Adhesion State Estimation for Electrostatic Gripper Based on Online Capacitance Measure
Abstract
:1. Introduction
2. Sensing Strategy
2.1. Capacitive Sensing Circuit
2.2. Calibration
3. Pad-Substrate Capacitance Measurements
3.1. The Electroadhesive Pads
3.2. Capacitance of the Pad-Object Contact
4. Self-Sensing Automated Demonstrator
4.1. System Description and Control
4.2. Tests and Results
- The robot moves the gripper above the object, with the jaws completely open and the pads slightly distanced from the two opposite sides of the box, but not touching them. Voltage is supplied to the pads and the capacitance provided by the CSC is continuously monitored.
- The gripper is closed and as a consequence, the pads close in to the object. When at least one of the pads is close enough to the surface of the box, it establishes a gradual contact. Increases in contact area correspond to increases in capacitance.
- The gripper continues closing in until both pads have substantially adhered to the surface of the box. It stops closing in to the object when a trigger is sent to the robot controller (see time plot in Figure 10a). As mentioned in Section 4.1, the trigger is a digital signal generated when a capacitance threshold is surpassed, that is, when most of the pad surface has adhered to the box.
- The robotic arm elevates the box from the table, while the Speedgoat target continuously monitors the capacitance values.
5. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
EAD | Electroadhesive devices |
DEA | Dielectric elastomer actuators |
CSC | Capacitive sensing circuit |
DDS | Direct digital synthesis |
DAQ | Data acquisition |
PI | Polyimide |
ROS | Robotic operating system |
PCA | Principal component analysis |
KLT | Karhunen–Loève transform |
HDPE | High-density polyethylene |
References
- Rajagopalan, P.; Muthu, M.; Liu, Y.; Luo, J.; Wang, X.; Wan, C. Advancement of Electroadhesion Technology for Intelligent and Self-Reliant Robotic Applications. Adv. Intell. Syst. 2022, 4, 2200064. [Google Scholar] [CrossRef]
- Guo, J.; Leng, J.; Rossiter, J. Electroadhesion technologies for robotics: A comprehensive review. IEEE Trans. Robot. 2019, 36, 313–327. [Google Scholar] [CrossRef]
- Berdozzi, N.; Chen, Y.; Luzi, L.; Fontana, M.; Fassi, I.; Tosatti, L.M.; Vertechy, R. Rapid fabrication of electro-adhesive devices with inkjet printed electrodes. IEEE Robot. Autom. Lett. 2020, 5, 2770–2776. [Google Scholar] [CrossRef]
- Shintake, J.; Cacucciolo, V.; Floreano, D.; Shea, H. Soft robotic grippers. Adv. Mater. 2018, 30, 1707035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Bamber, T.; Singh, J.; Manby, D.; Bingham, P.A.; Justham, L.; Petzing, J.; Penders, J.; Jackson, M. Experimental study of a flexible and environmentally stable electroadhesive device. Appl. Phys. Lett. 2017, 111, 251603. [Google Scholar] [CrossRef] [Green Version]
- Diller, S.; Majidi, C.; Collins, S.H. A lightweight, low-power electroadhesive clutch and spring for exoskeleton actuation. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 682–689. [Google Scholar]
- Ramachandran, V.; Shintake, J.; Floreano, D. All-Fabric Wearable Electroadhesive Clutch. Adv. Mater. Technol. 2019, 4, 1800313. [Google Scholar] [CrossRef]
- Hinchet, R.; Shea, H. High force density textile electrostatic clutch. Adv. Mater. Technol. 2020, 5, 1900895. [Google Scholar] [CrossRef]
- Guo, J.; Xiang, C.; Conn, A.; Rossiter, J. All-soft skin-like structures for robotic locomotion and transportation. Soft Robot. 2020, 7, 309–320. [Google Scholar] [CrossRef]
- Prahlad, H.; Pelrine, R.; Stanford, S.; Marlow, J.; Kornbluh, R. Electroadhesive robots—Wall climbing robots enabled by a novel, robust, and electrically controllable adhesion technology. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 3028–3033. [Google Scholar]
- Gu, G.; Zou, J.; Zhao, R.; Zhao, X.; Zhu, X. Soft wall-climbing robots. Sci. Robot. 2018, 3, eaat2874. [Google Scholar] [CrossRef] [Green Version]
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef]
- Bluett, S.; Helps, T.; Taghavi, M.; Rossiter, J. Self-Sensing Electro-Ribbon Actuators. IEEE Robot. Autom. Lett. 2020, 5, 3931–3936. [Google Scholar] [CrossRef]
- Keplinger, C.; Kaltenbrunner, M.; Arnold, N.; Bauer, S. Capacitive extensometry for transient strain analysis of dielectric elastomer actuators. Appl. Phys. Lett. 2008, 92, 192903. [Google Scholar] [CrossRef]
- Jung, K.; Kim, K.J.; Choi, H.R. A self-sensing dielectric elastomer actuator. Sens. Actuator A Phys. 2008, 143, 343–351. [Google Scholar] [CrossRef]
- Gisby, T.A.; O’Brien, B.M.; Anderson, I.A. Self sensing feedback for dielectric elastomer actuators. Appl. Phys. Lett. 2013, 102, 193703. [Google Scholar] [CrossRef]
- Rosset, S.; O’Brien, B.M.; Gisby, T.; Xu, D.; Shea, H.R.; Anderson, I.A. Self-sensing dielectric elastomer actuators in closed-loop operation. Smart Mater. Struct. 2013, 22, 104018. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Chen, Z. Self-sensing of dielectric elastomer actuator enhanced by artificial neural network. Smart Mater. Struct. 2017, 26, 095056. [Google Scholar] [CrossRef]
- Rizzello, G.; Naso, D.; York, A.; Seelecke, S. Self-sensing in dielectric electro-active polymer actuator using linear-in-parametes online estimation. In Proceedings of the 2015 IEEE International Conference on Mechatronics (ICM), Nagoya, Japan, 6–8 March 2015; pp. 300–306. [Google Scholar]
- Rizzello, G.; Naso, D.; York, A.; Seelecke, S. A self-sensing approach for dielectric elastomer actuators based on online estimation algorithms. IEEE/ASME Trans. Mechatron. 2016, 22, 728–738. [Google Scholar] [CrossRef]
- Rizzello, G.; Hodgins, M.; Seelecke, S.; Naso, D. Self-sensing at low sampling-to-signal frequency ratio: An improved algorithm for dielectric elastomer actuators. In Proceedings of the 2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Auckland, New Zealand, 29–31 August 2016; pp. 1–6. [Google Scholar]
- Rizzello, G.; Ferrante, F.; Naso, D.; Seelecke, S. Robust interaction control of a dielectric elastomer actuator with variable stiffness. IEEE/ASME Trans. Mechatron. 2017, 22, 1705–1716. [Google Scholar] [CrossRef]
- Rizzello, G.; Fugaro, F.; Naso, D.; Seelecke, S. Simultaneous self-sensing of displacement and force for soft dielectric elastomer actuators. IEEE Robot. Autom. Lett. 2018, 3, 1230–1236. [Google Scholar] [CrossRef]
- Xiang, C.; Guo, J.; Rossiter, J. Soft-smart robotic end effectors with sensing, actuation, and gripping capabilities. Smart Mater. Struct. 2019, 28, 055034. [Google Scholar] [CrossRef]
- Saravia, W.; Udrea, B. Highly compliant active clinging mechanism. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2015; pp. 1–9. [Google Scholar]
- Guo, J.; Elgeneidy, K.; Xiang, C.; Lohse, N.; Justham, L.; Rossiter, J. Soft pneumatic grippers embedded with stretchable electroadhesion. Smart Mater. Struct. 2018, 27, 055006. [Google Scholar] [CrossRef]
- Guo, J.; Xiang, C.; Rossiter, J. A soft and shape-adaptive electroadhesive composite gripper with proprioceptive and exteroceptive capabilities. Mater. Des. 2018, 156, 586–587. [Google Scholar] [CrossRef]
- Guo, J.; Xiang, C.; Zanini, P.; Rossiter, J. Magnetic augmented self-sensing flexible electroadhesive grippers. IEEE Robot. Autom. Lett. 2019, 4, 2364–2369. [Google Scholar] [CrossRef] [Green Version]
- Rizzello, G.; Hodgins, M.; Naso, D.; York, A.; Seelecke, S. Modeling of the effects of the electrical dynamics on the electromechanical response of a DEAP circular actuator with a mass–spring load. Smart Mater. Struct. 2015, 24, 094003. [Google Scholar] [CrossRef]
- Sîrbu, I.; Moretti, G.; Bortolotti, G.; Bolignari, M.; Diré, S.; Fambri, L.; Vertechy, R.; Fontana, M. Electrostatic bellow muscle actuators and energy harvesters that stack up. Sci. Robot. 2021, 6, eaaz5796. [Google Scholar] [CrossRef]
- Kellaris, N.; Gopaluni Venkata, V.; Smith, G.M.; Mitchell, S.K.; Keplinger, C. Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci. Robot. 2018, 3, eaar3276. [Google Scholar] [CrossRef] [Green Version]
- Monkman, G.J. An analysis of astrictive prehension. Int. J. Robot. Res. 1997, 16, 1–10. [Google Scholar] [CrossRef]
- D’Avella, S.; Fontana, M.; Vertechy, R.; Tripicchio, P. Towards autonomous soft grasping of deformable objects using flexible thin-film electro-adhesive gripper. In Proceedings of the 2022 IEEE 18th International Conference on Automation Science and Engineering, Mexico City, Mexico, 22–24 August 2022; pp. 1298–1303. [Google Scholar]
- Suzuki, S. Topological structural analysis of digitized binary images by border following. Comput. Vision Graph. Image Process. 1985, 30, 32–46. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sîrbu, I.-D.; Bolignari, M.; D’Avella, S.; Damiani, F.; Agostini, L.; Tripicchio, P.; Vertechy, R.; Pancheri, L.; Fontana, M. Adhesion State Estimation for Electrostatic Gripper Based on Online Capacitance Measure. Actuators 2022, 11, 283. https://doi.org/10.3390/act11100283
Sîrbu I-D, Bolignari M, D’Avella S, Damiani F, Agostini L, Tripicchio P, Vertechy R, Pancheri L, Fontana M. Adhesion State Estimation for Electrostatic Gripper Based on Online Capacitance Measure. Actuators. 2022; 11(10):283. https://doi.org/10.3390/act11100283
Chicago/Turabian StyleSîrbu, Ion-Dan, Marco Bolignari, Salvatore D’Avella, Francesco Damiani, Lorenzo Agostini, Paolo Tripicchio, Rocco Vertechy, Lucio Pancheri, and Marco Fontana. 2022. "Adhesion State Estimation for Electrostatic Gripper Based on Online Capacitance Measure" Actuators 11, no. 10: 283. https://doi.org/10.3390/act11100283
APA StyleSîrbu, I. -D., Bolignari, M., D’Avella, S., Damiani, F., Agostini, L., Tripicchio, P., Vertechy, R., Pancheri, L., & Fontana, M. (2022). Adhesion State Estimation for Electrostatic Gripper Based on Online Capacitance Measure. Actuators, 11(10), 283. https://doi.org/10.3390/act11100283