Dual Synthetic Jets Actuator and Its Applications—Part I: PIV Measurements and Comparison to Synthetic Jet Actuator
Abstract
:1. Introduction
2. Experimental Technique
3. Results and Discussion
3.1. Comparison between DSJA and SJA
3.2. Special Vectoring Characteristics of DSJA
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
D | Diameter of cylindrical chambers |
H | Height of cylindrical chambers |
UA | Driving voltage amplitude |
f | Driving frequency |
ht | Thickness of rigid wall |
l | Length of slots |
h | Width of slots |
d | Distance between the two slots |
Reu | Reynolds number based on jet exit |
St | Strouhal number |
w | Vorticity |
α | Exit chamfer |
Air density | |
Air viscosity | |
uamp | Velocity amplitude of SJ |
L0 | Stroke length of SJ |
ReI0 | Re based on the blowing phase per unit width |
u0(t) | Instantaneous centerline velocity at the actuator slot exit |
T | Time of a DSJ period |
t* | Dimensionless time |
V | “Induced” velocity |
Circulation | |
a | Radius of the vortex ring |
dL | Length of left exit |
References
- Glezer, A.; Amitay, M. Synthetic jets. Annu. Rev. Fluid Mech. 2002, 34, 503–529. [Google Scholar] [CrossRef]
- Luo, Z.B.; Xia, Z.X. Advances in synthetic jet technology and applications in flow control. Adv. Mech. 2005, 35, 221–234. (In Chinese) [Google Scholar]
- Zhang, P.F.; Wang, J.J.; Feng, L.H. Review of zero-net-mass-flux jet and its application in separation flow control. Sci. China Ser. E Technol. Sci. 2008, 51, 1315–1344. [Google Scholar] [CrossRef]
- Wen, X.; Tang, H.; Liu, Y.Z. Interaction of twin synthetic jets in attached and separated boundary layers: Effects of yaw angle and phase difference. J. Vis. 2018, 21, 949–963. [Google Scholar] [CrossRef]
- Wen, X.; Tang, H.; Duan, F. Interaction of in-line twin synthetic jets with a separated flow. Phys. Fluids 2016, 28, 043602. [Google Scholar] [CrossRef]
- Smith, B.L.; Glezer, A. The formation and evolution of synthetic jets. Phys. Fluids 1998, 10, 2281–2297. [Google Scholar] [CrossRef]
- Singh, P.K.; Renganathan, M.; Yadav, H.; Sahu, S.K.; Upadhyay, P.K.; Agrawal, A. An experimental investigation of the flow-field and thermal characteristics of synthetic jet impingement with different waveforms. Int. J. Heat Mass Transf. 2022, 187, 122534. [Google Scholar] [CrossRef]
- Kim, M.; Essel, E.E.; Sullivan, P.E. Effect of varying frequency of a synthetic jet on flow separation over an airfoil. Phys. Fluids 2022, 34, 015122. [Google Scholar] [CrossRef]
- Xu, X.P.; Zhou, Z. Analytical study on the synthetic jet control of asymmetric flow field of flying wing unmanned aerial vehicle. Aerosp. Sci. Technol. 2016, 56, 90–99. [Google Scholar] [CrossRef]
- Trávnícek, Z.; Tesar, V. Annular synthetic jet used for impinging flow mass-transfer. Int. J. Heat Mass Transf. 2003, 46, 3291–3297. [Google Scholar] [CrossRef] [Green Version]
- Pitital, I.; Rajnish, N.S. Large Eddy simulation of a NACA0015 circulation control airfoil using synthetic jets. Aerosp. Sci. Technol. 2018, 82–83, 545–556. [Google Scholar]
- Wen, X.; Tang, H.; Duan, F. Vortex dynamics of in-line twin synthetic jets in a laminar boundary layer. Phys. Fluids 2015, 27, 083601. [Google Scholar] [CrossRef] [Green Version]
- Rice, T.T.; Amitay, M. Forced Flow Reattachment Process and the Effect of Pressure Gradient. AIAA J. 2019, 57, 2795–2807. [Google Scholar] [CrossRef]
- Xia, H.; Qin, N. Detached-eddy simulation for synthetic jets with moving boundaries. Mod. Phys. Lett. B 2005, 28, 1429–1434. [Google Scholar] [CrossRef]
- Hill, D.J.; Saffman, P.G. Counter-rotating vortex patches in shear: A model of the effect of wind shear on aircraft trailing vortices. Proc. R. Soc. Lond. A 2002, 458, 1527–1553. [Google Scholar] [CrossRef]
- Wang, Q.T.; Cheng, K.M.; Gu, Y.S.; Li, Z.Q. Continuous control of asymmetric forebody vortices in a bi-stable state. Phys. Fluids 2018, 30, 024102. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Zhao, Q.J.; Gu, Y.S.; Chen, X. Experimental investigations for parametric effects of dual synthetic jets on delaying stall of a thick airfoil. Chin. J. Aeronaut. 2016, 29, 346–357. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.B.; Xia, Z.X.; Liu, B. New generation of synthetic jet actuators. AIAA J. 2006, 44, 2418–2420. [Google Scholar] [CrossRef]
- Crispo, C.M.; Greco, C.S.; Cardone, G. Convective heat transfer in circular and chevron impinging synthetic jets. Int. J. Heat Mass Transf. 2018, 126, 969–979. [Google Scholar] [CrossRef]
- Greco, C.S.; Ianiro, A.; Imbriale, M.; Astarita, T.; Cardone, G. PIV Measurements in Twin Synthetic Jets. In Proceedings of the 15th International Symposium on Flow Visualization, Minsk, Belarus, 25–28 June 2012. [Google Scholar]
- Deng, X.; Xia, Z.X.; Luo, Z.B.; Li, Y.J. Vector-adjusting characteristic of dual-synthetic-jet actuator. AIAA J. 2015, 53, 794–797. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Luo, Z.B.; Deng, X.; Liu, Z.; Li, S. Theoretical modeling of vectoring dual synthetic jet based on regression analysis. Chin. J. Aeronaut. 2021, 34, 1–12. [Google Scholar] [CrossRef]
- Luo, Z.B.; Xia, Z.X. Jet vectoring using a novel synthetic jet actuator. Chin. J. Aeronaut. 2007, 20, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.B.; Zhao, Z.J.; Liu, J.F.; Deng, X.; Zheng, M.; Yang, H.; Chen, Q.; Li, S. Novel roll effector based on zero-mass-flux dual synthetic jets and its flight test. Chin. J. Aeronaut. 2022, 35, 1–5. [Google Scholar] [CrossRef]
Test | Actuator | Slots | Cavies | Electrical Current | |||||
---|---|---|---|---|---|---|---|---|---|
l/mm | h/mm | d/mm | D/mm | H/mm | UA/V | f/Hz | Wave Form | ||
T1 | SJA | 20 | 2 | — | 46 | 7 | 300 | 500 | rectangular |
T2 | DSJA | 20 | 2 | 5 | 46 | 7 | 300 | 500 | rectangular |
Test | Actuator | UA/V | f/Hz | uamp/(m/s) | Reu | ReIo | St | L0/mm |
---|---|---|---|---|---|---|---|---|
T1 | SJA | 300 | 500 | 16.5 | 2200 | 9500 | 0.19 | 10.5 |
T2 | DSJA | 300 | 500 | 18.5 | 2500 | 12,000 | 0.17 | 11.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Zhao, Z.; Deng, X.; Wang, L.; Xia, Z. Dual Synthetic Jets Actuator and Its Applications—Part I: PIV Measurements and Comparison to Synthetic Jet Actuator. Actuators 2022, 11, 205. https://doi.org/10.3390/act11080205
Luo Z, Zhao Z, Deng X, Wang L, Xia Z. Dual Synthetic Jets Actuator and Its Applications—Part I: PIV Measurements and Comparison to Synthetic Jet Actuator. Actuators. 2022; 11(8):205. https://doi.org/10.3390/act11080205
Chicago/Turabian StyleLuo, Zhenbing, Zhijie Zhao, Xiong Deng, Lin Wang, and Zhixun Xia. 2022. "Dual Synthetic Jets Actuator and Its Applications—Part I: PIV Measurements and Comparison to Synthetic Jet Actuator" Actuators 11, no. 8: 205. https://doi.org/10.3390/act11080205
APA StyleLuo, Z., Zhao, Z., Deng, X., Wang, L., & Xia, Z. (2022). Dual Synthetic Jets Actuator and Its Applications—Part I: PIV Measurements and Comparison to Synthetic Jet Actuator. Actuators, 11(8), 205. https://doi.org/10.3390/act11080205