Friction Parameters Dynamic Change and Compensation for a Novel Dual-Drive Micro-Feeding System
Abstract
:1. Introduction
2. Description and Modeling of System
2.1. System Description
2.2. Frictional Coupling Model
2.3. Dynamical Model
2.4. Dynamical Model Analysis
3. Friction Identification
3.1. Genetic Algorithms
3.2. Frictional Model at a Constant Base Speed
4. Controller Design
5. Experiment and Results
5.1. Experimental Equipment
5.2. Estimation of Frictional Parameters at a Constant Base Speed
5.3. Estimation of Dynamic Changes of Frictional Parameters
5.4. Friction Compensation
6. Conclusions
- (1)
- By analyzing the force on the contact surface of the screw–ball–nut, the unique frictional force coupling model is introduced and further reveals the factors affecting the feeding accuracy of the DDMS and constructs a system dynamics model considering the frictional coupling.
- (2)
- The experiments demonstrate the correctness of adding the velocity squared term to the Stribeck model, which improves the fitting accuracy by at least 29.8% in SSE and 19.4% in RMSE compared with no squared term. Subsequently, the trends of the frictional parameters with the dynamics of the base speeds are obtained experimentally, which reveals the frictional characteristics of the DDMS further. The modified frictional model proves that the frictional force changed by the centrifugal force in the frictional coupling model and different base speeds are necessary considerations for the design of the DDMS system controller.
- (3)
- The fully closed-loop compensation model is proposed for the DDMS to realize three closed-loop controls of the screw axis, nut axis, and worktable. A PD + FF controller is designed to improve the position tracking accuracy, and the experimental result shows a 60% improvement in accuracy compared to the conventional PD controller, which effectively proves the correctness of the modified frictional model, parameters identification, and error compensation methods.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kamalzadeh, A.; Gordon, D.J.; Erkorkmaz, K. Robust compensation of elastic deformations in ball screw drives. Int. J. Mach. Tools Manuf. 2010, 50, 559–574. [Google Scholar] [CrossRef]
- Wang, Y.F.; Wang, D.H.; Chai, T.Y. Modeling and control compensation of nonlinear friction using adaptive fuzzy systems. Mech. Syst. Signal Process. 2009, 23, 2445–2457. [Google Scholar] [CrossRef]
- Jie, L.; Fugui, X.; Xinjun, L.; Bin, M.; Zeyuan, D. Analysis on the Research Status of Volumetric Positioning Accuracy Improvement Methods for Five–Axis NC machine Tools. J. Mech. Eng. 2017, 53, 113–128. [Google Scholar]
- Xiang, H.; Qiu, Z.; Li, X. Simulation and experimental research of non–linear friction compensation for high–precision ball screw drive system. In Proceedings of the 2009 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 16–19 August 2009. [Google Scholar]
- Hanwen, Y.; Feng, X. Modelling and analysis of dual driven feed system with friction. J. Balk. Tribol. Assoc. 2015, 21, 736–752. [Google Scholar]
- Wang, Z.; Feng, X.; Li, P.; Du, F. Dynamic modeling and analysis of the nut-direct drive system. Adv. Mech. Eng. 2018, 10, 1687814018810656. [Google Scholar] [CrossRef]
- Su, Z.; Feng, X.; Li, H.; Lu, J.; Wang, Z.; Liu, Y. Boundary–Adapted Numerical Modeling of Flow in a Hydrostatic Leadscrew. Actuators 2021, 10, 190. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, X.; Li, Y.; Lu, J.; Su, Z. Research on boundary slip of hydrostatic lead screw under different driving modes. Sci. Rep. 2021, 11, 22307. [Google Scholar] [CrossRef]
- Yu, H.W.; Feng, X.Y. Dynamic Modeling and Spectrum Analysis of Macro-Macro Dual Driven System. J. Comput. Nonlinear Dyn. 2016, 11, 044505. [Google Scholar] [CrossRef]
- Du, F.; Zhang, M.; Wang, Z.; Yu, C.; Feng, X.; Li, P. Identification and compensation of friction for a novel two–axis differential micro–feed system. Mech. Syst. Signal Processing 2018, 106, 453–465. [Google Scholar] [CrossRef]
- Wang, Z.G.; Feng, X.Y.; Du, F.X.; Li, H.; Su, Z. A novel method for smooth low–speed operation of linear feed systems. Precis. Eng. 2019, 60, 215–221. [Google Scholar] [CrossRef]
- Olsson, H.; Astrom, K.J.; de Wit, C.C.; Gafvert, M.; Lischinsky, P. Friction Models and Friction Compensation. Eur. J. Control 1998, 4, 176–195. [Google Scholar] [CrossRef]
- Tan, K.K.; Lee, T.H.; Huang, S.N.N.; Jiang, X. Friction Modeling and Adaptive Compensation Using a Relay Feedback Approach. IEEE Trans. Ind. Electron. 2001, 48, 169–176. [Google Scholar]
- Lu, X.; Khonsari, M.M.; Gelinck, E.R.M. The Stribeck Curve: Experimental Results and Theoretical Prediction. J. Tribol. 2006, 128, 789–794. [Google Scholar] [CrossRef]
- Woydt, M.; Wäsche, R. The history of the Stribeck curve and ball bearing steels: The role of Adolf Martens. Wear 2010, 268, 1542–1546. [Google Scholar] [CrossRef]
- Tang, X.H.; Chang, X.; Fang, Z.F. The Enhanced Genetic Algorithms for the Optimization Design. In Proceedings of the 2010 3rd International Conference on Biomedical Engineering and Informatics, Shenyang, China, 16–18 October 2010; Volume 1–7, pp. 2990–2994. [Google Scholar]
- Xu, J.; Liu, L.; Xu, W.B. Application of immune genetic algorithm to multiobjective optimization. In Proceedings of the International Symposium on Distributed Computing and Applications to Business, Engineering and Science, Hangzhou, China, 12–15 October 2006; Volume 1–2, pp. 1048–1050. [Google Scholar]
- Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [Google Scholar] [CrossRef]
- Zhuo, Y.; Zhou, X. Dynamic Characteristic Analysis of High-speed Spherical Ball Bearing. J. Mech. Eng. 2015, 51, 37–46. [Google Scholar] [CrossRef]
- Du, F.; Feng, X.; Li, P.; Yue, M.; Wang, Z. Modeling and Analysis for a Novel Dual-axis Differential Micro-feed System. J. Mech. Eng. 2018, 54, 195–204. [Google Scholar] [CrossRef]
- Liu, D.P. Research on parameter identification of friction model for servo systems based on genetic algorithms. In Proceedings of the 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, 21 August 2005; Volume 1–9, pp. 1116–1120. [Google Scholar]
- Jamaludin, Z.; Van Brussel, H.; Swevers, J. Friction Compensation of an XY Feed Table Using Friction–Model–Based Feedforward and an Inverse–Model–Based Disturbance Observer. IEEE Trans. Ind. Electron. 2009, 56, 3848–3853. [Google Scholar] [CrossRef]
- Li, Z.J.; Su, C.Y.; Wang, L.Y. Nonlinear Disturbance Observer—Based Control Design for a Robotic Exoskeleton Incorporating Fuzzy Approximation. IEEE Trans. Ind. Electron. 2015, 56, 5763–5775. [Google Scholar] [CrossRef]
- Strijbosch, N.; Tiels, K.; Oomen, T. Hysteresis Feedforward Compensation: A Direct Tuning Approach Using Hybrid-MEM-Elements. IEEE Control Syst. Lett. 2022, 84, 102804. [Google Scholar] [CrossRef]
- Li, L.B.; Sun, L.L.; Zhang, S.Z.; Yang, Q.Q. Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control. ISA Trans. 2015, 58, 635–649. [Google Scholar] [CrossRef]
- Zhong, L.; Rahman, M.F.; Hu, W.Y.; Lim, K.W. Analysis of direct torque control in permanent magnet synchronous motor drives. IEEE Trans. Power Electron. 1997, 12, 528–536. [Google Scholar] [CrossRef]
- Liu, Y.; Ni, H.; Zhang, C.; Wang, Y.; Sun, H. PC—based open control platform design of integration of machine vision and motion control. J. Zhejiang Univ. Eng. Sci. 2016, 50, 1381–1386. [Google Scholar]
- Schwager, J. Review of Real—Time Ethernet interfaces. Elektronik 2009, 58, 42–43. [Google Scholar]
Parameters | Values |
---|---|
) | 9.58 × 10−5 |
) | 53.62 × 10−5 |
) | 20 |
) | 1.25 × 10−5 |
) | 5 |
) | 0.605 |
Parameters | Positive | Negative | ||
---|---|---|---|---|
Screw | Nut | Screw | Nut | |
65.888 | −71.4 | −66.31 | 62.95 | |
66.3483 | −73.56 | −68.91 | 65.51 | |
1.9614 | −0.6382 | −0.4279 | 0.905 | |
1.5887 | 0.2827 | −1.492 | 0.2674 | |
−0.0121 | 0.00375 | 0.009374 | −0.002358 |
Model | SSE | RMSE | ||||||
---|---|---|---|---|---|---|---|---|
Positive | Negative | Positive | Negative | |||||
Screw | Nut | Screw | Nut | Screw | Nut | Screw | Nut | |
term | 5.348 | 7.641 | 5.317 | 10.31 | 0.426 | 0.401 | 0.481 | 0.559 |
term | 3.753 | 2.298 | 3.087 | 4.081 | 0.343 | 0.312 | 0.268 | 0.357 |
Parameters | ||||||
---|---|---|---|---|---|---|
Screw | Nut | Screw | Nut | Screw | Nut | |
69.75 | −56.88 | 1.222 | 0.8552 | −7.717 × 10−3 | −1.437 × 10−2 | |
75.84 | −70.33 | 0.7993 | 0.0313 | −6.566 × 10−4 | 3.704 × 10−3 | |
3.239 | 1.052 | 3.252 | 3.52 | 7.019 | 6.082 | |
1.273 | −2.977 | −0.006795 | −0.02485 | 1.202 × 10−4 | 8.811 × 10−4 | |
−0.01065 | 0.02063 | −1.625 × 10−4 | 3.407 × 10−5 | 1.464 × 10−6 | 1.727 × 10−6 |
Controllers | |||
---|---|---|---|
Maximum | Average | Standard Deviation | |
PD | 17.415 | 10.7720 | 11.7795 |
PD + FF | 5.8360 | 3.3294 | 3.6489 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Feng, X.; Su, Z.; Liu, Y.; Yao, M. Friction Parameters Dynamic Change and Compensation for a Novel Dual-Drive Micro-Feeding System. Actuators 2022, 11, 236. https://doi.org/10.3390/act11080236
Lu Z, Feng X, Su Z, Liu Y, Yao M. Friction Parameters Dynamic Change and Compensation for a Novel Dual-Drive Micro-Feeding System. Actuators. 2022; 11(8):236. https://doi.org/10.3390/act11080236
Chicago/Turabian StyleLu, Ziteng, Xianying Feng, Zhe Su, Yandong Liu, and Ming Yao. 2022. "Friction Parameters Dynamic Change and Compensation for a Novel Dual-Drive Micro-Feeding System" Actuators 11, no. 8: 236. https://doi.org/10.3390/act11080236
APA StyleLu, Z., Feng, X., Su, Z., Liu, Y., & Yao, M. (2022). Friction Parameters Dynamic Change and Compensation for a Novel Dual-Drive Micro-Feeding System. Actuators, 11(8), 236. https://doi.org/10.3390/act11080236