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Abstract: This research focuses on the development of a new 3-DOF (Degree of Freedom) force
feedback system featuring a spherical arm mechanism and three magnetorheological (MR) brakes,
namely two rotary MR brakes and one linear MR brake. The first rotary MR brake is integrated in
the waist joint to reflect the horizontal tangent force, the other rotary MR brake is integrated in the
shoulder joint to reflect the elevation tangent force, while the linear MR brake is integrated in the
sliding joint of the arm to reflect the radial force (approach force). The proposed configuration can
reflect a desired force to the operator at the end-effectors of the arm independently in 3 DOFs by
controlling the current applied to the coils of the MR brakes. After the introduction, the configuration
of the proposed force feedback system is presented. Afterward, the design and conducted simulation
of the MR brakes for the systems are provided. The prototype of the force feedback system, which was
manufactured for the experiment, is then presented as well as some of the obtained experimental
results. Finally, the proposed control system is presented and its implementation to provide a desired
feedback force to the operator is provided.

Keywords: MR fluid; spherical manipulator; force feedback system; rotary MR brake; linear MR brake

1. Introduction

Recently, much research has focused on the development and application of force feedback
techniques with a wide range of applications, including medical and aerospace engineering,
military operations, computer games, and virtual reality devices [1–4]. Several approaches
have been proposed to build haptic systems using different types of actuators such as DC
motors [5–7], electromagnetic actuators [8,9], pneumatic actuators [10,11], shape memory alloy [12],
dielectric elastomeric actuators [13,14], eccentric rotating mass motors [15–17], and others.

Magnetorheological (MR) materials are a class of smart composites prepared by dispersing
nanometer- or micrometer-sized ferromagnetic fillers into different carrier matrices. As the rheological
properties can be controlled by an external magnetic field rapidly, reversibly, and continuously,
magnetosensitive smart materials have great application potential in construction, automotive industry,
artificial intelligence, etc. Depending on the carrier matrix material, different types of MR materials
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can be composed such as MR fluid [18,19], MR elastomer [20,21], MR gel [22,23], MR foam [24,25]
and MR grease [26,27]. In order to create a better desired feedback force, actuators featuring
magnetorheological fluid (MRF) have been recently implemented [28–31]. These research studies
showed that MRF-based actuators are very potential candidates for haptic applications. Recently, a
3-DOF haptic system featuring an anthropomorphic (elbow) manipulator and three MR brakes was
developed by Nguyen et al. [32]. In the haptic tele-manipulator system developed by Nguyen et al.,
a commercial 3-DOF elbow manipulator was used as a slave manipulator while the haptic master
manipulator had similar kinematic chain with the master, integrated three rotary MR brakes at the
three joints to generate a desired force to the operator. The required torque at the joints of the haptic
master was determined from the desired force based on static modeling of the manipulator. In order
to achieve the required torque, a PID (Proportional-Integral-Derivative) controller was employed for
each MR brake. Obviously, in the static modeling, the dynamic behavior of the manipulator was not
accounted for. In addition, the friction was also neglected. Therefore, the calculated torques were
not accurate required values, resulting in an inaccuracy of the feedback force. To improve the force
feedback accuracy, Nguyen et al. [33] recently carried out some modifications, in which the required
torques of the MR brakes were estimated based on the measured values of currents were applied to
the armatures of the slave’s servo motors. The experimental results showed that the accuracy of the
feedback force was significantly improved compared to those presented in the case of [32]. An implicit
disadvantage of a force feedback system using an articulated manipulator mechanism is that the
required torques are determined from coupled equations, resulting in implicit values of the required
torques. In order to solve the implicit torque calculation of the articulated manipulator-based force
feedback, Nguyen el al. [34] proposed a force feedback system based on a spherical arm mechanism, in
which two rotary MR brakes and a linear MR brake were employed to feedback a desired 3-DOF force
to the operator. With the proposed configuration, a 3-DOF desired force acting on the master operator
can be achieved by independently controlling the current applied to the coils of the MR brakes with
this configuration.

It is to be noted that only the configuration of the force feedback system was proposed in [34],
as well as some preliminary experimental works. This research is an extension of [34]. The rest of this
paper is organized as follows. In Section 2, the configuration of the proposed 3-DOF force feedback
system is presented. Afterward, in Section 3, the configurations of the three MR brakes for the systems
are introduced and optimally designed. From the optimal results, a prototype of the force feedback
system featuring the three optimized MR brakes is then manufactured and braking torques of the MR
brakes are experimentally evaluated directly on the prototype force feedback system. In Section 4,
a control system is proposed and implemented to generate a desired feedback force to the operator.
In Section 5, experimental results on force feedback are obtained and shown with discussion. Finally,
important remarks of this research work are summarized in Section 6.

2. The Proposed Spherical Force Feedback System

In this section, the configuration of the proposed 3-DOF force feedback system is shown in Figure 1.
As can be seen, the system consists of a spherical arm mechanism with three joints—the waist revolute
joint, the shoulder revolute joint, and the arm prismatic joint. On the shaft of the waist joint, a rotary
MR brake is employed to reflect a desired horizontal tangent force. The housing of the brake is fixed
to the body frame of the spherical arm, while its shaft is assembled to the joint shaft. On the other
end of the brake shaft, an encoder is attached to measure the angular position of the body part of the
master (azimuth angle). On the body part, the shoulder joint is installed. On the shaft of the shoulder
joint, another rotary MR brake is installed to reflect a desired elevation tangent force. The housing of
the brake is fixed to the body link while the brake shaft is connected to the shaft of the shoulder link.
The other end of the brake shaft is connected with an encoder to measure the angular position of the
arm link (elevation angle). The linear MR brake is installed on the shoulder link which is connected to
the shaft of the shoulder joint. The outer housing of the linear MR brake is fixed inside the hole on
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the shoulder link while the shaft can move back and forth as a sliding arm. At the end of the shaft,
a 3-DOF force is employed to measure the force acting on the operator. In order to measure the position
of the sliding arm (radial length), a linear encoder is used. The simplified kinematic chain of the force
feedback system is shown in Figure 2.
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as 40 N considering the conformable operational effort of the operator. From these required forces,
it can be determined that the maximum required torque of the rotary MR brakes is 8 Nm (=200 mm ×
40 N), while the maximum required force of the linear MR brake is obviously 40 N.Actuators 2020, 9, x FOR PEER REVIEW 4 of 22 
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3. MR Brakes for the 3-DOF Force Feedback System

3.1. The Rotary MR Brakes

In this study, a novel MR brake with tooth-shaped rotor, shown in Figure 4, is proposed for the
rotary MR brakes. As shown in Figure 4a, the brake disc (rotor) made of magnetic steel is fixed to
the flange of the shaft made of nonmagnetic steel. The disc is installed inside a stationary envelope
(housing). The housing is also made of magnetic housing. The gap between the disc and the housing
is filled up with MR fluid. Two magnetic coils are placed on two sides of the brake housing to generate
a magnetic field running across the MRF gap. It is to be noted that, to create a mutual magnetic field
inside the brake structure, two counter currents are applied to the coils. The tooth-shaped counterpart
faces of the disc and the housing allow a large contact surface between the MRF and the disc, thus the
induced braking torque is expected to increase notably. Figure 4b shows simulated magnetic flux lines
of the MR brakes obtained from ANSYS when two counter currents are applied to the coils.
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Based on the Bingham plastic model of the MR fluid, the braking torque of the brake is estimated
by [35]:

Tb = 2(TE0 + TE2 + TE4 + TE6 + TE8 + TE10 + TI1 + TI3 + TI5 + TI7 + TI9) + Tc + 2Ts (1)

where TEi is the friction torque caused by MRF in the vertical gap Ei, TIi is the friction torque caused by
MRF in the inclined gap Ii, Tc is the friction torque caused by MRF in the circular gap C, and Ts is the
lip seal friction force. The torque TEi, TIi and Tc are determined by the following:

TEi =
πµEiR4

i+1

2d
[1− (

Ri
Ri+1

)
4
]Ω +

2πτyEi

3
(R 3

i+1 −R3
i ), i = 0, 2, 4, 6, 8, 10 (2)

TIi = 2π(R2
i l + Ril2 sinφ+ 1

3 l3 sin2 φ)τyIi +
1
2πµIi

π
d (4R3

i + 6R2
i l sinφ+ 4Ril2 sin2 φ+ l3 sin3 φ);

i = 1, 3, 5, 7, 9
(3)

Tc = 2πR2
11(b + 2h)(τyc + µc

ΩR11

d
) (4)

In the above, Ri is the radius of the point i in the disc profile as shown in Figure 4, l is the length
of the inclined gap, φ is the inclined angle, h is the height of the tooth, µEi and τEi are the post-yield
viscosity of the MRF in the gap Ei, µIi and τIi are the post-yield viscosity of the MRF in the gap Ii, and µc

and τc are the post-yield viscosity of the MRF in the gap denoted by C. In this study, the induced yield
stress and post-yield viscosity of MRF are functions of the applied magnetic density across the MRF
duct, which are approximated by [36]:

Y = Y∞ + (Y0 −Y∞)(2e−BαSY − e−2BαSY) (5)

where Y stands for the rheological parameters of MRF such as the yield stress and the post-yield
viscosity. The value of Y tends from the zero-applied field value Y0 to the saturation value Y∞. αSY
is the saturation moment index of the Y parameter. B is the applied magnetic density. In this study,
the commercial MRF made by Lord Corporation (Cary, North Carolina, United States), MRF132-DG,
was used and its rheological properties according to Equation (5) are as follows [36]: µ0 = 0.1 Pa.s,
µ∞ = 3.8 Pa.s, τy0 = 15 Pa, τy∞ = 40000 Pa, αsµ = 4.5 T−1, and αsty = 2.9 T−1.

The lip seal friction torque can be approximately evaluated by the following:

Ts = 0.65(2Rs)
2Ω1/3 (6)

where Ts is the friction torque of the seal measured in ounce-inches, Ω is the angular speed of the brake
shaft measured in rounds per minute, and Rs is the radius of the sealing shaft measured in inches.

It is well known that the braking torque and the mass of MR brakes are the two most important
conflicting objectives in the design of MRF-based brakes, especially for force feedback systems.
The brake mass should be as small as possible for compact size and low cost. However, the small size
may reduce the brakes’ braking torque. Therefore, in this research, the optimal design objective of the
MR brake was to minimize the brake mass while its braking torque was constrained to be greater than a
required value. Mathematically, the optimal design problem of the MR brakes can be stated as follows:

Minimize the MR brake mass

mb = Vdρd + Vhρh + Vsρs + VMRρMR + Vcρc (7)

Subject to
Braking torque constraint : Tb ≥ Tbr,

Design variable limits : xL
i ≤ xi ≤ xU

i , i = 1, 2 . . . n.
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where Vd, Vh, Vs, VMR, and Vc are respectively the volume of the disc, the housing, the shaft, the MRF,
and the coil of the brake; ρd, ρh, ρs, ρMR, and ρc are the density of materials for the discs, the housing,
the shaft, the MRF, and the coil, respectively; xL

i and xU
i are the lower and upper bounds of the

corresponding geometric design variable xi of MR brakes; n is the number of design variables; and Tbr
is the required braking torque. It is to be noted that in the optimization process, in order to evaluate
the braking torque of the MR brakes, finite element analysis (FEA) is used to calculate magnetic flux
density across the MRF gap. In this study, the finite element models using the axis-symmetric couple
element (PLANE 13) of the commercial ANSYS software were used and are shown in Figure 5.
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The optimal solution of the MR brakes was obtained based on the first-order optimization method
using the steepest gradient decent algorithm integrated in the ANSYS optimization toolbox [37,38].
In the optimal design problem, important parametric dimensions of the MR brakes such as the height
and width of the coil (hc, wc), the disc outer radius R0, the inner tooth radius R1, the geometric
dimensions of the tooth (height, top thickness, bottom thickness), the disc thickness td, the outer
housing thickness to, and the side housing thickness th were chosen as design variables. Noteworthily,
a small gap size of the MRF duct results in a high braking torque. However, the small gap size causes a
large value of the off-state braking torque that degrades performances of the MR brakes, such as high
dissipated energy, overheating, and a particularly inaccurate feedback force due to the high value of
the uncontrollable force. In addition, a small gap size of the MRF ducts results in cost and difficulty in
manufacturing. important issues that should also be accounted for. Based on the above, the MRF gap
size was not considered as a design variable but was empirically determined, being 0.6 mm in this
research. The thin-wall thickness of the coil was also not considered as a design variable. It should be
as small as possible to block magnetic flux going through but to force the magnetic flux going across
the MRF gap. Considering manufacturing aspects, the thin-wall thickness of the coils was set as 1 mm.
In this research work, the medium induced yield stress MRF made by Lord Corporation (MRF132-DG)
was used and the copper coil wire was sized as 24-gauge (diameter = 0.511 mm, maximum working
current is around 3 A). However, during the optimization process, a current of 2.5 A was applied to the
coil to take safe working conditions into consideration. It is also to be noted that the filling ratio of the
coil was set as 0.7, while magnetic loss was assumed to be 10% based on empirical experience.

The optimal solution of the MR brake, where the maximum induced braking torque was
constrained to be greater than 10 Nm (the required is 8 Nm) and convergence rate was set as 0.1%,
is shown in Figure 6a.
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Figure 6. Optimization solution of the rotary MR brakes. (a) Mass and braking torque. (b) Magnetic
flux density of the brake at the optimum.

From the figure, it can be seen that the convergence occurs after the 30th iteration, at which point
the mass of the MR brake is 1.03 kg. The distribution of magnetic density is shown in Figure 6b. At the
optimum, the values of design variables and performance of the MR brakes are shown in Table 1. It is
to be noted in Table 1 that the thickness of the disc reached its lower limit at the optimum. From the
optimal results, a detailed design of the MR brakes was carried out, and its assembly drawing is shown
in Figure 7.

Table 1. Optimal results of the rotary MR brakes.

Design Variable (mm) Optimized Performance
Characteristics

Size of coils: width wc = 5.52; height: hc = 15.8; no. of coil turns = 233
Housing: Outer radius R = 34.5; overall length L = 35.8; thickness th = 4.6; thin wall: 1.0

Disc: Inner radius: Ri = 10; outer radius: Rd = 31.2; shaft radius = 6.0; thickness: 2.0
Tooth profile: Total depth = 3.2; top thickness: 2.6, bottom thickness: 4.6

MRF gap: 0.8

Maximum braking torque: 10 Nm
Mass: 1.03 kg

Off-state torque: 0.1 Nm
Power consumption: 37 W

Coil resistant: 2.9 Ω
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3.2. The Linear MR Brake

In order to create a desired force in the radial direction, a two-coil linear MR brake without using
a non-magnetic bobbin developed by Song et al. [39] shown in Figure 8 was used. The braking force of
the linear MR brake can be determined by the following:

Fsd = 2πRslL(τy + µ
v
tg
) + 2For =

2πµRslLv

tg
+ 2(πRslLτy + For) (8)

where Rsl is the radius of the brake shaft, tg is the MRF gap size, v is the relative velocity between the
shaft and the housing, µ and τy are average post-yield viscosity and yield stress of the activated MRF
in the duct, L is the length of the MRF duct, and For is the friction force between the shaft and the
O-ring which can be approximately calculated by the following:

For = fcLo + fhAr (9)

where Lo is the seal rubbing surface length (the shaft circumference), fc is the friction per unit length of
the shaft circumference depending on the percentage of compression and the hardness of the O-ring
material, fh is the friction force of the O-ring due to fluid pressure acting on a unit seal projected area,
and Ar is the seal projected area. For the linear brake used in this research, the pressure acting on
the O-rings is very small and can be neglected and fh can be neglected. It is also to be noted that a
70-durometer rubber O-ring was used and the compression of O-ring was set as 7.5% in this study.
From these data, the friction per unit length of the shaft circumference can be determined by fc =

87.5 N/mm.
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Figure 8. Configuration of the linear MR brake.

In the same way for the optimal design of the rotary MR brakes, the optimal design of the linear
MR brake was conducted based on FEA. Figure 9 shows the finite element model used in this study
for the linear MR brake. In this case, the coil height (hcl), the coil width (wcl), the chamfer geometry
(ch1 and ch2), the MRF duct length L, the shaft radius Rsl and the housing thickness thl were chosen as
design variables. The MRF gap size was empirically set as 0.8 mm, while the thin-wall thickness was
set as 0.5 mm. The MRF132-DG and the 24-gauge copper wire were also used for this linear MR brake.
It is to be noted that the off-state force of the linear MR brake should be as small as possible to have a
more accurate reflection of the radial force. Therefore, the off-state force was assigned as an objective
function in the optimization of the linear MR brake.
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Figure 9. Finite element model for the magnetic analysis of the linear brake.

The optimal solution of the MR brake with a maximum required braking force of 40 N was
achieved and is shown in Figure 10. From the figure, it can be seen that the convergence occurs after
the 29th iteration, at which point the off-state force is 6.2 N. The maximum brake force is 40 N as
required and the mass of the brake is 0.51 kg. The magnetic density distribution of the MR brake is
shown in Figure 10b. At the optimum, the values of design variables and performance of the brake are
summarized in Table 2. The detailed design of the MR brake at the optimum was then carried out,
and its assembly drawing is shown in Figure 11.
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Figure 10. Optimization solution of the linear MR brake. (a) Mass and braking torque. (b) Magnetic
flux density of the brake at the optimum.

Table 2. Optimal results of the linear MR brake.

Design Variable (mm) Optimized Performance Characteristics

Size of coils: width wcl = 1.5; height: hcl = 11.3; the chamfer: ch1 = 3.7, ch2 = 5.0, no. of coil turns = 386
Housing: Outer radius R = 21.8; overall length L = 39.2; thin wall: 0.5

Shaft: Shaft radius Rsl = 5.0.
MRF gap: 0.6

Maximum braking force: 40 Nm
Mass: 0.46 kg

Off-state torque: 6.0 N
Power consumption: 11.5 W

Coil radius: 2.5 Ω

The three optimized MR brakes above were manufactured and installed on the spherical arm
force feedback system as shown in Figure 12. It is to be noted that the real number of coil turns in the
case of the rotary MR brakes is 230 turns (the calculated is 233 turns), whereas that of the linear MR
brake is 380 for each coil (the calculated is 386 turns). In order to experimentally evaluate braking
torque of the rotary MR brakes and braking force of the linear MR brake, experimental works were
performed directly on the prototype.
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Figure 12. The 3-DOF spherical force feedback prototype.

Figure 13 shows the measured braking torque of the rotary MR brake at the waist joint. It is to
be noted that, in the experiment, the horizontal tangent force at the end of the arm was measured
by the 3-DOF force sensor and the arm was fixed in the horizontal direction with an arm length of
100 mm. Thus, the braking torque of the MR brake was calculated by the product of the measured
force and the arm length (100 mm). During the experiment, the arm was rotated about the waist joint
and the average value of the force at different values of the applied current was recorded. In the same
manner of the MR brake at the waist joint, the braking torque of the MR brake at the shoulder joint
was experimentally evaluated, and the results are shown in Figure 14. It is to be noted that, in this case,
the arm was rotated about the shoulder joint axis during the experiment. Figure 15 shows the braking
force of the linear MR brake at the function of the applied current. In this case, the arm was fixed in the
horizontal direction and the shaft of the MR brake was moved back and forth.
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Figure 13. Braking torque of the waist MR brake vs. applied current. 
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Figure 15. Braking force of the linear MR brake vs. applied current. 
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Figure 15. Braking force of the linear MR brake vs. applied current. 

Figure 14. Braking torque of the shoulder MR brake vs. applied current.
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Figure 14. Braking torque of the shoulder MR brake vs. applied current. 
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Figure 15. Braking force of the linear MR brake vs. applied current. Figure 15. Braking force of the linear MR brake vs. applied current.
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4. Control Design for the Force Feedback System

In this section, the open-loop controller is presented, which was designed to reflect a desired
force to the operator. Figure 16 shows the block diagram of the control system for the horizontal
and elevation tangent forces, whereas that for the radial force is shown in Figure 17. As shown in
Figure 16, from the information of the encoders, the values of elevation angle (θ) and arm radius r
were determined. The braking torque of the waist MR brake was then calculated by Equation (10),
whereas that of the shoulder brake was calculated by Equation (11):

Tw = Fhr cosθ (10)

Tsh = Fer (11)
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In the above equations, Fh is the desired horizontal tangent force and Fe is the desired elevation
tangent force. In order to achieve a braking torque equal to the calculated one, the applied current
to the coils was determined from the experimental results shown in Figures 13 and 14. It can be
seen that the braking torque of the MR brake was almost saturated when the applied current was
greater than 1.5 A. Therefore, only applied current smaller than 1.5 A was used, and the applied
current as a function of the generated torque is shown in Figures 18 and 19. Using parabolic curve
fitting, the current applied to the coils of the waist and the shoulder MR brakes was calculated by
Equations (12) and (13), respectively.

Iw = −0.0245 + 0.1516Tw + 0.00177T2
w (12)

Ish = −0.027 + 0.1543Tsh + 0.00155T2
sh (13)

For the radial force, as shown in Figure 17, from the desired radial force, the applied current to
the coils of the linear MR brake was determined from the experimental results shown in Figure 15.
Similar to the rotary MR brake, only applied current smaller than 1.5 A was used for the linear MR
brake, as shown in Figure 20. Using parabolic curve fitting, the current applied to the coils of the linear
MR brake was determined by Equation (14):

Ir = −0.1707 + 0.03424Fr + 0.000169F2
r (14)
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Figure 18. Applied current of the waist MR brake as a function of torque. 
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Figure 19. Applied current of the shoulder MR brake as a function of torque. 
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5. Results and Discussion

Figure 21 shows the experimental setup for the proposed 3-DOF force feedback system.
The interaction between the manipulator system and the computer and data acquisition was handled
with a PCI card NI-6289 produced by National Instruments (Austin, Texas, United States and DSP
system toolbox of MATLAB from MathWorrks, Inc. (Natick, Massachusetts, United States). A 3-DOF
force sensor, OptoForce 3D OMD-20-FG-100N, produced by OptoForce Ltd. (Budapest, Hungary) was
installed at the end of the arm to measure the reflected force. Angular positions of the master arm
were measured by the rotary encoders, while the radial position was measured by the linear encoder.
The information from the encoders was sent to the computer through the PCI card. From the encoders’
information, the computer computed values of the applied currents for the MR brakes as mentioned in
Section 4. It is to be noted that in this experimental setup, a voltage control signal ranging from 0 to 5 V
from the computer was sent to an amplifier, that is, the Wonder Box Device Controller made by Lord
Corporation. The output current, ranging from 0 to 2 A, was then applied to the coils of the MR brakes.
In the experiment, the sample rate was set as 0.01 s.
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Figure 21. Experimental setup of the 3-DOF spherical force feedback system.

Figure 22 shows the step response of the force feedback system in which a constant desired
feedback force of 40 N is set for each component of the feedback force (the horizontal tangent,
the elevation tangent, and the radial force) at the time 0.5 s. In the experiment, the force feedback arm
was located in an arbitrary position and the operator held the end-effector and moved it in an arbitrary
trajectory in the working space during the experiment.

Figure 22a shows that the actual feedback horizontal force agrees well with the desired one,
with a maximum error of 4% obtained at steady state and a response time of approximately 0.24 s.
From Figure 22b, it is also be seen that the actual feedback elevation force agrees well with the desired
one. In this case, the response time is approximately 0.26 s. From Figure 22c, it can be seen that
the actual feedback radial force agrees quite well with the desired one, with a maximum error of
approximately 6.5% and with more fluctuation than previous ones.

Figure 23 shows experimental results of the force feedback system. In the experiment, the force
feedback arm was located in an arbitrary position; a sinusoidal desired feedback force was set for each
component of the feedback force (the horizontal tangent, the elevation tangent, and the radial force).
During the experiment, the operator held the end-effector and moved it in an arbitrary trajectory in the
working space. It can be seen from Figure 23a that the actual feedback horizontal force agrees well
with the desired one. However, the actual feedback force cannot be smaller than 1.5 N. It is obvious
because of the uncontrollable torque (the off-state torque of the MR brake). From Figure 23b, it can
also be seen that the actual feedback elevation force agrees well with the desired one. In this case,
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the minimum achievable force is 1.8 N. Figure 23c shows that the actual feedback radial force agrees
quite well with the desired one. However, in this case, the minimum achievable force is quite high,
around 6 N, which is almost equal to the off-state force of the linear MR brake.
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The results showed that the proposed MRF-based 3-DOF haptic spherical manipulator can provide
a good desired 3-DOF feedback force to the operator. In addition, by using the spherical arm mechanism,
the force in each direction can be controlled independently and a closed-loop SISO (Single Input-Single
Output) controller can be implemented to control the feedback force more accurately. It is to be noted
that the proposed haptic spherical manipulator can be easily integrated with any slave robot for a haptic
tele-manipulator system, in which a combination of force feedback in parallel with position control



Actuators 2020, 9, 19 18 of 21

is implemented. It is also noteworthy that the proposed master can be used as a universal master
for all slave geometries (including identical or different kinematic chains). This leads to a potential
application in modern situations such as tele-surgery, tele-operation in hazardous environment, etc.
If the master and the slave have identical kinematic chains, a one-to-one copy of the joint motion can
be used. On the other hand, in the case where the kinematic chain of the slave is different than that of
the master, the position of the slave is controlled based on the position of the end effector of the master.

6. Conclusions

In this research work, a new 3-DOF force feedback system featuring a spherical arm mechanism
and three MR brakes (two rotary MR brakes and one linear MR brake) was proposed. By using this
proposed configuration, a 3-DOF desired force acting on the operator at the end-effector of the arm
was achieved by independently controlling the current applied to the coils of the MR brakes. After the
introduction, the configuration of the proposed force feedback system was presented. Afterward,
the design and simulation of the MR brakes for the systems were conducted. For the rotary MR
brake, a configuration of MR brake with a tooth-shaped rotor was employed. For the linear MR
brake, a MR brake without using a non-magnetic bobbin was employed. In order to reflect a desired
force, an open-loop controller based on the experimental performance of the MR brakes was used
in this study. A prototype of the force feedback system was then manufactured for the experiment.
Experimental results in the case of constant required feedback force showed that the time response of
the force feedback is around 0.25 s and at steady state the maximum error of the horizontal tangent
and the elevation tangent force is around 4%, while that of the radial force is up to 6.5% with more
fluctuation. Experimental results with sinusoidal required feedback force show that a desired feedback
force can be well achieved by the force feedback proposed system. However, due to the off-state torque
and force of the MR brake, the system cannot reflect small force to the operator, which is 1.5 N for the
horizontal fore, 1.8 N for the elevation force, and 6 N for the radial force.

As the second phase of this study, 3 close-loop SISO controllers will be implemented to control
the feedback force more accurately. In addition, a tele-manipulator system using the proposed haptic
spherical manipulator integrated with a slave manipulator will be conducted.
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Nomenclature

Ar Seal projected area
B Applied magnetic density across the MRF duct
ch1, ch2 Chamfer geometry of the linear MR brake coil
d MRF gap size of the rotary MR brake
Fe Desired feedback elevation tangent force
Fh Desired feedback horizontal tangent force
Fr Desired feedback normal (radial) force
For Friction force between the shaft and the O-ring of the linear MR brake
Fsd Braking force of the linear MR brake
fc Friction per unit length of the shaft circumference
fh Friction force of the O-ring due to fluid pressure acting on a unit seal projected area
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h Height of the tooth of the rotary MR brake
hc Height of the MR brake coil
hcl Height of the linear MR brake coil
Ir Current applied to the coils of the linear MR brake
Ish Current applied to the coils of the shoulder MR brake
Iw Current applied to the coils of the waist MR brake
L Length of the MRF duct of the linear MR brake
Lo Seal rubbing surface length (the shaft circumference)
l Length of the inclined gap of the rotary MR brake
Ri Radius of the point i in the disc profile of the rotary MR brake
Rs Radius of the MR brake shaft
Rsl Radius of the linear MR brake shaft
R0 Outer radius of the MR brake disc
R1 Inner tooth radius of the disc
Rsl Radius of the linear MR brake shaft
r Arm radius of the master manipulator
Tb Braking torque of the brake
Tbr Required braking torque
Tc Friction torque caused by MRF in the circular gap C of the rotary MR brake
TEi Friction torque caused by MRF in the vertical gap Ei of the rotary MR brake
TIi Friction torque caused by MRF in the inclined gap Ii of the rotary MR brake
Ts Friction force of the rotary MR brake seals
Tsh Calculated required torque of the shoulder MR brake
Tw Calculated required torque of the waist MR brake
td Thickness of the MR brake disc
t0 Thickness of the outer MR brake housing
th Thickness of the MR brake side housing
thl Thickness of the linear MR brake housing
tg MRF gap size of the linear MR brake
Vd Volume of the disc of the MR brake
Vh Volume of the housing of the MR brake
VMR Volume of the MRF of the MR brake
Vs Volume of the shaft of the MR brake
Vc Volume of the coil of the MR brake
v Relative velocity between the shaft and the housing of the linear MRR brake
xL

i Lower bound of the corresponding geometric design variable xi
xU

i Upper bound of the corresponding geometric design variable xi
Y0 Zero-applied field value of rheological parameter Y of MRF
Y∞ Saturation value of rheological parameter Y of MRF
wc Width of the MR brake coil
wcl Width of the linear MR brake coil
αSY Saturation moment index of the rheological parameter Y of MRF
µEi, τEi Post-yield viscosity and induced yield stress of the MRF in the gap Ei
µIi, τIi Post-yield viscosity and induced yield stress of the MRF in the gap Ii
µc, τc Post-yield viscosity and induced yield stress of the MRF in the gap C
µ Average post-yield viscosity of the activated MRF of the linear MR brake
φ Inclined angle of MRF gap of the rotary MR brake
Ω Angular speed of the brake shaft
ρd Density of material of the MR brake disc
ρh Density of material of the MR brake housing
ρMR Density of material of the MR fluid
ρs Density of material of the MR brake shaft
ρc Density of material of the MR brake coils
τy Average induced yield stress of the activated MRF of the linear MR brake
θ Elevation angle
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