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Abstract: A compound scheme, based on an improved active disturbance rejection controller (ADRC)
and nonlinear compensation, is developed for the electromechanical actuator (EMA) system in this
paper. First, considering the influences of backlash, friction on the EMA system, a model for the
EMA system is presented. The LuGre model and Hysteresis inverse model are used to compensate
for the friction and backlash phenomenon. Then, the method of improved ADRC, based on the
Fal function filter and a Linear extended state observer (LESO), is investigated. Simultaneously,
since the controller parameters of the improved ADRC are complicated, the non-dominated sorting
genetic algorithm II (NSGA-II) is presented to optimize the controller parameters, to achieve the best
dynamic response. Finally, simulation and experiment are presented to validate the effectiveness
of the proposed method. Under the nonlinear compensation, the performance of the proposed
compound scheme is compared with the conventional proportional integral (PI) controller, in terms
of step response analysis and sine wave response analysis. Simulation and experiments show that
the proposed controller provides high-performance dynamic characteristics.

Keywords: electromechanical actuator system; active disturbance rejection controller; non-dominated
sorting genetic algorithm II; Fal function filter

1. Introduction

The electromechanical actuator (EMA) system is vital in missiles. It is used to receive
instructions from the navigation control system and deflect, according to the instructions,
to change the flight attitude of the missile. With the development of high-performance
guidance weapons, higher requirements are put forward for the EMA system. The EMA
system is a typical mechatronic system, and the nonlinearity of internal and external
disturbance, friction, and backlash [1,2] seriously affect the system’s performance. It is vital
to study the nonlinearity of the EMA system and propose effective control methods.

Friction compensation based on the friction model is a widely used method to alleviate
the effect of friction. There are many friction models, such as the classic model [3], Dahl
model [4], Boliman and sorine model [5], elasto-plastic model [6], LuGre model [7], Karnopp
model [8], Borello model [9] and Generalized maxwell-slip model [10], although these
models have some applications in different systems. Among them, the LuGre model
provides a perfect approximation for the friction phenomenon and is widely used in many
applications to describe friction [11,12]. It is regarded as a dynamic friction model, which
can completely describe the pre-sliding and gross sliding periods of the motion in the
mechanical transmission device [13]. Especially compared with the Karnopp model [8] and
Borello model [9], the LuGre algorithm can more comprehensively describe the friction
characteristics. Therefore, this model is used to describe the friction torque of the EMA
system. Due to the play between adjacent movable parts of the EMA system, the backlash
is a common phenomenon in the EMA system. The backlash can cause oscillations and
inaccuracy in the system [14]. There are two methods to alleviate the backlash effects: the
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mechanical solution [13] and the controller solution. The former uses pre-load-spring to
reduce the disadvantage of the backlash. However, it is not suitable for a rapid system like
the EMA system. The latter uses a backlash compensation method to reduce the effect of
the backlash, which is a widely used method. There are many backlash models, such as
describing function [15], inverse model [16], dead zone model [17,18], novel fuzzy backlash
model [19], and Hysteresis nonlinear model [20,21]. Among them, the Hysteresis nonlinear
model is widely used, and the core of the compensation is to use the hysteresis inverse
model to cancel the effect of the backlash [22].

A proportional integral derivative (PID) controller is usually used to control the EMA
system, but considering the nonlinear characteristics of the EMA system, the traditional PID
controller has disadvantages. Because of this, many scholars put forward different control
strategies for the EMA system. In [23,24], a sliding-mode variable structure controller is
proposed to improve the dynamic characteristics. However, it has the problem of chattering.
In [25], the Genetic algorithm (GA) optimized fuzzy supervisory PID controller is adopted
in the EMA system. Since the rules of a fuzzy controller consist of an antecedent part and
a consequent part, it is difficult to define the fuzzy rules. In [26], an inner-loop control
strategy is implemented in the electromechanical actuator. Each of the proposed methods
has different models and assumptions, which cannot be applied easily to other cases, and
some trade-off is necessary to achieve the performance. It is essential to improve the
controller to achieve better performance.

ADRC is an improved version of the PID controller. ADRC consists of three core
components: a tracking-differentiator (TD), an extended state observer (ESO), and a nonlin-
ear state error feedback (NLSEF). The feasibility of the ADRC to control systems depends
upon estimating the disturbance, in a timely and accurate manner. Conventional ADRC
is widely used in various applications [27]. However, take the second order plant, for
example, where the conventional ADRC has 11 parameters that need to be tuned. Param-
eters of the conventional ADRC and various forms of improvement of ADRC [28,29] are
usually tuned by trial and error. There are two research methods of conventional ADRC,
which are tuning parameters and making the algorithm linear, respectively. The former
proposed the time scale method and genetic algorithm to describe the ADRC [30,31], and
the latter represents the linear extended state observer (LESO) [32]. Meanwhile, the concept
of bandwidth parameters is proposed. LESO is popular to estimate state and disturbance
for many systems, such as permanent magnet brushless direct current (DC) motor [33] and
rigid-body vehicle moving control [34].

Inspired by the recent papers and studies above, the synthesis of improved ADRC
and nonlinear compensation is proposed for the EMA system in this paper. The method
of improved ADRC is based on the LESO and Fal function filter. The LuGre model and
Hysteresis inverse model are used to identify and compensate the friction and backlash
phenomenon, respectively. Besides, for the purpose of optimizing the controller param-
eters, the non-dominated sorting genetic algorithm II (NSGA-II) is adopted. The main
contribution of this paper is to provide a compound controller, which can not only effec-
tively improve the dynamic performance and anti-disturbance ability of the system, but
also improve the steady-state performance of the system, as a result of adopting the Fal
function filter.

2. Problem Formulation

The simplified diagram of the EMA system is shown in Figure 1. The EMA mechanism
consists of a ball screw, nut, shifting pin, shifting fork, rotating shaft, brushless direct
current motor, and coupler.
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Figure 1. The diagrammatic sketch of the EMA system. 

2.1. System Model 
The system model of the EMA system is presented in Figure 2. 
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The brushless direct current motor (BLDCM) (shown in Figure 2, represented by the 
symbol M) is used to drive the mechanism of the EMA system. The transmitted torque 
and the motion relationship between the actual position and backlash is expressed by 
Equation (1). 
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where mJ  represents the equivalent moments of inertia. sK , aR , aL , di  denote the 
pulse width modulation (PWM) coefficient, the armature resistance, the armature induct-
ance, and the armature current, respectively. n , emT , mK  and eK  denote the rotor 
speed, the motor torque, the torque constant, and the electrical constant, respectively. mfT  
is the friction torque, mhT  is the load torque, 2B  is the equivalent backlash of the output 
shaft, aδ  is the actual position with backlash, and θ  is the position without backlash. 
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2.1. System Model

The system model of the EMA system is presented in Figure 2.
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Figure 2. Dynamic transfer model of the EMA system.

The brushless direct current motor (BLDCM) (shown in Figure 2, represented by the
symbol M) is used to drive the mechanism of the EMA system. The transmitted torque
and the motion relationship between the actual position and backlash is expressed by
Equation (1). 

U = idRa
Ks

+ L did
Ksdt +

Ken
Ks

Tem = Kmid
Tem = Jm

dn
dt + Tm f + Tmh

δa = f (θ, B)

(1)

where Jm represents the equivalent moments of inertia. Ks, Ra, La, id denote the pulse width
modulation (PWM) coefficient, the armature resistance, the armature inductance, and the
armature current, respectively. n, Tem, Km and Ke denote the rotor speed, the motor torque,
the torque constant, and the electrical constant, respectively. Tm f is the friction torque, Tmh
is the load torque, 2B is the equivalent backlash of the output shaft, δa is the actual position
with backlash, and θ is the position without backlash. As shown in Equation (1), if the load
of the EMA system is determined, the motor selection is determined, and the model of
nonlinear characteristics is clear, meaning the dynamic characteristics of the EMA system
can be analyzed. In Section 2.2, the nonlinear model will be analyzed.

2.2. Nonlinear Factors

In the EMA system, nonlinear factors are inevitable, and they seriously degrade system
performance. It is urgent to carry out research on the nonlinear model. Introduction and
identification of the friction model are first presented. The LuGre model is a popular friction
model. The schematic of the LuGre model is illustrated in Figure 3.
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Friction torque is as follows [35]:
Tm f = σ0z + σ1

.
z + σ2

.
θ

.
z =

.
θ − σ0

∣∣∣ .
θ
∣∣∣

g(
.
θ)

z

g(
.
θ) = Tc + (Ts − Tc)e−(|

.
θ|/

.
θs)

n

(2)

where Tm f is the friction torque, Tc is the coulomb friction torque, Ts is the static friction
torque, σ0 is the bristle stiffness, σ1 is the bristle damping, σ2 is the viscous friction coef-
ficient,

.
θs is the Stribeck velocity,

.
θ is the velocity of the system, z is the dynamics of the

deformation of bristles. Tm f also appears in Equation (1). If the parameters of the friction
model in Equation (2) of the system can be determined, the value of Tm f can be obtained.
When the value of Tm f is obtained, it can be combined with Equation (1) to calculate the

performance of the EMA system. Static parameters, such as Tc, Ts,
.
θs and σ2, are obtained

by identification with the constant speed motion method. Thus,
.
z = 0 (as a result σ1

.
z = 0),

and z can be described by the following equation:

zss = [Tc + (Ts − Tc)e−|
.
θ|/θs ] · sgn(

.
θ)/σ0 (3)

Equation (3) is the intermediate equation for friction parameter identification. Substi-
tuting Equations (2) and (3) into Equation (1), Tmh (shown in Equation (1)) is set as 0, and
the friction torque is as follows:

Tm f ss = [Tc + (Ts − Tc)e−|
.
θ|/

.
θs ] · sgn(

.
θ) + σ2

.
θ = Kmidss (4)

where the subscript ss denotes the steady state, that is, the speed is the data measured
at a constant speed. It can be seen from Equation (4) that we can measure the armature
current idss to obtain the friction torque. The test bench is shown in Figure 4. The test bench
consists of a PC and the EMA system. The PC is used to send commands to the EMA
system and receive the sensors’ output from the EMA system. Then, the PC processes the
data to identify the friction parameters.
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According to the type selection and constituent units of the EMA system, shown
in Figure 1, ignoring the high-order factors, this paper uses the second-order model in
Equation (1) to study the characteristics of the system. Therefore, in the next identifica-
tion process, our physical model is consistent with the mathematical model shown in
Equation (1).

The identification process is as follows: run the EMA system at a uniform speed
and measure the corresponding speed and current to obtain a set of values, and then the
speed increases continuously from a small value to a large value (the curve type shown in
Figure 5). Then, the static parameters in the corresponding Equation (4) can be obtained by
the least square method. Static parameters are identified by using the least square method
and are shown in Table 1.
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Table 1. Static parameters of the LuGre model.

Tc (×10−3Nm) Ts (×10−3Nm)
.
θs (rad/s) σ2 (×10−6 Nm·s/rad)

1.95 3.59 96.2 8.967

The identification of dynamic parameters is also very important. The dynamic pa-
rameters of the LuGre model can be obtained as follows: firstly, model linearization is
adopted at z = 0 and dθ/dt = 0, and then z = θ, and dz/dt = dθ/dt should be replaced in
Equation (3), Tm f shown in Equation (1) can be written as:

Tm f = σ0θm + (σ1 + σ2)
.
θm (5)

In order to deduce how to obtain dynamic parameters, set Tmh = 0 and combine
Equation (1), Equation (2), and Equation (5) by Laplace transform, and we can get:

θm(s)
i(s)

=
Km

Jms2 + (σ1 + σ2)s + σ0
(6)

According to the form of Equation (6), we can use the second-order system theory
to analyze the dynamic parameters. Set ωn =

√
σ0/Jm, ζ = σ1+σ2

2
√

σ0 Jm
, Equation (6) can be

described as:
θm(s)
i(s)

=
ω2

n
s2 + 2ζωns + ω2

n

Km

σ0
(7)

As shown in Equation (7), the theory of second-order damping systems can be used
to deal with the system’s friction problem. Using the experimental platform shown in
Figure 4, the input command is the position command. By obtaining the step response
curve of the system, then, according to the principle of a second-order system, ωn, ζ is
obtained. Based on classical second-order control theory, σ0 and σ1 are obtained. Dynamic
parameters are presented in Table 2.

Table 2. Dynamic parameters of the LuGre model.

σ0 (Nm/rad) σ1 (Nm·s/rad)

1.674 2.99 × 10−3
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Introduction and identification of the backlash model are presented. The Hysteresis
model is applied to describe backlash and is shown in Equation (8). The inverse model is
presented in Equation (9) [36]:

.
δ =

{ .
θ/i,

.
θ > 0 and δ = θ/i− B, or

.
θ < 0 and δ = θ/i + B;

0, otherwise.
(8)

.
θ =


i

.
δd,

.
δd > 0 and θ = i(δd + B), or

.
δd < 0 and θ = i(δd − B);

0,
.
δd = 0;

2iB× ∆(τ − t)× sgn(
.
δd), otherwise.

(9)

where δd is the desired output of the EMA system, ∆(τ − t) is Dirac function, which
compensates the backlash instantaneously when the backlash is 2iB, i is the reduction ratio.

The schematic diagrams of the Hysteresis and Hysteresis inverse model are shown in
Figure 6. The backlash characteristic is shown in Figure 6a. The backlash inverse shown in
Figure 6b is used to cancel the effect of the backlash [16].
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The total length of the screw is 40 mm, and the total length of the nut is 16 mm. Thus, 
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The total length of the screw is 40 mm, and the total length of the nut is 16 mm. Thus,
the nut needs to move 24 mm, since the backlash is different at each point, with eight points
of 10 mm, 12 mm, 14 mm, 16 mm, 18 mm, 20 mm, 22 mm, 24 mm. They are set to measure
the backlash. Finally, the average value of the backlash, obtained above, is the system
backlash. The test bench shown in Figure 4 is applied to implement the experiment to
measure the backlash. Finally, the system backlash is obtained by collecting and processing
the position information.

The backlash is measured in the following steps. Firstly, rotate the motor in a clockwise
direction until the nut cannot be rotated due to reaching the bracket wall. Here, the backlash
is eliminated. Meanwhile, stop rotating the motor, and the value of the potentiometer
is recorded at this position. Secondly, fix the output shaft of the EMA system using the
chucking appliance, and then rotate the motor in an anticlockwise direction with a slow
speed. The potentiometer records the position at that moment. The difference between the
position at that moment and the position of the last time is the backlash at this point. The
backlash of the different point is measured by the above method. Finally, the average of the
backlash is 0.142◦, namely the system backlash.

3. Controller Design

The control block diagram of the EMA system is illustrated in Figure 7. Improved
ADRC is used for speed loop control and LuGre model compensation, and Hysteresis
inverse model compensation is utilized for controller design. Both of them comprise
the compound controller. Friction compensation is carried out by feedback. Backlash
compensation is based on the idea of inverse compensation by feedforward.
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The improved ADRC is established by employing a proportional integral (PI) controller,
LESO, and Fal function filter. Figure 8 shows the components of the improved ADRC.
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In Figure 8, r is the reference input, f is the disturbance, u(t) is the reference signal,
y(t) is the system output. ω is the angular velocity of the system.

3.1. LESO

The LESO estimates the state variables and the unknown disturbances of the system,
including internal disturbance [37], including variation of parameters, back electromotive
forces, torque ripples unmodeled dynamics, and the external disturbance, such as load
disturbances of the EMA system.

These disturbances may affect the performance of the system. The state equation is
as follows: 

.
x1 = x2 + b0u
.
x2 =

.
f

y = x1

(10)

where x1 = ω, x2 = f , b0 = KmKs
JmRa

. All the disturbances can be taken as f .
Based on the pole placement (pole placement can be used to achieve the regulation),

all the observer poles are placed at ω0. z1 and z2 are the observer state variables. The LESO
is shown in Equation (11) [38,39].

e = z1 − y
.
z1 = z2 − 2ω0e + b0u
.
z2 = −ω0

2e
(11)

The control design problem is to process a double integral system. The control law is
as follows:

u0 = Kps(r− y) + Kis

∫
(r− y)dτ (12)

where Kps and Kis are the proportional gain and the integral gain of the speed loop,
respectively.
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3.2. Fal Function Filter

The fitting curve of the Fal function [40] is presented in Figure 9. It implies that the
larger the error between input and output, the smaller the gain, and vice versa [41]. The
Fal function filter is as follows:

.
x = k · Fal(e, α, δ)
e = y− y0
y0 = x

, where Fal(e, α, δ) =

{
|e|αsign(e), |e| > δ

e
δ1−α , |e| ≤ δ

(13)
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A comparison of unit step response with band-limited white noise power of 0.003 
between the system with the filter and the system without the filter is executed to validate 
the performance of the Fal function filter. The filter parameters are: k = 1000, δ = 0.8, α = 
0.5. Figure 10 shows the error comparison for the filter performance. The standard devia-
tion of the error between the reference input and the actual system output are 0.1721° and 
0.0612°, respectively. The result shows that this Fal function filter has a good performance 
of state tracking for the system with noise. 
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Figure 9. Fitting schematic diagram of Fal function.  Figure 9. Fitting schematic diagram of Fal function.

A comparison of unit step response with band-limited white noise power of 0.003
between the system with the filter and the system without the filter is executed to validate
the performance of the Fal function filter. The filter parameters are: k = 1000, δ = 0.8, α = 0.5.
Figure 10 shows the error comparison for the filter performance. The standard deviation of
the error between the reference input and the actual system output are 0.1721◦ and 0.0612◦,
respectively. The result shows that this Fal function filter has a good performance of state
tracking for the system with noise.
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3.3. Parameter Tuning for the Controller

This part of the paper outlines a method to tune the controller parameters. Controller
parameters can be generally obtained by trial and error. Empirical methods may become
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unworkable if physical systems are complex or too expensive. Here, NSGA-II with multiple
constraints handling, is adopted to optimize the improved ADRC parameters.

The objectives include overshoot, integrated time and absolute error (ITAE), and rise
time. Overshoot and rise time are performance indexes of step response, and they are
chosen as objectives to be minimized. ITAE as an optimal controller index is regarded as an
objective to be minimized. According to the control strategy, the improved ADRC has the
following input parameters: Kps, Kis, ω0, k, α, δ. The multi-objective optimization problem
is posed in Equation (14).

min


Fitness1 =

∞∫
0

t|e(t)|dt

Fitness2 = Mp
Fitness3 = tr

Subject to


0 ≤ J ≤ 10
0 ≤ Mp ≤ 10

0 ≤ tr ≤ 0.003
(14)

where e(t) is the error between the system’s input and the system’s output. J represents
ITAE, here the unit of J is set as s · rpm. tr represents the rise time, Mp represents overshoot.
Thus, the controller parameters are tuned by NSGA-II so that the performance indexes
Fitness1, Fitness2, and Fitness3 are all minimized. The steps are as follows: give a certain
initial value and corresponding range of controller parameters, and then combine them
into different combinations of controller parameters. Using these controller parameters to
control the system, take the step response as the evaluation standard to obtain Fitness1,
Fitness2, and Fitness3. If Fitness1, Fitness2, and Fitness3 meet the requirements under the
current parameter control, stop the system and record the controller combination under
the current state, that is, the optimal controller parameters. If Fitness1, Fitness2, and
Fitness3 are not the minimum, continue to simulate until the required simulation results
are obtained.

The NSGA-II is an improved approach of the genetic algorithm (GA) for the multi-
objective optimization of process responses. Non-dominated solutions of NSGA-II have
high crowding distance, which are used to provide diversified Pareto optimal solutions.
A Pareto optimal solution cannot be improved with respect to any objective without
worsening at least one other objective [42]. The set of feasible non-dominated solutions
in the solution space is referred to as the Pareto optimal set. The NSGA-II encompasses
advanced concepts like elitism, fast non-dominated sorting, and diversity maintenance
along the Pareto optimal front. The flowchart of the NSGA-II is shown in Figure 11.

Figure 12 shows the optimization procedure of tuning improved the ADRC parameters,
in order to investigate the effectiveness of NSGA-II for the improved ADRC. The population
size and maximum generation numbers are set as 12 and 20, respectively. The crossover
probability is 0.7, and mutation probability is 0.001. Further, a 1000 rpm step input signal,
including band-limited white noise with noise power 0.0003, is given as the command. The
Pareto front for triple objective optimization is shown in Figure 13. It can be seen from
Figure 13 that green points express the Pareto solution. The optimal parameters and the
corresponding optimized values of the objective functions, obtained above, are presented
in Table 3. It can be seen from Table 3, that the overshoot is 7.01%, ITAE is 0.43, the rise time
is 0.0024 with the optimized parameters. The step response of the EMA system adopting
improved ADRC with optimal controller parameters is given in Figure 14. Hence, it can be
concluded that the optimal parameters are feasible.
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Table 3. Optimized controller parameters and their objective values of the speed loop.

State
Controller Parameters

J/(s·rpm) Mp/% tr/s
Kps Kis ω0 k α δ

Initial 0.25 300 1500 0.5 0.5 2 2.45 16 0.0028
Optimal 0.31 355.1 2611 0.36 0.71 0.095 0.43 7.01 0.0024
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The results show that this approach presents a perfect solution for optimizing the
controller parameters of the proposed controller with multiple constraints.

4. Simulation Results

The simulation model plays a key role in analyzing the control system design. Based
on the above analysis, the performances of the PI controller and proposed controller are
compared in the EMA system. The overall simulation model of the EMA system has been
prepared in MATLAB/Simulink, used to establish the model of the EMA system. The
adopted controllers of the position loop for the two speed loops are PI controllers.

4.1. Sine Wave Response

Figure 15 shows the sine wave response for the PI controller and proposed controller.
It is seen from Figure 15 that the PI controller cannot deal with the phenomenon of the
speed dead zone and position flattening, when the system speed tends to 0, but the new
compound controller can solve this problem well. It can be seen that the proposed controller
effectively suppresses the nonlinear factors.
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4.2. Disturbance Rejection Ability Verification

To validate the disturbance rejection ability, a step signal with an amplitude 200 rpm
is set as the input of the system. A step disturbance is also added to the system at 0.01 s.
The response curve is shown in Figure 16. It is seen from Figure 16 that the rise time
and overshoot by the proposed controller are shorter than the conventional PI controller.
The peak value and the tuning time of the disturbance by the proposed controller are
better than the PI controller. It can be seen that the proposed controller can effectively
improve the anti-disturbance ability of the system, on the premise of ensuring the dynamic
characteristics of the system.
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5. Experiment Testing

As discussed in the preceding section, the PI controller and the proposed compound
controller are applied to the EMA system. The sample time is 1 ms, and the controller is
carried out on a Digital Signal Processing chip (DSP). The experimental facility of the EMA
system is illustrated in Figure 17. A host PC is used as the upper computer to record and
monitor the system in real time. The simulator is used to download the program to the DSP.
The torsional spring is used as the load torque of the EMA surface. The oscilloscope is used
to monitor the output of the digital signals.
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The sine wave response is illustrated in Figure 18. The input of the sine is 0.9sin (0.9πt).
It can be seen from Figure 18 that, compared with the system controlled by the PI controller,
there is a shorter position flat crest and smaller speed dead zone by the proposed controller
of the system output. Under the action of the proposed controller, the system output
effectively suppresses the influence of friction and backlash nonlinearity. The comparison
results are shown in Table 4. In addition, the noise effect is also alleviated by the proposed
controller. Thus, the performance of the proposed controller is better than the PI controller.
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Table 4. Comparison of tracking performance of 0.9sin (0.9πt).

Controller Position Flat Time/ms Speed Dead Zone Time/ms

PI 67 68
Proposed controller 18 22

Since the EMA system deflections are limited to ±15◦, the performance comparisons
of the tracking angular position, from ±1◦ to ±15◦, by different controllers, are shown in
Figure 19. Equivalent load torque is added to the EMA system using a torsional spring,
which can be regarded as the disturbance. The elastic coefficient of the torsional spring
is 0.62 N·m/◦. It can be seen from Figure 19 that the PI controller has a long tuning time
and a large overshoot, while the proposed controller has a small overshoot and a short
tuning time. Taking the response of ±1◦ and ±15◦ as examples, the comparison data are
shown in Table 5. For the four positions ±1◦ and ±15◦, the three indexes of the proposed
controller (tr, Mp, standard deviation) are smaller than the PI controller. It can be seen from
the experiments that the proposed controller shows useful properties of good performance
and robustness compared with the PI controller.
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Table 5. Comparison of tracking performance of step signals.

Controller PI Proposed Controller

Position/◦ tr/ms Mp/% Standard Deviation tr/ms Mp/% Standard Deviation/◦

1 37 6.90 0.0113 32 1.1 0.0085
−1 36 1.1 0.0101 30 0 0.0098
15 53 7.87 0.0132 50 0 0.0075
−15 54 8.02 0.24598 52 0 0.0099

6. Conclusions

In this paper, the compound scheme, based on improved ADRC and nonlinear compen-
sation, is developed for the EMA system. The influences of backlash and friction on the EMA
system are considered in this paper. The LuGre model and Hysteresis inverse model are
used to compensate for the friction and backlash phenomenon, respectively. The improved
ADRC, based on the Fal function filter and LESO, is investigated. The non-dominated
sorting genetic algorithm II (NSGA-II) is presented to optimize the controller parameters, to
achieve the best dynamic response. Simulations and experiments are presented to validate
the effectiveness of the proposed method. As shown in Figures 18 and 19, Tables 4 and 5,
the experimental results of the improved ADRC, with nonlinear compensation, indicate
that rise time, overshoot and the steady state standard deviation of the EMA system are
all improved by the proposed controller. In summary, it can be seen from the obtained
results that the proposed controller has a quick response, slight overshoot, and strong
anti-disturbance ability. Thus, the dynamic performance and steady precision of the system
are both improved. Although the proposed controller does have some advantages, the
proposed controller also requires some improvements. For example, how to make the
system performance evaluation standard more perfect and reduce the controller parameters
through the optimization algorithm are also very worthy of research.
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Nomenclature

List of Symbols
Jm equivalent moments of inertia on motor
Ra armature resistance
id armature current
Tem motor output torque
Ke electrical constant
Tmh load torque
δa actual position with backlash
Tc coulomb friction torque
σ0 bristle stiffness
σ1 viscous friction coefficient
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.
θ velocity of the system, unit rpm
δd desired output of the EMA system
i reduction ratio
u(t) reference signal
x1, x2 state variables of the EMA system
ω angular velocity of the system, unit rad/s
e output tracking error
u0 controller output
Kis integral gain of the speed loop
J integrated time and absolute error (ITAE)
Mp overshoot of step response
Ks pulse width modulation (PWM) coefficient
La armature inductance
n rotor speed
Km torque constant
Tm f friction torque
2B equivalent backlash of the output shaft
θ position without backlash
Ts static friction torque
σ1 bristle damping
.
θs Stribeck velocity
z dynamics of deformation of bristles
∆(τ − t) Dirac function
r reference input
y(t) system output
f all the disturbances of the EMA system
ω0 bandwidth of the LESO
z1, z2 observer state variables
Kps proportional gain of the speed loop
k,δ,α parameters of the Fal function
tr rise time of the step response
List of Acronyms
ADRC active disturbance rejection controller
LESO linear extended state observer
PI proportional integral controller
GA genetic algorithm
ESO extended state observer
DC direct current
ITAE integrated time and absolute error
EMA electromechanical actuator
NSGA-II non-dominated sorting genetic algorithm II
PID proportional integral derivative controller
TD tracking differentiator
NLSEF nonlinear state error feedback
BLDCM brushless direct current motor
DSP digital signal processing chip
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