Backstepping Sliding-Mode Control of Piezoelectric Single-Piston Pump-Controlled Actuator
Abstract
:1. Introduction
2. Principle and Methods
2.1. Principle and Configuration
2.2. Mathematical Model
2.3. Backstepping Sliding-Mode Control Design
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Larson, J.P.; Farinholt, K.M.; Griffin, S.F.; Dapino, M. High-Frequency valve development for smart material electro-hydraulic actuators. Proc. SPIE 2011, 7979, 843–845. [Google Scholar]
- Zhao, Y.P.; Chen, D.F.; Lu, Q.G. The Development and Application of Smart Material Pumps. Adv. Mater. Res. 2013, 681, 260–265. [Google Scholar] [CrossRef]
- Xu, B.; Shen, J.; Liu, S.; Su, Q.; Zhang, J. Research and Development of Electro-hydraulic Control Valves Oriented to Industry 4.0: A Review. Chin. J. Mech. Eng. 2020, 33, 29. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.-H.; Wang, Y.; Huang, J. Advances in Valveless Piezoelectric Pump with Cone-shaped Tubes. Chin. J. Mech. Eng. 2017, 30, 766–781. [Google Scholar] [CrossRef]
- Dong, J.S.; Liu, R.G.; Liu, W.S.; Chen, Q.Q.; Yang, Y.; Wu, Y.; Yang, Z.G.; Lin, B.S. Design of a piezoelectric pump with dual vibrators. Sens. Actuators A Phys. 2017, 257, 165–172. [Google Scholar] [CrossRef]
- Sun, M.; Ouyang, X.; Mattila, J.; Yang, H.; Hou, G. One Novel Hydraulic Actuating System for the Lower-Body Exoskeleton. Chin. J. Mech. Eng. 2021, 34, 31. [Google Scholar] [CrossRef]
- Escareno, J.A.; Rakotondrabe, M.; Habineza, D. Blackstepping-Based robust-adaptive control of a nonlinear 2-DOF piezoactuator. IFAC Control Eng. Pract. (CEP) 2015, 41, 57–71. [Google Scholar] [CrossRef]
- Grabbel, J.; Monika, I. An investigation of swash plate control concepts for displacement controlled actuators. Int. J. Fluid Power 2005, 6, 19–36. [Google Scholar] [CrossRef]
- Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A. Sliding Mode Control and Observation; Springer: New York, NY, USA, 2014. [Google Scholar]
- Shtessel, Y.B.; Moreno, J.A.; Fridman, L.M. Twisting sliding mode control with adaptation: Lyapunov design, methodology and application. Automatica 2017, 75, 229–235. [Google Scholar] [CrossRef]
- Han, Y.; Kao, Y.; Gao, C.J.A. Robust sliding mode control for uncertain discrete singular systems with time-varying delays and external disturbances. Automatica 2017, 75, 210–216. [Google Scholar] [CrossRef]
- Sun, H.; Hou, L.; Zong, G.; Yu, X. Fixed-Time Attitude Tracking Control for Spacecraft with Input Quantization. IEEE Trans. Aerosp. Electron. Syst. 2018, 55, 124–134. [Google Scholar] [CrossRef]
- Ginoya, D.; Shendge, P.D.; Phadke, S. Sliding Mode Control for Mismatched Uncertain Systems Using an Extended Disturbance Observer. IEEE Trans. Ind. Electron. 2013, 61, 1983–1992. [Google Scholar] [CrossRef]
- Sunila, M.S.; Sankaranarayanan, V.; Sundereswaran, K. Optimised sliding mode control for MIMO uncertain non-linear system with mismatched disturbances. Electron. Lett. 2018, 54, 290–291. [Google Scholar] [CrossRef]
- Saleh, M. Adaptive Global Terminal Sliding Mode Control Scheme with Improved Dynamic Surface for Uncertain Nonlinear Systems. Int. J. Control Autom. Syst. 2018, 16, 1692–1700. [Google Scholar]
- Wang, X.; Sun, H.; Li, S.; Yang, J. Multi-Source Disturbance Observer Based Continuous Sliding Mode Control for Fuel Quantity Actuator System. In Proceedings of the 2020 Chinese Control and Decision Conference (CCDC), Hefei, China, 21–23 May 2020. [Google Scholar]
- Yan, G.; Jin, Z.; Zhang, T.; Zhao, P. Position Control Study on Pump-Controlled Servomotor for Steam Control Valve. Processes 2021, 9, 221. [Google Scholar] [CrossRef]
- Ding, R.; Xiao, L.; Jin, X. Robust Control for Electric Fuel Pump with Variant Nonlinear Loads Based on a New Combined Sliding Mode Surface. Int. J. Control Autom. Syst. 2019, 17, 716–728. [Google Scholar] [CrossRef]
- Kim, G.W.; Wang, K.W. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions. SMART Mater. Struct. 2009, 18, 085004. [Google Scholar] [CrossRef]
- Chiang, M.H.; Lin, H.T. The Force Control of a Novel Variable Rotational Speed Hydraulic Pump-Controlled System Using Adaptive Fuzzy Controller with Self-Tuning Fuzzy Sliding-Mode Compensation. ICFP Proc. Vol. 2009, 44, 968–973. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.W.; Chen, C.C.; Li, I.H.; Huang, J.Y. The positioning control of an electro-hydraulic variable rotational speed pump-controlled system using adaptive fuzzy controller with self-tuning fuzzy sliding mode compensation. In Proceedings of the 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Taipei, Taiwan, 27–30 June 2011. [Google Scholar]
- Wong, R.-H. Sliding-Mode Fuzzy Control Using in a Double-Axial Pump-Controlled Folding Machine. In Proceedings of the ICAMAR 2013, Taipei, Taiwan, 13–14 July 2013; Volume 418, pp. 88–91. [Google Scholar]
- Xu, Q. Digital Integral Terminal Sliding Mode Predictive Control of Piezoelectric-Driven Motion System. IEEE Trans. Ind. Electron. 2016, 63, 3976–3984. [Google Scholar] [CrossRef]
- Liu, S.Q.; Whidborne, J.F.; He, L. Backstepping sliding-mode control of stratospheric airships using disturbance-observer. Adv. Space Res. 2020, 67. [Google Scholar] [CrossRef]
- Cheng, C.H.; Hung, S.-K. A Piezoelectric Two-Degree-of-Freedom Nanostepping Motor with Parallel Design. IEEE ASME Trans. Mechatron. 2016, 21, 2197–2199. [Google Scholar] [CrossRef]
- Kim, J.; You, K.; Choe, S.-H.; Choi, H. Wireless Ultrasound Surgical System with Enhanced Power and Amplitude Performances. Sensors 2020, 20, 4165. [Google Scholar] [CrossRef] [PubMed]
Parameters | Value |
---|---|
120 Hz | |
1700 MPa | |
1 kg | |
20 N/(m/s) | |
20 cm3 | |
50 | |
150 | |
800 | |
0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Ren, P.; Huang, X. Backstepping Sliding-Mode Control of Piezoelectric Single-Piston Pump-Controlled Actuator. Actuators 2021, 10, 154. https://doi.org/10.3390/act10070154
Wang B, Ren P, Huang X. Backstepping Sliding-Mode Control of Piezoelectric Single-Piston Pump-Controlled Actuator. Actuators. 2021; 10(7):154. https://doi.org/10.3390/act10070154
Chicago/Turabian StyleWang, Bin, Pengda Ren, and Xinhao Huang. 2021. "Backstepping Sliding-Mode Control of Piezoelectric Single-Piston Pump-Controlled Actuator" Actuators 10, no. 7: 154. https://doi.org/10.3390/act10070154
APA StyleWang, B., Ren, P., & Huang, X. (2021). Backstepping Sliding-Mode Control of Piezoelectric Single-Piston Pump-Controlled Actuator. Actuators, 10(7), 154. https://doi.org/10.3390/act10070154