Design, 3D FEM Simulation and Prototyping of a Permanent Magnet Spherical Motor
Abstract
:1. Introduction
2. Design of the Spherical Permanent Magnet Motor
2.1. Structure of the Motor
2.2. Operating Principle of the Spherical Permanent Magnet Motor
3. Simulations of the Spherical Permanent Magnet Motor
3.1. Magnetic Field of the Motor under No-Load Operating Conditions
3.2. Magnetic Field of the Motor under Load Operating Conditions
3.3. Force and Torque of the Spherical Permanent Magnet Motor
4. Prototyping of the Spherical Permanent Magnet Motor
4.1. Stator of the Spherical Permanent Magnet Motor
4.2. Rotor of the Spherical Permanent Magnet Motor
4.3. Mechanical Parts of the Spherical Permanent Magnet Motor
5. Testing of the Spherical Permanent Magnet Motor
5.1. Experimental Setup
5.2. Experimental Results of the Magnetic Flux Density in the Air Gap of the Motor at No-Load Conditions
5.3. Experimental Results for Magnetic Flux Density in the Air Gap of the Motor at Load Conditions
5.4. Experimental Results for the Force and the Torque of the Motor
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, F.; Laithwaite, E.; Piggot, L. Brushless variable speed induction motor. IEEE Proc. 1956, 2097U, 102–118. [Google Scholar]
- Williams, F.; Laithwaite, E.; Eastham, G.F. Development of design of spherical induction motor. IEEE Proc. 1959, 3036U, 471–484. [Google Scholar] [CrossRef]
- Laithwaite, E. Design of spherical motors. Electr. Times 1960, 9, 921–925. [Google Scholar]
- Vachtsevanos, G.J.; Davey, K.; Lee, K.M. Development of a novel intelligent robotic manipulator. IEEE Control. Syst. Mag. 1987, 7, 9–15. [Google Scholar] [CrossRef]
- Vachtsevanos, G.J.; Davey, K.R. Spherical Motor Particularly Adapted for Robotics. US Patent 4739241, 19 April 1988. [Google Scholar]
- Diep, B.T.; Nguyen, N.D.; Tran, T.T.; Nguyen, Q.H. Design and experimental validation of a 3-DOF force feedback system featuring spherical manipulator and magnetorheological actuators. Actuators 2020, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Bai, S.; Chen, W.; Liu, J. Torque modelling and current optimization of a spherical actuator built as an electromagnets driven spherical parallel manipulator. In Proceedings of the 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Ningbo, China, 19–21 November 2017; pp. 626–631. [Google Scholar]
- Joshi, S.; Paik, J. Multi-DoF force characterization of soft actuators. IEEE Robot. Autom. Lett. 2019, 4, 3679–3686. [Google Scholar] [CrossRef]
- Ahmadi, S.; Moghani, J.S.; Mirsalim, M. Simulation and analysis of a novel PM spherical 3-DOF actuator with E-shaped stator and blade-shaped rotor structure. In Proceedings of the 2018 9th Annual Power Electronics, Drives Systems and Technologies Conference (PEDSTC), Tehran, Iran, 13–15 February 2018; pp. 59–64. [Google Scholar]
- Hollis, R.L.; Salcudean, S.; Allan, A.P. A six degree of freedom magnetically levitated variable compliance fine motion wrist. In Proceedings of the 4th International Symposium on Robotics Research, Santa Cruz, CA, USA, 9–14 August 1987; MIT Press: Cambridge, MA, USA, 1988; pp. 65–73. [Google Scholar]
- Salcudean, S.E.; Hollis, R.L. A magnetically levitated fine motion wrist: Kinematics, dynamics and control. In Proceedings of the IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA, 24–29 April 1988; pp. 261–266. [Google Scholar]
- Hollis, R.L.; Salcudean, S.E.; Allan, A.P. A six degree of freedom magnetically levitated variable compliance fine motion wrist: Design, modeling and control. IEEE Trans. Rob. Autom. 1991, 7, 320–332. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Jewell, G.W.; Howe, D. A novel spherical permanent magnet actuator with three degrees-of-freedom. IEEE Trans. Magn. 1998, 34, 2078–2080. [Google Scholar] [CrossRef]
- Wang, J.; Jewell, G.W.; Howe, D. Analysis, design and control of a novel spherical permanent magnet actuator. Proc. IEEE Electr. Power Appl. 1998, 145, 61–71. [Google Scholar] [CrossRef]
- Öner, Y. Computer Aided Three Dimensional Magnetic Analysis, Design and Application of a Permanent Magnet Spherical Motor. Ph.D. Thesis, University of Gazi, Ankara, Turkey, 2004. [Google Scholar]
- Li, H.; Li, T. End-effect magnetic field analysis of the Halbach array permanent magnet spherical motor. IEEE Trans. Magn. 2018, 54, 1–9. [Google Scholar] [CrossRef]
- Lu, B.; Aoyagi, M. Examination of an outer-rotor-type multidegree-of-freedom spherical ultrasonic motor. In Proceedings of the 2012 15th International Conference on Electrical Machines and Systems (ICEMS), Sapporo, Japan, 21–24 October 2012; pp. 1–5. [Google Scholar]
- Li, Z.; Chen, Q.; Yue, F.; Zhang, Y. Modal analysis of electromagnetic resonance for multi-degree-of-freedom spherical motor. In Proceedings of the 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Korea, 7–10 October 2018; pp. 1847–1852. [Google Scholar]
- Li, Z.; Chen, Q.; Wang, Q. Analysis of multi-physics coupling field of multi-degree-of-freedom permanent magnet spherical motor. IEEE Trans. Magn. 2019, 55, 1–5. [Google Scholar] [CrossRef]
- Li, B.; Li, Z.; Li, G. Magnetic field model for permanent magnet spherical motor with double polyhedron structure. IEEE Trans. Magn. 2017, 53, 1–5. [Google Scholar] [CrossRef]
- Yan, L.; Chen, I.-M.; Chee, K.L.; Yang, G.; Lin, W.; Lee, K.-M. Design and analysis of a permanent magnet spherical actuator. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 691–696. [Google Scholar]
- Gan, L.; Pei, Y.; Chai, F. Tilting torque calculation of a novel tiered type permanent magnet spherical motor. IEEE Trans. Ind. Electron. 2020, 67, 421–431. [Google Scholar] [CrossRef]
- Cho, S.; Lim, J.-S.; Oh, Y.J.; Jeong, G.; Kang, D.-W.; Lee, J. A study on output characteristics of the spherical multi-DOF motor according to the number of phases and pole pitch angles. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Liu, C.-S.; Lin, Y.-H.; Yeh, C.-N. Analytical Investigation on Torque of Three-Degree-of-Freedom Electromagnetic Actuator for Image Stabilization. Appl. Sci. 2021, 11, 6872. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Liu, C.-S.; Yeh, C.-N. Design and Simulation of Novel 3-DOF Spherical Voice Coil Motor. Actuators 2021, 10, 155. [Google Scholar] [CrossRef]
- Takahara, K.; Hirata, K.; Niguchi, N.; Nishiura, Y.; Sakaidani, Y. Experimental evaluation of the static characteristics of multi-degree-of-freedom spherical actuators. IEEE Trans. Magn. 2017, 53, 1–5. [Google Scholar]
- Han, Y.M.; Choi, S.B. Force-feedback control of a spherical haptic device featuring an electrorheological fluid. Smart Mater. Structures 2006, 15, 1438–1446. [Google Scholar] [CrossRef]
- Li, Z. Magnetic-field computation of a novel 3-DOF deflection-type PM motor with analytical and finite-element methods. Elektrotehniški Vestn. 2014, 81, 51–56. [Google Scholar]
- Li, Z.; Zhang, L.; Lun, Q.; Jin, H. Optimal design of multi-DOF deflection type PM motor by response surface methodology. J. Electr. Eng. Technol. 2015, 10, 965–970. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Lun, Q.Q. Analysis of magnetic field and levitation force characteristics for 3-DOF deflection type PM motors. J. Chin. Inst. Eng. 2016, 39, 704–712. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Q. Levitation mechanism and improvements of 3-DOF deflection type PM actuator. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- El-Khalafawy, K.; El-Amary, N.H. Spherical actuator design and operation based on magnetic profile. In Proceedings of the 2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Bangalore, India, 8–10 November 2017; pp. 1–6. [Google Scholar]
- Li, Z.; Yu, X.; Xue, Z.; Sun, H. Analysis of Magnetic Field and Torque Features of Improved Permanent Magnet Rotor Deflection Type Three-Degree-of-Freedom Motor. Energies 2020, 13, 2533. [Google Scholar] [CrossRef]
- Gündoğar, U.Y. Magnetics, Mechanical Analysis and Implementation of Double Excited Spherical Motor. Master’s Thesis, University of Pamukkale, Denizli, Turkey, 2015. [Google Scholar]
- Gündoğar, U.Y.; Zorlu Partal, S.; Öner, Y. 3D electromagnetic and structural analysis of a doubly excited spherical motor for robotic applications. In Proceedings of the 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), Istanbul, Turkey, 15–17 October 2020; pp. 1–8. [Google Scholar]
- Ansys Maxwell 2021 R2; Ansys, Inc.: Canonsburg, PA, USA, 2021.
- Gündoğar, U.Y.; Zorlu Partal, S. The effect of using different magnet structures and different magnet materials on the design of the spherical motor. Eur. J. Sci. Technol. 2020, 19, 946–959. [Google Scholar]
- Wen, Y.; Li, G.; Wang, Q.; Tang, R.; Liu, Y.; Li, H. Investigation on the Measurement Method for Output Torque of a Spherical Motor. Appl. Sci. 2020, 10, 2510. [Google Scholar] [CrossRef] [Green Version]
- Rossini, L.; Chételat, O.; Onillon, E.; Perriard, Y. Analytical and experimental investigation on the force and torque of a Reaction Sphere for satellite attitude control. In Proceedings of the 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Budapest, Hungary, 3–7 July 2011; pp. 487–492. [Google Scholar]
- Omura, M.; Shimono, T.; Fujimoto, Y. Development of semicircular tubular core-less linear motor and its motion control. IEEJ Trans. Ind. Appl. 2015, 135, 246–257. [Google Scholar] [CrossRef]
Symbol | Corresponding Parameter | Dimension |
---|---|---|
Sod | Stator’s outer diameter | 157 mm |
Sid | Stator’s inner diameter | 84 mm |
Rod | Rotor’s outer diameter | 50.7 mm |
SRid | Separator ring’s inner diameter of the stator | 147 mm |
PMt | Permanent magnet’s thickness | 4.15 mm |
SRt | Separator’s ring thickness | 10.5 mm |
St | Stator’s thickness | 9 mm |
RPMl | Rotor’s length | 40 mm |
Cl | Connector’s length | 12.5 mm |
MPod | Mechanical part’s outer diameter | 71.5 mm |
TBCid | Top and bottom cover’s inner diameter | 100 mm |
TBCod | Top and bottom covers’ outer diameter | 167 mm |
HTBCl | Housing and top-bottom cover’s length | 79 mm |
Hl | Housing’s length | 69 mm |
FBl | Fixed base’s length | 5 mm |
Parameter | Value |
---|---|
Residual magnetic flux density | 1.12 T |
Relative permeability of the permanent magnet | 1.08 |
Magnetic coercivity of the permanent magnet | 814.567 kA/m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gündoğar, U.Y.; Zorlu Partal, S. Design, 3D FEM Simulation and Prototyping of a Permanent Magnet Spherical Motor. Actuators 2021, 10, 305. https://doi.org/10.3390/act10110305
Gündoğar UY, Zorlu Partal S. Design, 3D FEM Simulation and Prototyping of a Permanent Magnet Spherical Motor. Actuators. 2021; 10(11):305. https://doi.org/10.3390/act10110305
Chicago/Turabian StyleGündoğar, Umut Yusuf, and Sibel Zorlu Partal. 2021. "Design, 3D FEM Simulation and Prototyping of a Permanent Magnet Spherical Motor" Actuators 10, no. 11: 305. https://doi.org/10.3390/act10110305
APA StyleGündoğar, U. Y., & Zorlu Partal, S. (2021). Design, 3D FEM Simulation and Prototyping of a Permanent Magnet Spherical Motor. Actuators, 10(11), 305. https://doi.org/10.3390/act10110305