstead, P.E.; Chrimes, V.; Fletcher, P.R.; Moody, R.; Robins, A.J. The Ball and Beam Control Experiment. Int. J. Electr. Eng. Educ. 1978, 15, 21–39. [Google Scholar] [CrossRef]
- Srivastava, A.; Pratap, B. Nonlinear Observer-Based Robust Controller Design for Ball and Beam System: An LMI-Based Approach. Int. J. Nonlinear Dyn. Control 2018, 1, 211. [Google Scholar] [CrossRef]
- Howimanporn, S.; Chookaew, S.; Silawatchananai, C. Monitoring and Controlling of a Real-Time Ball Beam Fuzzy Predicting Based on PLC Network and Information Technologies. J. Adv. Inf. Technol. 2022, 13, 1–8. [Google Scholar] [CrossRef]
- Ali, S.S. Position Control of Ball and Beam System Using Robust H∞ Loop Shaping Controller. Indones. J. Electr. Eng. Comput. Sci. 2020, 19, 91–98. [Google Scholar] [CrossRef]
- Kharola, A.; Patil, P.P. Neural Fuzzy Control of Ball and Beam System. Int. J. Energy Optim. Eng. 2017, 6, 64–78. [Google Scholar] [CrossRef]
- Danilo Montoya, O.; Gil-González, W.; Ramírez-Vanegas, C. Discrete-Inverse Optimal Control Applied to the Ball and Beam Dynamical System: A Passivity-Based Control Approach. Symmetry 2020, 12, 1359. [Google Scholar] [CrossRef]
- Moreno–Valenzuela, J.; Montoya–Cháirez, J.; Santibáñez, V. Robust Trajectory Tracking Control of an Underactuated Control Moment Gyroscope via Neural Network–Based Feedback Linearization. Neurocomputing 2020, 403, 314–324. [Google Scholar] [CrossRef]
- Okafor, E.; Udekwe, D.; Ibrahim, Y.; Bashir Mu’azu, M.; Okafor, E.G. Heuristic and deep reinforcement learning-based PID control of trajectory tracking in a ball-and-plate system. J. Inf. Telecommun. 2021, 5, 179–196. [Google Scholar] [CrossRef]
- Singh, R.; Bhushan, B. Real-Time Control of Ball Balancer Using Neural Integrated Fuzzy Controller. Artif. Intell. Rev. 2020, 53, 351–368. [Google Scholar] [CrossRef]
- Mehedi, I.M.; Al-Saggaf, U.M.; Mansouri, R.; Bettayeb, M. Two Degrees of Freedom Fractional Controller Design: Application to the Ball and Beam System. Measurement 2019, 135, 13–22. [Google Scholar] [CrossRef]
- Moreno-Valenzuela, J.; Aguilar-Avelar, C. Identification of Underactuated Mechanical Systems. Intell. Syst. Control Autom. Sci. Eng. 2017, 88, 27–49. [Google Scholar] [CrossRef]
- Dalla Libera, A.; Romeres, D.; Jha, D.K.; Yerazunis, B.; Nikovski, D. Model-Based Reinforcement Learning for Physical Systems without Velocity and Acceleration Measurements. IEEE Robot. Autom. Lett. 2020, 5, 3548–3555. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Liu, C.; Tuo, Y.; Chen, K.; Zhang, T. Augmented Model-Based Dynamic Positioning Predictive Control for Underactuated Unmanned Surface Vessels with Dual-Propellers. Ocean Eng. 2022, 266, 112885. [Google Scholar] [CrossRef]
- Mombaur, K.; Henning Koch, K.; Felis, M. Model-Based Optimization for Robotics. J. Robot. Soc. Jpn. 2014, 32, 492–498. [Google Scholar] [CrossRef] [Green Version]
- Burghardt, A.; Gierlak, P.; Skwarek, W. Modeling of Dynamics of Cooperating Wheeled Mobile Robots. J. Theor. Appl. Mech. 2021, 59, 649–659. [Google Scholar] [CrossRef]
- Najva, N.; Saleem, A. Model Reference Controller Approach for Robot Arm Tracking Using Neural Networks. Indian J. Sci. Technol. 2019, 12, 39. [Google Scholar] [CrossRef]
- Sławski, S.; Kaczmarczyk, J.; Szymiczek, M.; Pakieła, W. Numerical Studies on the Influence of a Reinforcing Material on the Energy Absorption in a Multilayered Composite during Impacts. Mech. Compos. Mater. 2021, 57, 309–320. [Google Scholar] [CrossRef]
- Hyatt, P.; Johnson, C.C.; Killpack, M.D. Model Reference Predictive Adaptive Control for Large-Scale Soft Robots. Front. Robot. AI 2020, 7, 558027. [Google Scholar] [CrossRef]
- Gembalczyk, G.; Gierlak, P.; Duda, S. Control System Design of an Underactuated Dynamic Body Weight Support System Using Its Stability. Sensors 2021, 21, 5051. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, H. A Survey of Underactuated Mechanical Systems. IET Control Theory Appl. 2013, 7, 921–935. [Google Scholar] [CrossRef] [Green Version]
- Keshmiri, M.; Jahromi, A.F.; Mohebbi, A.; Hadi Amoozgar, M.; Xie, W.-F. Modeling and Control of Ball and Beam System Using Model Based and Non-Model Based Control Approaches. Int. J. Smart Sens. Intell. Syst. 2012, 5, 14–35. [Google Scholar] [CrossRef]
- Sehgal, K. Modelling and Control of Dynamical Ball and Beam System Using SA Tuned PIDA and PIaD Controllers. In Proceedings of the 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 9–11 July 2021; pp. 1–6. [Google Scholar]
- Latif, S.; Muhammad, E.; Naeem, U. Implementation of Ball and Beam System Using Classical and Advanced Control Techniques. In Proceedings of the 2019 International Conference on Applied and Engineering Mathematics (ICAEM), Taxila, Pakistan, 27–29 August 2019. [Google Scholar] [CrossRef]
- Nguyen, C.X.; Phan, H.N.; Hoang, L.D.; Tran, H.N. The Design of a Quasi-Time Optimal Cascade Controller for Ball and Beam System. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1029, 012022. [Google Scholar] [CrossRef]
- Zaare, S.; Soltanpour, M.R. The Position Control of the Ball and Beam System Using State-Disturbance Observe-Based Adaptive Fuzzy Sliding Mode Control in Presence of Matched and Mismatched Uncertainties. Mech. Syst. Signal Process. 2021, 150, 107243. [Google Scholar] [CrossRef]
- Burghardt, A.; Giergiel, J. Modelling and Control of a Underactuated Sphere and Beam System. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 2350–2354. [Google Scholar] [CrossRef]
- Flores, P. Contact Mechanics for Dynamical Systems: A Comprehensive Review. Multibody Syst. Dyn. 2021, 54, 127–177. [Google Scholar] [CrossRef]
- Specker, T.; Buchholz, M.; Dietmayer, K. A New Approach of Dynamic Friction Modelling for Simulation and Observation. IFAC Proc. Vol. 2014, 47, 4523–4528. [Google Scholar] [CrossRef] [Green Version]
- Specker, T.; Buchholz, M.; Dietmayer, K. Dynamical Modeling of Constraints with Friction in Mechanical Systems. IFAC-PapersOnLine 2015, 48, 514–519. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, D.; Tao, B.; Jiang, G.; Sun, Y.; Kong, J.; Tong, X.; Zhao, G.; Chen, B. Genetic Algorithm-Based Trajectory Optimization for Digital Twin Robots. Front. Bioeng. Biotechnol. 2022, 9, 1433. [Google Scholar] [CrossRef]
- Saków, M.; Marchelek, K. Design and Optimisation of Regression-Type Small Phase Shift FIR Filters and FIR-Based Differentiators with Optimal Local Response in LS-Sense. Mech. Syst. Signal Process. 2021, 152, 107408. [Google Scholar] [CrossRef]
- Paszkowski, W. Modeling of Vibroacoustic Phenomena Using the Method of Parameterizing the Audio Signa. Eksploat. I Niezawodn.—Maint. Reliab. 2020, 22, 501–507. [Google Scholar] [CrossRef]
- Sahib, M.A. A Novel Optimal PID plus Second Order Derivative Controller for AVR System. Eng. Sci. Technol. Int. J. 2015, 18, 194–206. [Google Scholar] [CrossRef] [Green Version]
- Veinović, S.; Stojić, D.; Ivanović, L. Optimized PIDD2 Controller for AVR Systems Regarding Robustness. Int. J. Electr. Power Energy Syst. 2023, 145, 108646. [Google Scholar] [CrossRef]
- Czapla, T.; Fice, M.; Niestrój, R. Experimental Identification of Wheel-Surface Model Parameters: Various Terrain Conditions. Sci. Rep. 2022, 12, 16015. [Google Scholar] [CrossRef] [PubMed]
Parameter | Symbol | Value | Unit |
---|---|---|---|
known/measured Parameters | |||
moment of inertia of a ball | 4.948 × 10−6 | kg∙m2 | |
ball radius | 0.0132 | m | |
mass of a ball | 0.071 | kg | |
gravity acceleration | 9.81 | m/s2 | |
rolling radius | 0.0118 | m | |
eccentricity | 0.035 | m | |
Estimated Parameters | |||
friction force coefficient | 0.0362 | N∙s/m | |
transition velocity | 0.008 | m/s | |
initial beam deflection | −0.16 | deg |
Indicators | CUM Model | CAM Model | Proposed Model |
---|---|---|---|
max. displacement error (m) | 0.032 | 0.147 | 0.009 |
0.1073 | 0.2837 | 0.0222 | |
max. velocity error (m/s) | 0.049 | 0.061 | 0.026 |
0.1325 | 0.19 | 0.0625 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gembalczyk, G.; Domogała, P.; Leśniowski, K. Modeling of Underactuated Ball and Beam System—A Comparative Study. Actuators 2023, 12, 59. https://doi.org/10.3390/act12020059
Gembalczyk G, Domogała P, Leśniowski K. Modeling of Underactuated Ball and Beam System—A Comparative Study. Actuators. 2023; 12(2):59. https://doi.org/10.3390/act12020059
Chicago/Turabian StyleGembalczyk, Grzegorz, Paweł Domogała, and Kamil Leśniowski. 2023. "Modeling of Underactuated Ball and Beam System—A Comparative Study" Actuators 12, no. 2: 59. https://doi.org/10.3390/act12020059
APA StyleGembalczyk, G., Domogała, P., & Leśniowski, K. (2023). Modeling of Underactuated Ball and Beam System—A Comparative Study. Actuators, 12(2), 59. https://doi.org/10.3390/act12020059