Development of Vibratory Microinjection System for Instantaneous Cell Membrane Piercing in Cytoplasmic Microinjection into Fertilized Eggs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of Two Sixth Version Vibrators
2.2. Vibration Characteristics
2.2.1. Vibration Characteristics on the Level of a Vibrator
2.2.2. Vibration Characteristics on the Tip of a Micropipette
2.3. Cytoplasmic Microinjection
2.3.1. Preparation for Animal Experiments
2.3.2. Evaluation Indices of Cytoplasmic Microinjections
- “Piercing time”
- Survival after microinjection
- Statistical analysis
- Ethical approval
3. Results
3.1. Development of Two Sixth Version Vibrators
3.1.1. Vibration Characteristics on the Level of a Vibrator
3.1.2. Vibration Characteristics on the Tip of a Micropipette
3.2. Cytoplasmic Microinjection
3.2.1. Detailed Records of Cytoplasmic Microinjections
3.2.2. Evaluation Indices of Cytoplasmic Microinjections
- “Piercing time”
- Survival after microinjection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Date/Pipette | Set No. | Group | Vibration Condition Injection Pressure | No. of Eggs | No. of Alive | No. of Dead |
---|---|---|---|---|---|---|
6 November 2020 Femtotip | 1 | VM1 | 42 kHz, 4.5 Vpp | 12 | 10 | 2 |
OM1 | 182 hPa | 11 | 6 | 5 | ||
2 | VM1 | 42 kHz, 4.5 Vpp | 10 | 9 | 1 | |
OM1 | 189 hPa | 9 | 8 | 1 | ||
13 November 2020 Femtotip | 1 | VM1 | 39 kHz, 12 Vpp | 11 | 11 | 0 |
OM1 | 156 hPa | 11 | 10 | 1 | ||
2 | VM1 | 39 kHz, 12 Vpp | 9 | 9 | 0 | |
OM1 | 154 hPa | 8 | 8 | 0 | ||
20 November 2020 Femtotip | 1 | VM1 | 39 kHz, 10 Vpp | 10 | 9 | 1 |
OM1 | 137 hPa | 10 | 6 | 4 | ||
4 December 2020 Femtotip | 1 | VM1 | 45 kHz, 13 Vpp | 12 | 11 | 1 |
OM1 | 226 hPa | 10 | 7 | 3 | ||
2 | VM1 | 45 kHz, 13 Vpp | 2 | 1 | 1 | |
OM1 | 231 hPa | 2 | 1 | 1 | ||
25 June 2021 Self-made | 1 | VM2 | 45 kHz, 3 Vpp | 14 | 13 | 1 |
OM2 | 177 hPa | 13 | 11 | 2 | ||
2 | VM2 | 45 kHz, 3 Vpp | 12 | 10 | 2 | |
OM2 | 188 hPa | 12 | 8 | 4 | ||
30 July 2021 Self-made | 1 | VM2 | 30 kHz, 3 Vpp | 14 | 12 | 2 |
OM2 | 140 hPa | 13 | 12 | 1 | ||
3 September 2021 Self-made | 1 | VM2 | 39 kHz, 7 Vpp | 12 | 12 | 0 |
OM2 | 138 hPa | 12 | 10 | 2 | ||
2 | VM2 | 39 kHz, 7 Vpp | 14 | 10 | 4 | |
OM2 | 142 hPa | 14 | 13 | 1 | ||
1 October 2021 Self-made | 1 | VM2 | 6 variations * | 13 | 11 | 2 |
OM2 | 183 hPa | 13 | 8 | 5 | ||
8 October 2021 Self-made | 1 | VM2 | 45 kHz, Vpp (3.5, 3.8, 4.0, 3.9) | 11 | 11 | 0 |
OM2 | 179 hPa | 11 | 11 | 0 | ||
2 | VM2 | 45 kHz, 4 Vpp; 39 kHz Vpp (4, 5, 6) | 6 | 3 | 3 | |
OM2 | 183 hPa | 6 | 4 | 2 | ||
15 October 2021 Self-made | 1 | VM2 | 31 kHz, Vpp (8, 7.5) | 15 | 12 | 3 |
OM2 | 157, 140 hPa | 15 | 11 | 4 | ||
2 | VM2 | 31 kHz, Vpp (7.5, 7.0) | 11 | 8 | 3 | |
OM2 | 125 hPa | 11 | 9 | 2 | ||
29 October 2021 Self-made | 1 | VM2 | 33 kHz, Vpp (3, 5, 7, 6, 5, 7) | 14 | 12 | 2 |
OM2 | 119 hPa | 14 | 12 | 2 | ||
5 November 2021 Self-made | 1 | VM2 | 37 kHz, 7 Vpp | 14 | 14 | 0 |
OM2 | 157 hPa | 14 | 12 | 2 | ||
2 | VM2 | 37 kHz, Vpp (7.5, 8.0) | 14 | 14 | 0 | |
OM2 | 158 hPa | 11 | 11 | 0 | ||
12 November 2021 Self-made | 1 | VM2 | 49 kHz, 3 Vpp | 10 | 10 | 0 |
OM2 | 127 hPa | 9 | 9 | 0 | ||
2 | VM2 | 49 kHz, 3 Vpp | 12 | 12 | 0 | |
OM2 | 127 hPa | 11 | 9 | 2 | ||
10 December 2021 Self-made | 1 | VM2 | 45 kHz, 8 Vpp | 11 | 11 | 0 |
OM2 | 185 hPa | 11 | 11 | 0 | ||
17 December 2021 Self-made | 1 | VM2 | 41 kHz, 10 Vpp | 13 | 9 | 4 |
OM2 | 160 hPa | 13 | 9 | 4 | ||
2 | VM2 | 41 kHz, 10 Vpp | 10 | 9 | 1 | |
OM2 | 162 hPa | 10 | 7 | 3 | ||
21 Juanuary 2022 Self-made | 1 | VM2 | 40 kHz, Vpp (7, 8) | 15 | 15 | 0 |
OM2 | 232 hPa | 15 | 15 | 0 | ||
2 | VM2 | 40 kHz, Vpp (8, 9) | 13 | 12 | 1 | |
OM2 | 243 hPa | 11 | 11 | 0 | ||
15 April 2022 Self-made | 1 | VM2 | 31 kHz, Vpp (10, 11); 40 kHz, Vpp (6, 7, 8) | 15 | 14 | 1 |
OM2 | 164 hPa, 145 hPa | 14 | 14 | 0 | ||
2 | VM2 | 40 kHz, 9 Vpp | 7 | 7 | 0 | |
OM2 | 156 hPa | 7 | 6 | 1 | ||
22 April 2022 Self-made | 1 | VM2 | 38 kHz, 10 Vpp | 12 | 12 | 0 |
OM2 | 145 hPa | 13 | 11 | 2 | ||
2 | VM2 | 38 kHz, 10 Vpp | 13 | 13 | 0 | |
OM2 | 149 hPa | 13 | 10 | 3 | ||
13 May 2022 Self-made | 1 | VM2 | 44 kHz, 6 Vpp | 15 | 15 | 0 |
OM2 | 136 hPa | 15 | 14 | 1 | ||
2 | VM2 | 44 kHz, 6 Vpp | 14 | 12 | 2 | |
OM2 | 142 hPa | 14 | 12 | 2 | ||
27 May 2022 Self-made | 1 | VM2 | 42 kHz, 10 Vpp | 15 | 14 | 1 |
OM2 | 110 hPa | 15 | 14 | 1 | ||
2 | VM2 | 42 kHz, Vpp (10, 9, 8) | 9 | 8 | 1 | |
OM2 | 112 hPa | 9 | 5 | 4 | ||
3 June 2022 Self-made | 1 | VM2 | 45 kHz, 8 Vpp | 15 | 15 | 0 |
OM2 | 137 hPa | 14 | 12 | 2 | ||
2 | VM2 | 45 kHz, 8 Vpp | 9 | 9 | 0 | |
OM2 | 147 hPa | 9 | 7 | 2 | ||
17 June 2022 Self-made | 1 | VM2 | 42 kHz, 7 Vpp | 13 | 10 | 3 |
OM2 | 122 hPa | 13 | 9 | 4 | ||
2 | VM2 | 42 kHz, 7 Vpp | 8 | 6 | 2 | |
OM2 | 126 hPa | 8 | 5 | 3 | ||
24 June 2022 Self-made | 1 | VM2 | 41 kHz, 6 Vpp | 15 | 15 | 0 |
OM2 | 154 hPa | 14 | 8 | 6 | ||
2 | VM2 | 43 kHz, 10 Vpp | 12 | 9 | 3 | |
OM2 | 138 hPa, 119 hPa | 12 | 11 | 1 |
References
- Nagy, A.; Gertsenstein, M.; Vintersen, K.; Behringer, R. Production of transgenic mice. In Manipulating the Mouse Embryo. A Laboratory Manual, 3rd ed.; Nagy, A., Gertsenstein, M., Vintersen, K., Behringer, R., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2003; pp. 289–358. [Google Scholar]
- Gordon, J.W.; Scangos, G.A.; Plotkin, D.J.; Barbosa, J.A.; Ruddle, F.H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. USA 1980, 77, 7380–7384. [Google Scholar] [CrossRef] [PubMed]
- Brinster, R.L.; Chen, H.Y.; Trumbauer, M.; Senear, A.W.; Warren, R.; Palmiter, R.D. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 1981, 27, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Miyawaki, F.; Arai, Y.; Morisaki, T.; Ahmed, S.; Omata, S.; Fukui, Y. Development of vibratory microinjection method. Int. J. Artif. Organs 2003, 26, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Miyawaki, F.; Kikuchi, T.; Ippongi, T.; Hasegawa, J.; Kobayashi, K. Development and Evaluation of the Second Version of Vibratory Microinjection System. Adv. Biomed. Eng. 2018, 7, 131–140. [Google Scholar] [CrossRef]
- Dilidaer, K.; Miyawaki, F.; Kobayashi, K.; Hasegawa, J. Evaluation of Ultrasonic-Range Vibratory Microinjection System at a Frequency of 35 kHz Using Fertilized Mouse Eggs. J. Mamm. Ova Res. 2012, 29, 48–54. [Google Scholar]
- Yamagata, Y.; Higuchi, T.; Saeki, H.; Ishimaru, H. Ultrahigh vacuum precise positioning device utilizing rapid deformations of piezoelectric elements. J. Vac. Sci. Technol. A 1990, 8, 4098–4100. [Google Scholar] [CrossRef]
- Ediz, K.; Olgac, N. Microdynamics of the piezo-driven pipettes in ICSI. IEEE Trans. Biomed. Eng. 2004, 51, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Miyawaki, F.; Kobayashi, K.; Hasegawa, J. Vibration Type Micro Injection Device. JP Patent No. 4,652,906, 24 December 2010. [Google Scholar]
- Miyawaki, F.; Kobayashi, K.; Hasegawa, J. Vibration Type Micro Injection Device. U.S. Patent No. 8,198,072, 12 June 2012. [Google Scholar]
- Hasegawa, J. Development of the Vibrator for Vibratory Microinjection System. Ultrason. Technol. 2021, 33, 57–61. (In Japanese) [Google Scholar]
- Van Keuren, M.L.; Gavrilina, G.B.; Filipiak, W.E.; Zeidler, M.G.; Saunders, T.L. Generating transgenic mice from bacterial artificial chromosomes: Transgenesis efficiency, integration and expression outcomes. Transgenic Res. 2009, 18, 769–785. [Google Scholar] [CrossRef] [PubMed]
- Montigny, W.J.; Phelps, S.F.; Illenye, S.; Heintz, N.H. Parameters influencing high-efficiency transfection of bacterial artificial chromosomes into cultured mammalian cells. Biotechniques 2003, 35, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Miyawaki, F. Proposal of a new method of gene transfer for large transgenes: Inter-pronuclear cytoplasmic microinjection. Proceedings of 12th Transgenic Technology, Edinburgh, UK, 6 October 2014. [Google Scholar]
- Koya, T.; Hasegawa, J.; Miyawaki, F. Improvement of Vibration Characteristics of Vibrator for Microinjection. Inst. Ultrason. Elecronics 2019, 40, 2P5–4. [Google Scholar]
- Harms, D.W.; Quadros, R.M.; Seruggia, D.; Ohtsuka, M.; Takahashi, G.; Montoliu, L.; Gurumurthy, C.B. Mouse Genome Editing Using the CRISPR/Cas System. Curr. Protoc. Hum. Genet. 2014, 83, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Miura, H.; Gurumurthy, C.B.; Sato, T.; Sato, M.; Ohtsuka, M. CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA. Sci. Rep. 2015, 5, 12799. [Google Scholar] [CrossRef] [PubMed]
- Miura, H.; Quadros, R.M.; Gurumurthy, C.B.; Ohtsuka, M. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat. Protoc. 2018, 13, 195–215. [Google Scholar] [CrossRef] [PubMed]
- Horii, T.; Arai, Y.; Yamazaki, M.; Morita, S.; Kimura, M.; Itoh, M.; Abe, Y.; Hatada, I. Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci. Rep. 2014, 4, 4513. [Google Scholar] [CrossRef] [PubMed]
Joint Structure | Vibration Propagation Structure | Frequency Range (kHz) | Z-Axis Displacement at the Tip: Dz_T (μm) | Z-Axis Displacement at the Vibrator: Dz_V (μm) | Propagation Rate (Dz_T/Dz_V) | p (t-Test) |
---|---|---|---|---|---|---|
Screw + O-ring (Femtotip) | Screw | 30.1~49.9 | 0.478 ± 0.680 Sa | 0.100 ± 0.030 Sb | 4.309 ± 5.704 Sc | Sa-Ta < 0.0001 Sb-Tb < 0.0001 Sc-Tc < 0.0001 |
30.1~41.3 | 0.143 ± 0.081 | 0.091 ± 0.037 | 1.571 ± 0.609 | |||
41.4~49.9 | 0.919 ± 0.850 | 0.112 ± 0.011 | 7.919 ± 7.229 | |||
Silicone rubber tube (Self-made) | Tube | 30.1~49.9 | 0.162 ± 0.092 Ta | 0.172 ± 0.077 Tb | 0.985 ± 0.369 Tc | |
30.1~34.5 | 0.263 ± 0.139 | 0.264 ± 0.115 | 1.115 ± 0.476 | |||
34.6~49.9 | 0.131 ± 0.034 | 0.144 ± 0.022 | 0.945 ± 0.323 |
Joint Structure | Vibration Propagation Structure | Injection Mechanism | Group | Total No. of Eggs | Piercing Time (s) | p (t-Test) |
---|---|---|---|---|---|---|
Screw + O-ring (Femtotip) | Screw | Vibration | VM1 | 65 | 3.62 ± 3.72 | 0.0002 |
--- | Air pressure | OM1 | 61 | 9.58 ± 11.85 | ||
Silicone rubber tube (Self-made) | Tube | Vibration | VM2 | 410 | 1.52 ± 5.98 | <0.0001 |
--- | Air pressure | OM2 | 396 | 10.87 ± 11.09 | ||
Femtotip + Self-made | Screw or Tube | Vibration | VM1 + VM2 | 475 | 1.80 ± 5.77 | <0.0001 |
--- | Air pressure | OM1 + OM2 | 457 | 10.69 ± 11.19 |
Injection Mechanism | Joint Structure | Vibration Propagation Structure | Group | Total No. of Eggs | Piercing Time (s) | p (t-Test) |
---|---|---|---|---|---|---|
Vibration | Screw + O-ring (Femtotip) | Screw | VM1 | 65 | 3.62 ± 3.72 | 0.0062 |
Silicone rubber tube (Self-made) | Tube | VM2 | 410 | 1.52 ± 5.98 | ||
Air pressure | Screw + O-ring (Femtotip) | --- | OM1 | 61 | 9.58 ± 11.85 | NS (0.4058) |
Silicone rubber tube (Self-made) | --- | OM2 | 396 | 10.87 ± 11.09 |
Joint Structure | Injection Mechanism | Vibration Propagation Structure | Group | Total No. of Eggs | Survival | p (Pearson’s χ2 Test) | |
---|---|---|---|---|---|---|---|
No. of Eggs | Rate (%) | ||||||
Screw + O-ring (Femtotip) | Vibration | Screw | VM1 | 65 | 59 | 90.8 | 0.0208 |
Air pressure | --- | OM1 | 61 | 46 | 75.4 | ||
Silicone rubber tube (Self-made) | Vibration | Tube | VM2 | 410 | 370 | 90.2 | 0.0020 |
Air pressure | --- | OM2 | 396 | 328 | 82.8 | ||
Femtotip + Self-made | Vibration | Screw or Tube | VM1 + VM2 | 475 | 429 | 90.3 | 0.0002 |
Air pressure | --- | OM1 + OM2 | 457 | 374 | 81.8 |
Injection Mechanism | Joint Structure | Vibration Propagation Structure | Group | Total No. of Eggs | Survival | p (Pearson’s χ2 Test) | |
---|---|---|---|---|---|---|---|
No. of Eggs | Rate (%) | ||||||
Vibration | Screw + O-ring (Femtotip) | Screw | VM1 | 65 | 59 | 90.8 | NS (0.8942) |
Silicone rubber tube (Self-made) | Tube | VM2 | 410 | 370 | 90.2 | ||
Air pressure | Screw + O-ring (Femtotip) | --- | OM1 | 61 | 46 | 75.4 | NS (0.1618) |
Silicone rubber tube (Self-made) | --- | OM2 | 396 | 328 | 82.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyawaki, F.; Hasegawa, J. Development of Vibratory Microinjection System for Instantaneous Cell Membrane Piercing in Cytoplasmic Microinjection into Fertilized Eggs. Actuators 2023, 12, 448. https://doi.org/10.3390/act12120448
Miyawaki F, Hasegawa J. Development of Vibratory Microinjection System for Instantaneous Cell Membrane Piercing in Cytoplasmic Microinjection into Fertilized Eggs. Actuators. 2023; 12(12):448. https://doi.org/10.3390/act12120448
Chicago/Turabian StyleMiyawaki, Fujio, and Jun Hasegawa. 2023. "Development of Vibratory Microinjection System for Instantaneous Cell Membrane Piercing in Cytoplasmic Microinjection into Fertilized Eggs" Actuators 12, no. 12: 448. https://doi.org/10.3390/act12120448
APA StyleMiyawaki, F., & Hasegawa, J. (2023). Development of Vibratory Microinjection System for Instantaneous Cell Membrane Piercing in Cytoplasmic Microinjection into Fertilized Eggs. Actuators, 12(12), 448. https://doi.org/10.3390/act12120448