A Compound Scheme Based on Improved ADRC and Nonlinear Compensation for Electromechanical Actuator
Abstract
:1. Introduction
2. Problem Formulation
2.1. System Model
2.2. Nonlinear Factors
3. Controller Design
3.1. LESO
3.2. Fal Function Filter
3.3. Parameter Tuning for the Controller
4. Simulation Results
4.1. Sine Wave Response
4.2. Disturbance Rejection Ability Verification
5. Experiment Testing
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
List of Symbols | |
equivalent moments of inertia on motor | |
armature resistance | |
armature current | |
motor output torque | |
electrical constant | |
load torque | |
actual position with backlash | |
coulomb friction torque | |
bristle stiffness | |
viscous friction coefficient | |
velocity of the system, unit rpm | |
desired output of the EMA system | |
reduction ratio | |
reference signal | |
, | state variables of the EMA system |
angular velocity of the system, unit rad/s | |
output tracking error | |
controller output | |
integral gain of the speed loop | |
integrated time and absolute error (ITAE) | |
overshoot of step response | |
pulse width modulation (PWM) coefficient | |
armature inductance | |
rotor speed | |
torque constant | |
friction torque | |
equivalent backlash of the output shaft | |
position without backlash | |
static friction torque | |
bristle damping | |
Stribeck velocity | |
dynamics of deformation of bristles | |
Dirac function | |
reference input | |
system output | |
all the disturbances of the EMA system | |
bandwidth of the LESO | |
, | observer state variables |
proportional gain of the speed loop | |
,, | parameters of the Fal function |
rise time of the step response | |
List of Acronyms | |
ADRC | active disturbance rejection controller |
LESO | linear extended state observer |
PI | proportional integral controller |
GA | genetic algorithm |
ESO | extended state observer |
DC | direct current |
ITAE | integrated time and absolute error |
EMA | electromechanical actuator |
NSGA-II | non-dominated sorting genetic algorithm II |
PID | proportional integral derivative controller |
TD | tracking differentiator |
NLSEF | nonlinear state error feedback |
BLDCM | brushless direct current motor |
DSP | digital signal processing chip |
References
- Aravind, M.A.; Dinesh, N.S.; Rajanna, K. Application of empc for precise position control of dc-motor system with backlash. Control Eng. Pract. 2020, 100, 104422. [Google Scholar]
- Lichtsinder, A.; Gutman, P.O. On the dual properties of friction and backlash in servo control systems. IFAC-PapersOnLine 2019, 52, 340–345. [Google Scholar] [CrossRef]
- Olsson, H.; Astrom, K.J.; Wit, C.C.D. Friction models and friction compensation. Eur. J. Control 1998, 4, 176–195. [Google Scholar] [CrossRef] [Green Version]
- Piatkowski, T. Dahl and lugre dynamic friction models—The analysis of selected properties. Mech. Mach. Theory 2014, 73, 91–100. [Google Scholar] [CrossRef]
- Gafvert, M. Comparisons of Two Dynamic Friction Models. In Proceedings of the IEEE International Conference on Control Applications, Hartford, CT, USA, 5–7 October 1997. [Google Scholar]
- Dupont, P.; Hayward, V.; Armstrong, B.; Altpeter, F. Single state elastoplastic friction models. IEEE Trans. Autom. Control 2002, 47, 787–792. [Google Scholar] [CrossRef]
- Jin, X.; Wang, Y.; Huang, Z. Approximately analytical technique for random response of lugre friction system. Int. J. Non-Linear Mech. 2018, 104, 1–7. [Google Scholar] [CrossRef]
- Karnopp, D. Computer simulation of stick-slip friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control 1985, 107, 100–103. [Google Scholar] [CrossRef]
- Borello, L.; Vedova, M. A dry friction model and robust computational algorithm for reversible or irreversible motion transmissions. Int. J. Mech. Control 2012, 13, 37–48. [Google Scholar]
- Al-Bender, F.; Vincent, V.; Swevers, J. The generalized maxwell-slip model: A novel model for friction simulation and compensation. IEEE Trans. Autom. Control 2005, 50, 1883–1887. [Google Scholar] [CrossRef]
- Pikunov, D.; Stefanski, A. Numerical analysis of the friction-induced oscillator of duffing’s type with modified lugre friction model. J. Sound Vib. 2019, 440, 23–33. [Google Scholar] [CrossRef]
- Fengfa, Y.; Xingfei, L. Robust adaptive integral backstepping control for opto-electronic tracking system based on modified lugre friction model. ISA Trans. 2018, 80, 312–321. [Google Scholar]
- Lotfi, B.; Zhong, Z.W.; Khoo, L.P. A novel algorithm to generate backlash-free motions. Mech. Mach. Theory 2010, 45, 1171–1184. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Z.; Zhang, Y.; Chen, C.L.P.; Xie, S. Actuator backlash compensation and accurate parameter estimation for active vibration isolation system. IEEE Trans. Ind. Electron. 2016, 63, 1643–1654. [Google Scholar] [CrossRef]
- Freeman, E.A. The effect of speed-dependent friction and backlash on the stability of automatic control systems. Am. Inst. Electr. Eng. Part II Appl. Ind. Trans. 1959, 77, 680–692. [Google Scholar] [CrossRef]
- Gang, T.; Kokotovic, P.V. Adaptive control of systems with backlash. Automatica 1993, 29, 323–335. [Google Scholar]
- Nordin, M.; Galic’, J.; Gutman, P.O. New models for backlash and gear play. Int. J. Adapt. Control Signal Process. 1997, 11, 49–63. [Google Scholar] [CrossRef]
- Nordin, M.; Gutman, P.-O. Controlling mechanical systems with backlash—A survey. Automatica 2002, 38, 1633–1649. [Google Scholar] [CrossRef]
- Lyu, Z.; Liu, Z.; Xie, K.; Philip Chen, C.L.; Zhang, Y. Adaptive tracking control for switched nonlinear systems with fuzzy actuator backlash. Fuzzy Sets Syst. 2020, 385, 60–80. [Google Scholar] [CrossRef]
- Lai, G.; Zhi, L.; Yun, Z.; Chen, C.L.P.; Xie, S. Asymmetric actuator backlash compensation in quantized adaptive control of uncertain networked nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 294–307. [Google Scholar] [CrossRef]
- Zhu, Z.; Pan, Y.; Zhou, Q.; Lu, C. Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis. IEEE Trans. Fuzzy Syst. 2020, 29, 1273–1283. [Google Scholar] [CrossRef]
- Jang, J.; Jeon, G. Backlash compensation of nonlinear systems using fuzzy logic. Int. J. Syst. Sci. 2006, 37, 485–492. [Google Scholar] [CrossRef]
- Han, S.I.; Lee, J.M. Adaptive dynamic surface control with sliding mode control and rwnn for robust positioning of a linear motion stage. Mechatronics 2012, 22, 222–238. [Google Scholar] [CrossRef]
- Yongjian, L. Adaptive Back-Stepping Control Based on Recurrent Neural Network for BLDCM EMA. In Proceedings of the 2009 IEEE 6th International Power Electronics and Motion Control Conference, Wuhan, China, 17–20 May 2009. [Google Scholar]
- Ristanović, M.; Ćojbašić, Ž.; Lazić, D. Intelligent control of dc motor driven electromechanical fin actuator. Control Eng. Pract. 2012, 20, 610–617. [Google Scholar] [CrossRef]
- Sayed, M.A.E.; Habibi, S. Inner-Loop Control for Electro-Hydraulic Actuation Systems. In Proceedings of the ASME 2009 Dynamic Systems and Control Conference, Hollywood, CA, USA, 12–14 October 2010; pp. 114–133. [Google Scholar]
- Han, J. The Technique for Estimating and Compensating the Uncertainties: Active Disturbance Rejection Control Technique; National Defense Industry Press: Beijing, China, 2008. [Google Scholar]
- Rcr, A.; Repa, B.; Emp, C. Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems. Eur. J. Control 2021, 58, 373–387. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, H.; Zhu, D.; Li, L. Design and analysis of an active disturbance rejection robust adaptive control system for electromechanical actuator. Actuators 2021, 10, 307. [Google Scholar] [CrossRef]
- Li, S.-Q.; Zang, S.-X.; Liu, Y.N.; Zhou, S.-W. Parameter-tuing in active disturbance rejection controller using time scale. Control Theory Appl. 2012, 29, 125–129. [Google Scholar]
- Wenying, C.; Fulei, C.; Shaoze, Y. Stepwise optimal design of active disturbances rejection vibration controller for intelligent truss structure based on adaptive genetic algorithm. J. Mech. Eng. 2010, 46, 74–81. [Google Scholar]
- Ren, C.; Ding, Y.; Ma, S. A structure-improved extended state observer based control with application to an omnidirectional mobile robot. ISA Trans. 2020, 101, 335–345. [Google Scholar] [CrossRef]
- Guerra, A.d.L.; Alvarez-Icaza, L.; Torres, L. Brushless dc motor control with unknown and variable torque load. IFAC-PapersOnLine 2018, 51, 644–649. [Google Scholar] [CrossRef]
- Michalek, M.M.; Lakomy, K.; Adamski, W. Robust output-feedback cascaded tracking controller for spatial motion of anisotropically-actuated vehicles. Aerosp. Sci. Technol. 2019, 92, 915–929. [Google Scholar] [CrossRef]
- Felix, J.L.P.; Balthazar, J.M.; Brasil, R.M.L.R.F.; Pontes, B.R. On lugre friction model to mitigate nonideal vibrations. J. Comput. Nonlinear Dyn. 2009, 4, 340–341. [Google Scholar] [CrossRef]
- Suraneni, S.; Kar, I.N.; Murthy, O.V.R.; Bhatt, R.K.P. Adaptive stick–Slip friction and backlash compensation using dynamic fuzzy logic system. Appl. Soft Comput. J. 2006, 6, 26–37. [Google Scholar] [CrossRef]
- Rida Mokhtari, M.; Choukchou Braham, A.; Cherki, B. Extended state observer based control for coaxial-rotor UAV. ISA Trans. 2016, 61, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.; Gao, Z. Frequency Response Analysis of Active Disturbance Rejection Based Control System. In Proceedings of the IEEE International Conference on Control Applications, Singapore, 1–3 October 2007; pp. 1595–1599. [Google Scholar]
- Hu, Y.; Wang, H. Robust tracking control for vehicle electronic throttle using adaptive dynamic sliding mode and extended state observer. Mech. Syst. Signal Process. 2020, 135, 106375. [Google Scholar] [CrossRef]
- Yi, H.; Han, J. Analysis and design for the second order nonlinear continuous extended states observer. Sci. Bull. 2000, 45, 1938–1944. [Google Scholar]
- Gao, Z.; Huang, Y.; Han, J. An Alternative Paradigm for Control System Design. In Proceedings of the IEEE Conference on Decision and Control, Orlando, FL, USA, 4–7 December 2001; pp. 4578–4585. [Google Scholar]
- Suthar, H.A.; Gadit, J.J. Multiobjective optimization of 2dof controller using evolutionary and swarm intelligence enhanced with topsis. Heliyon 2019, 5, e01410. [Google Scholar] [CrossRef] [Green Version]
1.95 | 3.59 | 96.2 | 8.967 |
1.674 | 2.99 × 10−3 |
State | Controller Parameters | Mp/% | tr/s | ||||||
---|---|---|---|---|---|---|---|---|---|
Kps | Kis | ω0 | k | α | δ | ||||
Initial | 0.25 | 300 | 1500 | 0.5 | 0.5 | 2 | 2.45 | 16 | 0.0028 |
Optimal | 0.31 | 355.1 | 2611 | 0.36 | 0.71 | 0.095 | 0.43 | 7.01 | 0.0024 |
Controller | Position Flat Time/ms | Speed Dead Zone Time/ms |
---|---|---|
PI | 67 | 68 |
Proposed controller | 18 | 22 |
Controller | PI | Proposed Controller | ||||
---|---|---|---|---|---|---|
Position/° | tr/ms | Mp/% | Standard Deviation | tr/ms | Mp/% | Standard Deviation/° |
1 | 37 | 6.90 | 0.0113 | 32 | 1.1 | 0.0085 |
−1 | 36 | 1.1 | 0.0101 | 30 | 0 | 0.0098 |
15 | 53 | 7.87 | 0.0132 | 50 | 0 | 0.0075 |
−15 | 54 | 8.02 | 0.24598 | 52 | 0 | 0.0099 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Li, Q. A Compound Scheme Based on Improved ADRC and Nonlinear Compensation for Electromechanical Actuator. Actuators 2022, 11, 93. https://doi.org/10.3390/act11030093
Zhang M, Li Q. A Compound Scheme Based on Improved ADRC and Nonlinear Compensation for Electromechanical Actuator. Actuators. 2022; 11(3):93. https://doi.org/10.3390/act11030093
Chicago/Turabian StyleZhang, Mingyue, and Qingdang Li. 2022. "A Compound Scheme Based on Improved ADRC and Nonlinear Compensation for Electromechanical Actuator" Actuators 11, no. 3: 93. https://doi.org/10.3390/act11030093
APA StyleZhang, M., & Li, Q. (2022). A Compound Scheme Based on Improved ADRC and Nonlinear Compensation for Electromechanical Actuator. Actuators, 11(3), 93. https://doi.org/10.3390/act11030093