A Magneto-Active Elastomer Crawler with Peristaltic and Caterpillar Locomotion Patterns
Abstract
:1. Introduction
2. Fabrication of the Crawler
3. Mechanism of Crawling
3.1. Peristaltic Motion
3.2. Caterpillar Motion
4. Experimental Methodology
4.1. Peristaltic Motion
4.2. Caterpillar Motion
5. Results and Discussion
5.1. Peristaltic Motion
5.2. Caterpillar Motion
5.3. Comparison to Other Soft Magnetic Robots
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ambe, Y.; Matsuno, F. Leg-grope-walk—Walking strategy on weak and irregular slopes for a quadruped robot by force distribution. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Algarve, Portugal, 7–12 October 2012; pp. 1840–1845. [Google Scholar]
- Hirose, S.; Mori, M. Biologically inspired snake-like robots. In Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China, 22–26 August 2004; pp. 1–7. [Google Scholar]
- Saga, N.; Nakamura, T. Development of a peristaltic crawling robot using magnetic fluid on the basis of the locomotion mechanism of the earthworm. Smart Mater. Struct. 2004, 13, 566. [Google Scholar] [CrossRef]
- Trimmer, B.A.; Takesian, A.E.; Sweet, B.M.; Rogers, C.B.; Hake, D.C.; Rogers, D.J. Caterpillar locomotion: A new model for soft-bodied climbing and burrowing robots. In Proceedings of the 7th International Symposium on Technology and the Mine Problem, Monterey, CA, USA, 2–5 May 2006; pp. 1–10. [Google Scholar]
- Seok, S.; Onal, C.D.; Wood, R.; Rus, D.; Kim, S. Peristaltic locomotion with antagonistic actuators in soft robotics. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska, 3–8 May 2010; pp. 1228–1233. [Google Scholar]
- Trimmer, B.; Issberner, J. Kinematics of soft-bodied, legged locomotion in Manduca sexta larvae. Biol. Bull. 2007, 212, 130–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saga, N.; Seto, T.; Takanashi, H.; Saito, N. Development of a peristaltic crawling robot using planar link mechanisms. IEEJ Trans. Electr. Electron. Eng. 2008, 3, 72–78. [Google Scholar] [CrossRef]
- Nakamura, T.; Kato, T.; Iwanaga, T.; Muranaka, Y. Peristaltic crawling robot based on the locomotion mechanism of earthworms. IFAC Proc. 2006, 39, 139–144. [Google Scholar] [CrossRef]
- Kishi, T.; Ikeuchi, M.; Nakamura, T. Development of a Peristaltic Crawling Inspection Robot for Half-Inch Pipes Using Pneumatic Artificial Muscles. SICE J. Control Meas. Syst. Integr. 2015, 8, 256–264. [Google Scholar] [CrossRef]
- Saga, N.; Tesen, S.; Sato, T.; Nagase, J.-Y. Acquisition of earthworm-like movement patterns of many-segmented peristaltic crawling robots. Int. J. Adv. Robot. Syst. 2016, 13, 1729881416657740. [Google Scholar] [CrossRef]
- Tanise, Y.; Kishi, T.; Yamazaki, S.; Yamada, Y.; Nakamura, T. High-speed response of the pneumatic actuator used in a peristaltic crawling robot inspecting long-distance gas pipes. In Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, 12–15 July 2016; pp. 1234–1239. [Google Scholar]
- Zhang, H.; Gonzalez-Gomez, J.; Zhang, J. A new application of modular robots on analysis of caterpillar-like locomotion. In Proceedings of the 2009 IEEE International Conference on Mechatronics, Málaga, Spain, 14–17 April 2009; pp. 1–6. [Google Scholar]
- Umedachi, T.; Trimmer, B.A. Autonomous decentralized control for soft-bodied caterpillar-like modular robot exploiting large and continuum deformation. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 292–297. [Google Scholar]
- Zou, J.; Lin, Y.; Ji, C.; Yang, H. A reconfigurable omnidirectional soft robot based on caterpillar locomotion. Soft Robot. 2018, 5, 164–174. [Google Scholar] [CrossRef]
- Diermeier, A.; Sindersberger, D.; Krenkel, L.; Rosell, X.; Monkman, G. Controllable Magnetoactive Polymer Conduit. Open Mech. Eng. J. 2018, 12, 192–200. [Google Scholar] [CrossRef]
- Raikher, Y.L.; Stolbov, O. Magnetodeformational effect in ferrogel samples. J. Magn. Magn. Mater. 2003, 258, 477–479. [Google Scholar] [CrossRef]
- Raikher, Y.L.; Stolbov, O. Magnetodeformational effect in ferrogel objects. J. Magn. Magn. Mater. 2005, 289, 62–65. [Google Scholar] [CrossRef]
- Böse, H. Viscoelastic properties of silicone-based magnetorheological elastomers. Int. J. Mod. Phys. B 2007, 21, 4790–4797. [Google Scholar] [CrossRef]
- Makarova, L.A.; Alekhina, Y.A.; Rusakova, T.S.; Perov, N.S. Tunable properties of magnetoactive elastomers for biomedical applications. Phys. Procedia 2016, 82, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Böse, H.; Rabindranath, R.; Ehrlich, J. Soft magnetorheological elastomers as new actuators for valves. J. Intell. Mater. Syst. Struct. 2012, 23, 989–994. [Google Scholar] [CrossRef]
- Kashima, S.; Miyasaka, F.; Hirata, K. Novel soft actuator using magnetorheological elastomer. IEEE Trans. Magn. 2012, 48, 1649–1652. [Google Scholar] [CrossRef]
- Zimmermann, K.; Naletova, V.A.; Zeidis, I.; Turkov, V.A.; Kolev, E.; Lukashevich, M.V.; Stepanov, G.V. A deformable magnetizable worm in a magnetic field—A prototype of a mobile crawling robot. J. Magn. Magn. Mater. 2007, 311, 450–453. [Google Scholar] [CrossRef]
- Zimmermann, K.; Naletova, V.; Zeidis, I.; Turkov, V.; Kolev, E.; Kalmykov, S. Calculation of a magnetizable worm deformation in a magnetic field. Magnetohydrodynamics 2008, 44, 143–148. [Google Scholar] [CrossRef]
- Zimmermann, K.; Naletova, V.; Zeidis, I.; Böhm, V.; Kolev, E. Modelling of locomotion systems using deformable magnetizable media. J. Phys. Condens. Matter 2006, 18, S2973. [Google Scholar] [CrossRef]
- Diller, E.; Zhuang, J.; Lum, G.Z.; Edwards, M.R.; Sitti, M. Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming. Appl. Phys. Lett. 2014, 104, 174101. [Google Scholar] [CrossRef]
- Lum, G.Z.; Ye, Z.; Dong, X.; Marvi, H.; Erin, O.; Hu, W.; Sitti, M. Shape-programmable magnetic soft matter. Proc. Natl. Acad. Sci. USA 2016, 113, E6007–E6015. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Lum, G.Z.; Mastrangeli, M.; Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018, 554, 81–85. [Google Scholar] [CrossRef]
- Venkiteswaran, V.K.; Samaniego, L.F.P.; Sikorski, J.; Misra, S. Bio-Inspired Terrestrial Motion of Magnetic Soft Millirobots. IEEE Robot. Autom. Lett. 2019, 4, 1753–1759. [Google Scholar] [CrossRef] [Green Version]
- Camacho, J.M.; Sosa, V. Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry. Rev. Mex. De Física E 2013, 59, 8–17. [Google Scholar]
- Lu, H.; Zhang, M.; Yang, Y.; Huang, Q.; Fukuda, T.; Wang, Z.; Shen, Y. A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat. Commun. 2018, 9, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, H.; Boehler, Q.; Cui, H.; Secchi, E.; Savorana, G.; de Marco, C.; Gervasoni, S.; Peyron, Q.; Huang, T.Y.; Pane, S.; et al. Magnetic cilia carpets with programmable metachronal waves. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
Saga [3] | Zimmermann [22] | Hu [27] | Lu [30] | Venkiteswaran [28] | Gu [31] | This Paper | |
---|---|---|---|---|---|---|---|
Max. body length | 160 mm | 48 mm | 3.7 mm | 30 mm | 40 mm | 40 mm | 250 mm |
Magnetic constituent | Magnetic fluid | Not specified | NdFeB | Fe | PrFeB | NdFeB | Fe |
Need for pre-magnetization | No | No | Yes | Yes | Yes | Yes | No |
Magnet used for actuation | Permanent | Electric | Electric | Permanent | Electric | Electric | Permanent |
Max. flux density for actuation | 500 mT (estimated) | Not specified | 30 mT | 200 mT | 60 mT | 80 mT | 407 mT |
Approx. max. reported velocity | 4.5 mm/s | 100 mm/s | 150 mm/s | 28.6 mm/s | 0.37 mm/s | 0.17 mm/s | 28 mm/s |
Locomotion type for max. velocity | Crawling | Crawling | Rolling | Crawling | Crawling | Crawling | Crawling |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, T.L.; Philamore, H.; Matsuno, F. A Magneto-Active Elastomer Crawler with Peristaltic and Caterpillar Locomotion Patterns. Actuators 2021, 10, 74. https://doi.org/10.3390/act10040074
You TL, Philamore H, Matsuno F. A Magneto-Active Elastomer Crawler with Peristaltic and Caterpillar Locomotion Patterns. Actuators. 2021; 10(4):74. https://doi.org/10.3390/act10040074
Chicago/Turabian StyleYou, Tsam Lung, Hemma Philamore, and Fumitoshi Matsuno. 2021. "A Magneto-Active Elastomer Crawler with Peristaltic and Caterpillar Locomotion Patterns" Actuators 10, no. 4: 74. https://doi.org/10.3390/act10040074
APA StyleYou, T. L., Philamore, H., & Matsuno, F. (2021). A Magneto-Active Elastomer Crawler with Peristaltic and Caterpillar Locomotion Patterns. Actuators, 10(4), 74. https://doi.org/10.3390/act10040074