A Global Optimization Method to Determine the Complex Material Constants of Piezoelectric Bars in the Length Thickness Extensional Mode
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- Measure the admittance, density, and dimensions of the sample. Calculate the experimental conductance, susceptance, resistance, and reactance from the measured admittance.
- (2)
- Randomly select a set of material constants as an initial guess, where:
- (3)
- Define:such that the absolute value of each component of is close to 1.
- (4)
- Calculate the average relative error E from Equations (3)–(7). Note that E is also a function of . Calculate the gradient and the Hessian matrix of E and denote them as and , whose expressions are derived in Appendix A.
- (5)
- Define , where and is the minimum eigenvalue of the Hessian matrix . is the identity matrix.
- (6)
- Calculate the average relative errors for step sizes , 1/5, 1, and 5. Find the minimum average relative error , where is the optimal step size. Take to be the new .
- (7)
- In the inner iteration, repeat steps 4–6 until the absolute values of all components of are less than . Then is the locally minimum average relative error. Calculate the locally optimal material constants from Equation (14).
- (8)
- In the outer iteration, repeat steps 2–7 for 100 times with different sets of initial material constants. The globally minimum average relative error is defined as the minimum among all locally minimum average relative errors. The corresponding material constants are the globally optimal material constants.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- IEEE Standard on Piezoelectricit. ANSI/IEEE Std 176-1987, 1988. In Proceedings of the IEEE Computer Society Office Automation Symposium, National Bureau of Standards, Gaithersburg, MD, USA, 27–29 April 1987. [Google Scholar] [CrossRef]
- Smits, J.G. Iterative method for accurate determination of the real and imaginary parts of the materials coefficients of piezoelectric ceramics. IEEE Trans. Son. Ultrason. 1976, SU-23, 393–401. [Google Scholar] [CrossRef]
- Alemany, C.; Pardo, L.; Jiménez, B.; Carmona, F.; Mendiola, J.; González, A.M. Automatic iterative evaluation of complex material constants in piezoelectric ceramics. J. Phys. D Appl. Phys. 1994, 27, 148–155. [Google Scholar] [CrossRef]
- Holland, R. Representation of dielectric, elastic, and piezoelectric losses by complex coefficients. IEEE Trans. Son. Ultrason. 1967, SU-14, 18–20. [Google Scholar] [CrossRef]
- Sherrit, S.; Wiederick, H.D.; Mukherjee, B.K. Non-iterative evaluation of the real and imaginary material constants of piezoelectric resonators. Ferroelectrics 1992, 134, 111–119. [Google Scholar] [CrossRef]
- Du, X.H.; Wang, Q.M.; Uchino, K. Accurate determination of complex materials coefficients of piezoelectric resonators. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2003, 50, 312–320. [Google Scholar] [CrossRef]
- Tsurumi, T.; Kil, Y.B.; Nagatoh, K.; Kakemoto, H.; Wada, S.; Takahashi, S. Intrinsic elastic, dielectric, and piezoelectric losses in lead zirconate titanate ceramics determined by an immittance-fitting method. J. Am. Ceram. Soc. 2002, 85, 1993–1996. [Google Scholar] [CrossRef]
- Maeda, M.; Hashimoto, H.; Suzuki, I. Measurements of complex materials constants of piezoelectrics: Extensional vibrational mode of a rectangular bar. J. Phys. D Appl. Phys. 2003, 36, 176–180. [Google Scholar] [CrossRef]
- Joh, C.; Kim, J.; Roh, Y. Determination of the complex material constants of PMN–28%PT piezoelectric single crystals. Smart Mater. Struct. 2013, 22, 125027. [Google Scholar] [CrossRef]
- Wild, M.; Bring, M.; Hoff, L.; Hjelmervik, K. Characterization of piezoelectric material parameters through a global optimization algorithm. IEEE J. Ocean. Eng. 2020, 45, 480–488. [Google Scholar] [CrossRef]
- Li, X.; Sriramdas, R.; Yan, Y.; Sanghadasa, M.; Priya, S. A new method for evaluation of the complex material coefficients of piezoelectric ceramics in the radial vibration modes. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. under review.
- Lahmer, T.; Kaltenbacher, M.; Kaltenbacher, B.; Lerch, R.; Leder, E. FEM-based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2008, 55, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Pérez, N.; Andrade, M.A.B.; Carbonari, R.C.; Adamowski, J.C.; Buiochi, F. Accurate determination of piezoelectric ceramic constants using a broadband approach. Proc. Mtgs. Acoust. 2013, 19, 030071. [Google Scholar] [CrossRef] [Green Version]
- Pérez, N.; Carbonari, R.C.; Andrade, M.A.B.; Buiochi, F.; Adamowski, J.C. A FEM-based method to determine the complex material properties of piezoelectric disks. Ultrasonics 2014, 54, 1631–1641. [Google Scholar] [CrossRef] [PubMed]
- Buiochi, F.; Kiyono, C.Y.; Pérez, N.; Adamowski, J.C.; Silva, E.C.N. Efficient algorithm using a broadband approach to determine the complex constants of piezoelectric ceramics. Phys. Procedia 2015, 70, 143–146. [Google Scholar] [CrossRef] [Green Version]
- Pérez, N.; Buiochi, F.; Andrade, M.A.B.; Adamowski, J.C. Numerical characterization of piezoceramics using resonance curves. Materials 2016, 9, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PRAP: Piezoelectric Resonance Analysis Program. Available online: http://www.tasitechnical.com/prap (accessed on 10 April 2021).
- Chong, E.K.P.; Zak, S.H. An Introduction to Optimization, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; p. 168. [Google Scholar]






| Soft PZT | Hard PZT | |
|---|---|---|
| m2/N) | ||
| C/N) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, X.; Li, X. A Global Optimization Method to Determine the Complex Material Constants of Piezoelectric Bars in the Length Thickness Extensional Mode. Actuators 2021, 10, 169. https://doi.org/10.3390/act10080169
Xiong X, Li X. A Global Optimization Method to Determine the Complex Material Constants of Piezoelectric Bars in the Length Thickness Extensional Mode. Actuators. 2021; 10(8):169. https://doi.org/10.3390/act10080169
Chicago/Turabian StyleXiong, Xiangming, and Xiaotian Li. 2021. "A Global Optimization Method to Determine the Complex Material Constants of Piezoelectric Bars in the Length Thickness Extensional Mode" Actuators 10, no. 8: 169. https://doi.org/10.3390/act10080169
APA StyleXiong, X., & Li, X. (2021). A Global Optimization Method to Determine the Complex Material Constants of Piezoelectric Bars in the Length Thickness Extensional Mode. Actuators, 10(8), 169. https://doi.org/10.3390/act10080169

