Campylobacter jejuni from Canine and Bovine Cases of Campylobacteriosis Express High Antimicrobial Resistance Rates against (Fluoro)quinolones and Tetracyclines
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Microbiological Resistance
2.2. Antimicrobial Resistance Genes
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Food Safety Authority and European Centre for Disease Prevention and Control. The European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17, 5926. Available online: http://www.efsa.europa.eu (accessed on 17 August 2020).
- Kittl, S.; Heckel, G.; Korczak, B.M.; Kuhnert, P. Source Attribution of Human Campylobacter Isolates by MLST and Fla-Typing and Association of Genotypes with Quinolone Resistance. PLoS ONE 2013, 8, e81796. [Google Scholar] [CrossRef] [Green Version]
- Federal Office of Public Health and federal Food Safety and Veterinary Office. Swiss Antibiotic Resistance Report 2018. Usage of Antibiotics and Occurrence of Antibiotic Resistance in Bacteria from Humans and Animals in Switzerland. November 2018, FOPH publication number: 2018-OEG-87. Available online: http://www.star.admin.ch (accessed on 17 August 2020).
- Anonymous. Umsichtiger Einsatz von Antibiotika bei Rindern, Schweinen und kleinen Wiederkäuern. Therapieleitfaden für Tierärztinnen und Tierärzte. Stand Novemb. 2019, 183. Available online: http://www.blv.admin.ch (accessed on 17 August 2020).
- Anonymous. Umsichtiger Einsatz von Antibiotika bei Hunden und Katzen Therapieleitfaden für Tierärztinnen und Tierärzte. Stand April 2019, 220. Available online: http://www.blv.admin.ch (accessed on 17 August 2020).
- Sandberg, M.; Bergsjø, B.; Hofshagen, M.; Skjerve, E.; Kruse, H. Risk factors for Campylobacter infection in Norwegian cats and dogs. Prev. Veter. Med. 2002, 55, 241–253. [Google Scholar] [CrossRef]
- Olkkola, S.; Kovanen, S.; Roine, J.; Hänninen, M.-L.; Hielm-Björkman, A.; Kivistö, R. Population Genetics and Antimicrobial Susceptibility of Canine Campylobacter Isolates Collected before and after a Raw Feeding Experiment. PLoS ONE 2015, 10, e0132660. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Hänninen, M.L.; Revez, J.; Hannula, M.; Zanoni, R.G. Occurence and species level diagnostics of Campylobacter spp., Helicobacter spp., and Anaerobiospirillum spp. in healthy and diarrheic dogs and cats. Vet. Microbiol. 2008, 129, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Verma, A.; Kumar, A.; Srivastava, M.; Lal, H. Prevalence and Antibiogram of Campylobacter Infections in Dogs of Mathura, India. Asian J. Anim. Vet. Adv. 2012, 7, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Amar, C.; Kittl, S.; Spreng, D.; Thomann, A.; Korczak, B.M.; Burnens, A.P.; Kuhnert, P. Genotypes and antibiotic resistance of canine Campylobacter jejuni isolates. Vet. Microbiol. 2014, 168, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Payot, S.; Bolla, J.-M.; Corcoran, D.; Fanning, S.; Mégraud, F.; Zhang, Q. Mechanisms of fluoroquinolone and macrolide resistance in Campylobacter spp. Microbes Infect. 2006, 8, 1967–1971. [Google Scholar] [CrossRef]
- Luo, N.; Sahin, O.; Lin, J.; Michel, L.O.; Zhang, Q. In Vivo Selection of Campylobacter Isolates with High Levels of Fluoroquinolone Resistance Associated with gyrA Mutations and the Function of the CmeABC Efflux Pump. Antimicrob. Agents Chemother. 2003, 47, 390–394. [Google Scholar] [CrossRef] [Green Version]
- Luo, N.; Pereira, S.; Sahin, O.; Lin, J.; Huang, S.; Michel, L.O.; Zhang, Q. Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc. Natl. Acad. Sci. USA 2005, 102, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Tyson, G.H.; Chen, Y.; Li, C.; Mukherjee, S.; Young, S.; Lam, C.; Folster, J.P.; Whichard, J.M.; McDermott, P.F. Whole-Genome Sequencing Analysis Accurately Predicts Antimicrobial Resistance Phenotypes in Campylobacter spp. Appl. Environ. Microbiol. 2015, 82, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Crespo, M.; Altermann, E.; Olson, J.; Miller, W.; Chandrashekhar, K.; Kathariou, S. Novel plasmid conferring kanamycin and tetracycline resistance in the turkey-derived Campylobacter jejuni strain 11601MD. Plasmid 2016, 86, 32–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Donato, G.; Marotta, F.; Nuvoloni, R.; Zilli, K.; Neri, D.; Di Sabatino, D.; Calistri, P.; Di Giannatale, E. Prevalence, Population Diversity and Antimicrobial Resistance of Campylobacter coli Isolated in Italian Swine at Slaughterhouse. Microorganisms 2020, 8, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kempf, I.; Kerouanton, A.; Bougeard, S.; Nagard, B.; Rose, V.; Mourand, G.; Osterberg, J.; Denis, M.; Bengtsson, B.O. Campylobacter coli in Organic and Conventional Pig Production in France and Sweden: Prevalence and Antimicrobial Resistance. Front. Microbiol. 2017, 8, 955. [Google Scholar] [CrossRef] [PubMed]
- Iannino, F.; Salucci, S.; Di Donato, G.; Badagliacca, P.; Vincifori, G.; Di Giannatale, E. Campylobacter and antimicrobial resistance in dogs and humans: “One health” in practice. Vet. Ital. 2019, 55, 203–220. [Google Scholar]
- Luangtongkum, T.; Jeon, B.; Han, J.; Plummer, P.J.; Logue, C.M.; Zhang, Q. Antibiotic resistance inCampylobacter: Emergence, transmission and persistence. Future Microbiol. 2009, 4, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Jesse, T.; Englen, M.D.; Pittenger-Alley, L.; Fedorka-Cray, P. Two distinct mutations in gyrA lead to ciprofloxacin and nalidixic acid resistance in Campylobacter coli and Campylobacter jejuni isolated from chickens and beef cattle. J. Appl. Microbiol. 2006, 100, 682–688. [Google Scholar] [CrossRef]
- Taylor, D.E.; Garner, R.S.; Allan, B.J. Characterization of tetracycline resistance plasmids from Campylobacter jejuni and Campylobacter coli. Antimicrob. Agents Chemother. 1983, 24, 930–935. [Google Scholar] [CrossRef] [Green Version]
- Taylor, D.E. Plasmid-mediated tetracycline resistance in Campylobacter jejuni: Expression in Escherichia coli and identification of homology with streptococcal class M determinant. J. Bacteriol. 1986, 165, 1037–1039. [Google Scholar] [CrossRef] [Green Version]
- Sahin, O.; Plummer, P.J.; Jordan, D.M.; Sulaj, K.; Pereira, S.; Robbe-Austerman, S.; Wang, L.; Yaeger, M.J.; Hoffman, L.J.; Zhang, Q. Emergence of a Tetracycline-Resistant Campylobacter jejuni Clone Associated with Outbreaks of Ovine Abortion in the United States. J. Clin. Microbiol. 2008, 46, 1663–1671. [Google Scholar] [CrossRef] [Green Version]
- Lopes, B.S.; Strachan, N.J.; Ramjee, M.; Thomson, A.; Macrae, M.; Shaw, S.; Forbes, K.J. Nationwide Stepwise Emergence and Evolution of Multidrug-Resistant Campylobacter jejuni Sequence Type 5136, United Kingdom. Emerg. Infect. Dis. 2019, 25, 1320–1329. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Wang, Y.; Zhang, Q.; Shen, J. Antimicrobial resistance in Campylobacter spp. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef]
- Seville, L.A.; Patterson, A.J.; Scott, K.P.; Mullany, P.; Quail, M.A.; Parkhill, J.; Ready, D.; Wilson, M.; Spratt, D.; Roberts, A.P. Distribution of Tetracycline and Erythromycin Resistance Genes Among Human Oral and Fecal Metagenomic DNA. Microb. Drug Resist. 2009, 15, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Sabino, Y.N.V.; Santana, M.F.; Oyama, L.B.; Santos, F.G.; Moreira, A.J.S.; Huws, S.; Mantovani, H.C. Characterization of antibiotic resistance genes in the species of the rumen microbiota. Nat. Commun. 2019, 10, 5252. [Google Scholar] [CrossRef] [PubMed]
- Holman, D.B.; Yang, W.; Alexander, T.W. Antibiotic treatment in feedlot cattle: A longitudinal study of the effect of oxytetracycline and tulathromycin on the fecal and nasopharyngeal microbiota. Microbiome 2019, 7, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, K.S.; Poehlsgaard, J.; Kehrenberg, C.; Schwarz, S.; Vester, B. The crf rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins and sptrepogramin A antibiotics. Antimicrob. Agents Chemother. 2006, 50, 2500–2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Dai, L.; Sahin, O.; Wu, Z.; Liu, M.; Zhang, Q. Emergence of a plasmid-borne multidrug resistance gene cfr(C) in foodborne pathogen Campylobacter. J. Antimicrob. Chemother. 2017, 72, 1581–1588. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Li, X.; Liu, W.; Yao, H.; Liu, Z.; Feßler, A.T.; He, J.; Zhou, Y.; Shen, Z.; Wu, Z.; et al. Characterization of multiresistance gene cfr(C) variants in Campylobacter from China. J. Antimicrob. Chemother. 2019, 74, 2166–2170. [Google Scholar] [CrossRef]
- Olkkola, S.; Juntunen, P.; Heiska, H.; Hyytiäinen, H.; Hänninen, M.-L. Mutations in therpsLGene Are Involved in Streptomycin Resistance inCampylobacter coli. Microb. Drug Resist. 2010, 16, 105–110. [Google Scholar] [CrossRef]
- Iovine, N.M. Resistance mechanisms inCampylobacter jejuni. Virulence 2013, 4, 230–240. [Google Scholar] [CrossRef] [Green Version]
- Lambert, T.; Gerbaud, G.; Trieu-Cuot, P.; Courvalin, P. Structural relationship between the genes encoding 3′-aminoglycoside phosphotransferases in Campylobacter and in Gram-positive cocci. Ann. Inst. Pasteur Microbiol. 1985, 136B, 135–150. [Google Scholar] [CrossRef]
- Gibreel, A.; Tracz, D.M.; Nonaka, L.; Ngo, T.M.; Connell, S.R.; Taylor, D.E. Incidence of Antibiotic Resistance in Campylobacter jejuni Isolated in Alberta, Canada, from 1999 to 2002, with Special Reference to tet(O)-Mediated Tetracycline Resistance. Antimicrob. Agents Chemother. 2004, 48, 3442–3450. [Google Scholar] [CrossRef] [Green Version]
- Qin, S.; Wang, Y.; Zhang, Q.; Chen, X.; Shen, Z.; Deng, F.; Wu, C.; Shen, J. Identification of a Novel Genomic Island Conferring Resistance to Multiple Aminoglycoside Antibiotics in Campylobacter coli. Antimicrob. Agents Chemother. 2012, 56, 5332–5339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantero, G.; Correa-Fiz, F.; Ronco, T.; Strube, M.L.; Cerda-Cuellar, M.; Pedersen, K. Characterization of Campylobacter jejuni and Campylobacter coli Broiler Isolates by Whole-Genome Sequencing. Foodborne Pathog. Dis. 2018, 15, 145–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wick, R.; Kupfer, S.S.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.-H.; McDermott, P.F.; et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob. Agents Chemother. 2019, 63, 483–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2016, 45, D566–D573. [Google Scholar] [CrossRef]
Host | ||||
---|---|---|---|---|
Antimicrobial | Campylobacter Species | Dog (%) [95% CI] | Cat (%) [95% CI] | Cattle (%) [95% CI] |
Ciprofloxacin (CIP) | C. jejuni | 15/39 * (38.5%) [24.9–54.1] | 3/9 | 11/18 (61.1%) [38.6–79.7] |
C. coli | 1/1 | 0/0 | 6/8 | |
Nalidixic acid (NAL) | C. jejuni | 16/39 (41.0%) [27.1–56.6] | 3/9 | 11/18 (61.1%) [38.6–79.7] |
C. coli | 1/1 | 0/0 | 6/8 | |
Tetracycline (TET) | C. jejuni | 9/39 (23.1%) [12.7–38.3] | 1/9 | 6/18 (33.3%) [16.3–56.3] |
C. coli | 0/1 | 0/0 | 6/8 | |
Streptomycin (STR) | C. jejuni | 2/39 (5.1%) [11.4–16.9] | 0/9 | 1/18 (5.6%) [1.0–25.8] |
C. coli | 1/1 | 0/0 | 8/8 | |
Erythromycin (ERY) | C. jejuni | 0/39 (0%) [0.0–9.0] | 0/9 | 0/18 (0%) [0.0–17.6] |
C. coli | 0/1 | 0/0 | 5/8 | |
Gentamicin (GEN) | C. jejuni | 0/39 (0%) [0.0–9.0] | 0/9 | 0/18 (0%) [0.0–17.6] |
C. coli | 0/1 | 0/0 | 0/8 |
Antimicrobial Resistance Genes or Mutations | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Phenotypic Resistance Pattern | Campylobacter Species | Number of Isolates with Same Pattern (n) | CIP-NAL | TET | ERY | STR | |||||
GyrA T86I | tet(O) | tet(O/32/O) | tet(W) | cfr(C) | 23S A2075G | aadE-Cc | RpsL K88R | aadE-ant(6)-Ia-aph(3′)-IIIa-sat4 | |||
CIP-NAL | C. jejuni | 18 (dog = 10, cat = 2, cattle = 6) | 18 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
TET | C. jejuni | 5 (dog) | n.d. | 3 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
TET-STR | C. jejuni | 1 (cattle) | n.d. | 1 | n.d. | n.d. | n.d. | n.d. | n.d. | 1 | n.d. |
CIP-NAL-TET | C. jejuni | 10 (dog = 4, cat = 1, cattle = 5) | 10 | 8 | 1 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
NAL-TET-STR | C. jejuni | 1 (dog) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
CIP-NAL-TET-STR | C. jejuni | 1 (dog) | 1 | n.d. | 1 | n.d. | n.d. | n.d. | 1 | n.d. | n.d. |
STR | C. coli | 2 (cattle) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 2 | n.d. | n.d. |
CIP-NAL-STR | C. coli | 1 (dog) | 1 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
CIP-NAL-TET-STR | C. coli | 1 (cattle) | 1 | n.d. | n.d. | 1 | n.d. | n.d. | n.d. | n.d. | n.d. |
CIP-NAL-TET-ERY-STR | C. coli | 5 (cattle) | 5 | 4 | n.d. | n.d. | 3 | 2 | 2 | n.d. | 3 |
Animal Species | Campylobacter spp. | 2015 (n = 36) | 2016 (n = 16) | 2017 (n = 22) | 2018 (n = 1) | Total (n) |
---|---|---|---|---|---|---|
Dog (n = 40) | C. jejuni | 25 | 6 | 8 | 0 | 39 |
C. coli | 1 | 0 | 0 | 0 | 1 | |
Cat (n = 9) | C. jejuni | 3 | 4 | 2 | 0 | 9 |
Cattle (n = 26) | C. jejuni | 5 | 2 | 10 | 1 | 18 |
C. coli | 2 | 4 | 2 | 0 | 8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moser, S.; Seth-Smith, H.; Egli, A.; Kittl, S.; Overesch, G. Campylobacter jejuni from Canine and Bovine Cases of Campylobacteriosis Express High Antimicrobial Resistance Rates against (Fluoro)quinolones and Tetracyclines. Pathogens 2020, 9, 691. https://doi.org/10.3390/pathogens9090691
Moser S, Seth-Smith H, Egli A, Kittl S, Overesch G. Campylobacter jejuni from Canine and Bovine Cases of Campylobacteriosis Express High Antimicrobial Resistance Rates against (Fluoro)quinolones and Tetracyclines. Pathogens. 2020; 9(9):691. https://doi.org/10.3390/pathogens9090691
Chicago/Turabian StyleMoser, Sarah, Helena Seth-Smith, Adrian Egli, Sonja Kittl, and Gudrun Overesch. 2020. "Campylobacter jejuni from Canine and Bovine Cases of Campylobacteriosis Express High Antimicrobial Resistance Rates against (Fluoro)quinolones and Tetracyclines" Pathogens 9, no. 9: 691. https://doi.org/10.3390/pathogens9090691
APA StyleMoser, S., Seth-Smith, H., Egli, A., Kittl, S., & Overesch, G. (2020). Campylobacter jejuni from Canine and Bovine Cases of Campylobacteriosis Express High Antimicrobial Resistance Rates against (Fluoro)quinolones and Tetracyclines. Pathogens, 9(9), 691. https://doi.org/10.3390/pathogens9090691