Identification of lncRNAs Involved in PCV2 Infection of PK-15 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and PCV2 Infection
2.2. RNA Preparation, Quantitative Real-Time PCR (qRT-PCR), and RNA-Seq
2.3. LncRNA Target Prediction
2.4. Enrichment Analysis
2.5. Statistics
2.6. Ethical Statement
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Breitbart, M.; Delwart, E.; Rosario, K.; Segalés, J.; Varsani, A. ICTV virus taxonomy profile: Circoviridae. J. Gen. Virol. 2017, 98, 199–1998. [Google Scholar] [CrossRef] [PubMed]
- Tischer, I.; Mields, W.; Wolff, D.; Vagt, M.; Griem, W. Studies on epidemiology and pathogenicity of porcine circovirus. Arch. Virol. 1986, 91, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Tischer, I.; Rasch, R.; Tochtermann, G. Characterization of papovavirus and picornavirus like particles in permanent pig kidney cell lines. Zbl.bakt.r. A 1974, 226, 153–167. [Google Scholar]
- Palinski, R.; Piñeyro, P.; Shang, P.; Yuan, F.; Guo, R.; Fang, Y.; Byers, E.; Hause, B.M. A Novel Porcine Circovirus Distantly Related to Known Circoviruses Is Associated with Porcine Dermatitis and Nephropathy Syndrome and Reproductive Failure. J. Virol. 2016, 91, e01879-e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, J. Porcine Circovirus: A Historical Perspective. Vet. Pathol. 2014, 51, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.C.S.; Clark, E.G. Recognizing and diagnosing postweaning multisystemic wasting syndrome (PMWS). J. Swine Heal. Prod. 1997, 5, 5. [Google Scholar]
- Chianini, F.; Majó, N.; Segalés, J.; Domínguez, J.; Domingo, M. Immunohistochemical characterisation of PCV2 associate lesions in lymphoid and non-lymphoid tissues of pigs with natural postweaning multisystemic wasting syndrome (PMWS). Vet. Immunol. Immunopathol. 2003, 94, 63–75. [Google Scholar] [CrossRef]
- Sorden, S.D. Update on porcine circovirus and postweaning multisystemic wasting syndrome (PMWS). J. Swine Heal. Prod. 2000, 8, 133–136. [Google Scholar]
- Mankertz, A.; Mankertz, J.; Wolf, K.; Buhk, H.J. Identification of a protein essential for replication of porcine circovirus. J. Gen. Virol. 1998, 79, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Nawagitgul, P.; Morozov, I.; Bolin, S.R.; Harms, P.A.; Sorden, S.D.; Paul, P.S. Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J. Gen. Virol. 2000, 81, 2281–2287. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, I.; Kwang, J. Characterization of a Previously Unidentified Viral Protein in Porcine Circovirus Type 2-Infected Cells and Its Role in Virus-Induced Apoptosis. J. Virol. 2005, 79, 8262–8274. [Google Scholar] [CrossRef] [Green Version]
- Cech, T.R.; Steitz, J.A. The noncoding RNA revolution-Trashing old rules to forge new ones. Cell 2014, 157, 77–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and Functions of Long Noncoding RNAs. Cell 2009, 136, 629–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallory, A.C.; Shkumatava, A. LncRNAs in vertebrates: Advances and challenges. Biochimie 2015, 117, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hezroni, H.; Koppstein, D.; Schwartz, M.G.; Avrutin, A.; Bartel, D.P.; Ulitsky, I. Principles of Long Noncoding RNA Evolution Derived from Direct Comparison of Transcriptomes in 17 Species. Cell Rep. 2015, 11, 1110–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diederichs, S. The four dimensions of noncoding RNA conservation. Trends Genet. 2014, 30, 121–123. [Google Scholar] [CrossRef] [PubMed]
- Johnsson, P.; Lipovich, L.; Grandér, D.; Morris, K.V. Evolutionary conservation of long non-coding RNAs; Sequence, structure, function. Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 1063–1071. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.X.; Koirala, P.; Mo, Y.Y. LncRNA-mediated regulation of cell signaling in cancer. Oncogene 2017, 36, 5661–5667. [Google Scholar] [CrossRef]
- Tsai, M.C.; Manor, O.; Wan, Y.; Mosammaparast, N.; Wang, J.K.; Lan, F.; Shi, Y.; Segal, E.; Chang, H.Y. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010, 329, 689–693. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.W.; Xu, J.; Sun, R.; Mumbach, M.R.; Carter, A.C.; Chen, Y.G.; Yost, K.E.; Kim, J.; He, J.; Nevins, S.A.; et al. Promoter of lncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element. Cell 2018, 173, 1398–1412. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, I.A.; Mattick, J.S.; Mehler, M.F. Long non-coding RNAs in nervous system function and disease. Brain Res. 2010, 1338, 20–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, M.C.; Spitale, R.C.; Chang, H.Y. Long intergenic noncoding RNAs: New links in cancer progression. Cancer Res. 2011, 71, 3–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouyang, J.; Zhu, X.; Chen, Y.; Wei, H.; Chen, Q.; Chi, X.; Qi, B.; Zhang, L.; Zhao, Y.; Gao, G.F.; et al. NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription. Cell Host Microbe 2014, 16, 616–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Xu, J.; Wang, Y.; Cao, X. An interferon-independent lncRNA promotes viral replication by modulating cellular metabolism. Science 2017, 358, 1051–1055. [Google Scholar] [CrossRef] [Green Version]
- Fang, M.; Yang, Y.; Wang, N.; Wang, A.; He, Y.; Wang, J.; Jiang, Y.; Deng, Z. Genome-wide analysis of long non-coding RNA expression profile in porcine circovirus 2-infected intestinal porcine epithelial cell line by RNA sequencing. PeerJ. 2019, 7, e6577. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Sun, Y.; Li, J.; Jiang, C.; Zeng, W.; Zhang, H.; Fan, S.; He, Q. PCV2 Regulates cellular inflammatory responses through dysregulating cellular mirna-mrna networks. Viruses 2019, 11, 1055. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.X.; Elsheikha, H.M.; Zhou, D.H.; Liu, Q.; Zhu, X.Q.; Suo, X. Dual identification and analysis of differentially expressed transcripts of porcine PK-15 cells and Toxoplasma gondii during in vitro infection. Front. Microbiol. 2016, 7, 721. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Xie, X.; Hu, Y.; Zhan, Y.; Yu, W.; Wang, A.; Wang, N. Generation of PCV2 in PK15 cells transfected with recombinant baculovirus containing A 1.1 copy of the PCV2 genome. Acta Vet. Hung. 2017, 65, 278–290. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, H.; Qi, L.; Zhang, J.; Wu, R.; Zhang, Y.; Sun, Y. Transcript profiling identifies early response genes against FMDV infection in PK-15 cells. Viruses 2018, 10, 364. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Zhu, Z.; Wang, J.; Liu, J. JNK and p38 Mitogen-Activated Protein Kinase Pathways Contribute to Porcine Circovirus Type 2 Infection. J. Virol. 2009, 83, 6039–6047. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Liu, J. Porcine circovirus type 2 replication is impaired by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. Virology 2009, 386, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhou, J.; Wu, Y.; Zheng, X.; Ma, G.; Wang, Z.; Jin, Y.; He, J.; Yan, Y. Differential proteome analysis of host cells infected with porcine circovirus type 2. J. Proteome Res. 2009, 8, 5111–5119. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; GU, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Smyth, G.K.; Shi, W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Ye, J.; Li, Q.; Feng, Y.; Bai, X.; Chen, X.; Wu, C.; Yu, Z.; Zhao, Y.; Hu, X.; et al. Construction of a transgenic pig model overexpressing polycystic kidney disease 2 (PKD2) gene. Transgenic Res. 2013, 22, 861–867. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, H.; Wang, P.; Wang, L.; Sun, Y.; Liu, G.; Zhang, P.; Kang, L.; Jiang, S.; Jiang, Y. RNA-seq analysis reveals genes underlying different disease responses to porcine circovirus type 2 in pigs. PLoS ONE 2016, 11, e0155502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Liu, S.; Wang, Y.; Deng, F.; Yan, W.; Yang, K.; Chen, H.; He, Q.; Charreyre, C.; Audoneet, J.C. Transcription analysis of the porcine alveolar macrophage response to porcine circovirus type 2. BMC Genom. 2013, 14, 353. [Google Scholar] [CrossRef] [Green Version]
- Mavrommatis, B.; Offord, V.; Patterson, R.; Watson, M.; Kanellos, T.; Steinbach, F.; Grierson, S.; Werling, D. Global gene expression profiling of myeloid immune cell subsets in response to in vitro challenge with porcine circovirus 2b. PLoS ONE 2014, 9, e911081. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.C.; Fleming, D.S.; Lager, K.M. Comparison of the transcriptome response within the swine tracheobronchial lymphnode following infection with PRRSV, PCV-2 or IAV-S. Pathogens 2020, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.S.; Kim, N.H.; Choi, C.Y.; Lee, J.S.; Na, D.; Chun, T.; Lee, Y.S. Changes in cellular microRNA expression induced by porcine circovirus type 2-encoded proteins. Vet. Res. 2015, 46, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomás, A.; Fernandes, L.T.; Sánchez, A.; Segalés, J. Time course differential gene expression in response to porcine circovirus type 2 subclinical infection. Vet. Res. 2010, 41, 12. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, L.T.; Tomás, A.; Bensaid, A.; Sibila, M.; Sánchez, A.; Segalés, J. Microarray analysis of mediastinal lymph node of pigs naturally affected by postweaning multisystemic wasting syndrome. Virus Res. 2012, 165, 134–142. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, L.; Li, Y.; Jiang, P.; Wang, Y.; Wang, P.; Kang, L.; Wang, Y.; Sun, Y.; Jiang, Y. Identification and characterization of microRNA in the lung tissue of pigs with different susceptibilities to PCV2 infection. Vet. Res. 2018, 49, 18. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Zhang, M.; Li, W.; Wang, Y.; Liu, Y.; He, Q. Proteomic analysis of porcine alveolar macrophages infected with porcine circovirus type 2. J. Proteomics 2012, 75, 3258–3269. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.C.; Jeng, C.R.; Hsiao, S.H.; Chang, H.W.; Liu, J.J.; Chang, C.C.; Lin, C.M.; Chia, M.Y.; Pang, V.F. Porcine circovirus type 2 (PCV2) induces cell proliferation, fusion, and chemokine expression in swine monocytic cells in vitro. Vet. Res. 2010, 41, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resendes, A.R.; Majó, N.; van den Ingh, T.S.G.A.M.; Mateu, E.; Domingo, M.; Calsamiglia, M.; Segalés, J. Apoptosis in postweaning multisystemic wasting syndrome (PMWS) hepatitis in pigs naturally infected with porcine circovirus type 2 (PCV2). Vet. J. 2011, 189, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Luo, S.; Lu, J.Y.; Shen, X. Cis- and trans-acting lncRNAs in pluripotency and reprogramming. Curr. Opin. Genet. Dev. 2017, 46, 170–178. [Google Scholar] [CrossRef]
- Hu, R.; Sun, X. LncRNATargets: A platform for lncRNA target prediction based on nucleic acid thermodynamics. J. Bioinform. Comput. Biol. 2016, 14, 1650016. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, W.; Zeng, P.; Wang, J.; Geng, B.; Yang, J.; Cui, Q. LncTar: A tool for predicting the RNA targets of long noncoding RNAs. Brief Bioinform. 2014, 16, 806–812. [Google Scholar] [CrossRef]
- Tafer, H.; Hofacker, I.L. RNAplex: A fast tool for RNA-RNA interaction search. Bioinformatics 2008, 24, 2657–2663. [Google Scholar] [CrossRef]
- Deschamps, J.; van Nes, J. Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development 2005, 132, 2931–2942. [Google Scholar] [CrossRef] [Green Version]
- Iimura, T.; Pourquié, O. Collinear activation of Hoxb genes during gastrulation is linked to mesoderm cell ingression. Nature 2006, 442, 568–571. [Google Scholar] [CrossRef]
- Tschopp, P.; Tarchini, B.; Spitz, F.; Zakany, J.; Duboule, D. Uncoupling time and space in the collinear regulation of Hox genes. PLoS Genet. 2009, 5, e1000398. [Google Scholar] [CrossRef]
- Mateusen, B.; Sanchez, R.E.; Van Soom, A.; Meerts, P.; Maes, D.G.D.; Nauwynck, H.J. Susceptibility of pig embryos to porcine circovirus type 2 infection. Theriogenology 2004, 61, 91–101. [Google Scholar] [CrossRef]
- Zhao, H.; Ji, Q.; Zhao, G.; Song, Z.; Du, B.; Nie, Y.; Chen, Y.; Cong, P. Damage of zona pellucida reduces the developmental potential and quality of porcine circovirus type 2-infected oocytes after parthenogenetic activation. Theriogenology 2014, 82, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Mateusen, B.; Maes, D.G.D.; Van Soom, A.; Lefebvre, D.; Nauwynck, H.J. Effect of a porcine circovirus type 2 infection on embryos during early pregnancy. Theriogenology 2007, 68, 896–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Zhang, Q.; Zhang, X.; You, L.; Wang, W.; Liu, W.; Han, Y.; Ma, C.; XU, W.; Chen, J.; et al. HoxA10 Facilitates SHP-1-Catalyzed Dephosphorylation of p38 MAPK/STAT3 To Repress Hepatitis B Virus Replication by a Feedback Regulatory Mechanism. J. Virol. 2019, 93, e01607–e01625. [Google Scholar] [CrossRef] [Green Version]
- Hirao, N.; Iwata, T.; Tanaka, K.; Nishio, H.; Nakamura, M.; Morisada, T.; Morii, K.; Maruyama, N.; Katoh, Y.; Yaguchi, T.; et al. Transcription factor homeobox D9 is involved in the malignant phenotype of cervical cancer through direct binding to the human papillomavirus oncogene promoter. Gynecol. Oncol. 2019, 155, 340–348. [Google Scholar] [CrossRef]
- Nagel, S.; Uphoff, C.C.; Dirks, W.G.; Pommerenke, C.; Meyer, C.; Drexler, H.G. Epstein-Barr virus (EBV) activates NKL homeobox gene HLX in DLBCL. PLoS ONE 2019, 14, e0216898. [Google Scholar] [CrossRef]
- Li, L.; Liu, B.; Wapinski, O.L.; Tsai, M.C.; Ou, K.; Zhang, J.; Carlson, J.C.; Lin, M.; Fang, F.; Gupta, R.A.; et al. Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep. 2013, 5, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.C.; Yang, Y.W.; Liu, B.; Sanyal, A.; Corces-Zimmerman, R.; Chen, Y.; Lajoie, B.R.; Protacio, A.; Flynn, R.A.; Gupta, R.A.; et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene experssion. Nature 2011, 472, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Zhang, X.; Wang, C. LncRNA HOXB-AS1 promotes cell growth in multiple myeloma via FUT4 mRNA stability by ELAVL1. J. Cell. Biochem. 2019. [Google Scholar] [CrossRef]
- Chen, X.; Li, L.Q.; Qiu, X.; Wu, H. Long non-coding RNA HOXB-AS1 promotes proliferation, migration and invasion of glioblastoma cells via HOXB-AS1/miR-885-3p/HOXB2 axis. Neoplasma 2019, 66, 386–396. [Google Scholar] [CrossRef]
- Aboudehen, K.; Farahani, S.; Kanchwala, M.; Chan, S.C.; Avdulov, S.; Mickelson, A.; Lee, D.; Gearhart, M.D.; Patel, V.; Xing, C.; et al. Long noncoding RNA Hoxb3os is dysregulated in autosomal dominant polycystic kidney disease and regulates mTOR signaling. J. Biol. Chem. 2018, 293, 9388–9398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | Term/Pathway | Count | Genes | p-Value |
---|---|---|---|---|
GO_BP | GO:0007051~spindle organization | 4 | AURKA, AURKB, ASPM, RGS14 | 4.78 × 10−5 |
GO_BP | GO:0007067~mitotic nuclear division | 7 | TIMELESS, NCAPG2, AURKA, AURKB, ASPM, RGS14, CDCA3 | 9.01 × 10−4 |
GO_BP | GO:0051301~cell division | 7 | CCNB3, TIMELESS, NCAPG2, KIF18B, AURKA, RGS14, CDCA3 | 0.0050 |
GO_BP | GO:0051973~positive regulation of telomerase activity | 3 | PKIB, AURKB, KLF4 | 0.0076 |
GO_BP | GO:0060291~long-term synaptic potentiation | 3 | SYT12, VAMP2, RGS14 | 0.013 |
GO_BP | GO:0032532~regulation of microvillus length | 2 | VIL1, CDHR2 | 0.031 |
GO_BP | GO:0051256~mitotic spindle midzone assembly | 2 | KIF23, AURKB | 0.036 |
GO_BP | GO:0007288~sperm axoneme assembly | 2 | PLA2G3, UBE2B | 0.036 |
GO_BP | GO:0043154~negative regulation of cysteine-type endopeptidase activity involved in apoptotic process | 3 | VIL1, NGFR, KLF4 | 0.039 |
GO_BP | GO:0030855~epithelial cell differentiation | 3 | GSTA1, VIL1, CDHR2 | 0.040 |
GO_BP | GO:0046777~protein autophosphorylation | 4 | PAK2, FLT4, AURKA, AURKB | 0.0435 |
GO_BP | GO:1904355~positive regulation of telomere capping | 2 | PKIB, AURKB | 0.070 |
GO_BP | GO:0048514~blood vessel morphogenesis | 2 | SERPINF2, FLT4 | 0.074 |
GO_BP | GO:0071539~protein localization to centrosome | 2 | CEP131, AURKA | 0.078 |
GO_BP | GO:0042730~fibrinolysis | 2 | SERPINF2, PROS1 | 0.091 |
GO_BP | GO:0050769~positive regulation of neurogenesis | 2 | SERPINF1, RGS14 | 0.091 |
GO_BP | GO:0043171~peptide catabolic process | 2 | ACY1, PM20D1 | 0.095 |
GO_BP | GO:0090316~positive regulation of intracellular protein transport | 2 | CEP131, VAMP2 | 0.095 |
GO_BP | GO:0048754~branching morphogenesis of an epithelial tube | 2 | MKS1, TIMELESS | 0.099 |
GO_CC | GO:0005819~spindle | 5 | KIF23, FAM96B, AURKA, AURKB, RGS14 | 0.0020 |
GO_CC | GO:0045171~intercellular bridge | 3 | KIF23, CEP131, AURKB | 0.016 |
GO_CC | GO:0005886~plasma membrane | 28 | CTNNAL1, SLC2A11, ADCY7, ATP10D, SLC19A2, MAP3K7, NRCAM, PAK2, MLKL, SLC8B1, FAM127A, ANO9, FLT4, PIK3C2B, SYT12, VIL1, LRRC45, UBE2B, RGS14, STAT2, AJUBA, ANKRD13B, CDH16, CD82, NGFR, VAMP2, PLA2G3, PROS1 | 0.018 |
GO_CC | GO:0030496~midbody | 4 | KIF23, AURKA, AURKB, ASPM | 0.019 |
GO_CC | GO:0032133~chromosome passenger complex | 2 | AURKA, AURKB | 0.022 |
GO_CC | GO:0045111~intermediate filament cytoskeleton | 3 | DDX60, DST, IP6K2 | 0.022 |
GO_CC | GO:0015630~microtubule cytoskeleton | 4 | CEP131, TIMELESS, AURKA, DST | 0.023 |
GO_CC | GO:0005829~cytosol | 23 | GSTA1, KIF23, CTNNAL1, SCPEP1, CEP131, ACY1, NOS1AP, PIK3C2B, AURKA, SELENBP1, AURKB, STAT2, MAP3K7, AJUBA, MKS1, RNF115, PAK2, MLKL, VAMP2, NGFR, DST, KPNA2, CDCA3 | 0.029 |
GO_CC | GO:0043203~axon hillock | 2 | SERPINF1, AURKA | 0.031 |
GO_CC | GO:0005654~nucleoplasm | 20 | KIF23, FAM96B, TONSL, VIL1, LRRC45, AURKA, ATP10D, AURKB, RBBP7, UBE2B, STAT2, CCNB3, SUGP2, PAK2, TIMELESS, NCAPG2, NGFR, KPNA2, KLF4, IP6K2 | 0.034 |
GO_CC | GO:0072687~meiotic spindle | 2 | AURKA, ASPM | 0.039 |
GO_CC | GO:0005813~centrosome | 6 | KIF23, CEP131, MKS1, LRRC45, AURKA, RGS14 | 0.041 |
GO_CC | GO:0031616~spindle pole centrosome | 2 | AURKA, AURKB | 0.044 |
GO_CC | GO:0000780~condensed nuclear chromosome, centromeric region | 2 | AURKA, AURKB | 0.044 |
GO_CC | GO:0005604~basement membrane | 3 | LAMB2, SERPINF1, DST | 0.048 |
GO_CC | GO:0035371~microtubule plus-end | 2 | KIF18B, DST | 0.073 |
GO_CC | GO:0051233~spindle midzone | 2 | AURKA, AURKB | 0.081 |
GO_CC | GO:0005814~centriole | 3 | MKS1, AURKA, PLA2G3 | 0.090 |
GO_MF | GO:0005524~ATP binding | 14 | KIF23, ADCY7, PIK3C2B, FLT4, KIF18B, ATP10D, AURKA, AURKB, UBE2B, MAP3K7, PAK2, DDX60, MLKL, IP6K2 | 0.014 |
GO_MF | GO:0051015~actin filament binding | 4 | AJUBA, CTNNAL1, VIL1, CORO6 | 0.021 |
GO_MF | GO:0035174~histone serine kinase activity | 2 | AURKA, AURKB | 0.022 |
GO_MF | GO:0070573~metallodipeptidase activity | 2 | ACY1, PM20D1 | 0.035 |
GO_MF | GO:0005515~protein binding | 48 | CTNNAL1, DCBLD2, KIF23, FAM96B, ATP10D, SELENBP1, AURKA, AURKB, SLC19A2, MAP3K7, NRCAM, PEG10, PAK2, MRPL15, NCAPG2, DDX60, MLKL, CDCA3, IP6K2, CEP131, SSBP4, ACY1, NOS1AP, TONSL, PIK3C2B, FLT4, VIL1, CDHR2, CORO6, LRRC45, KIF18B, RBBP7, UBE2B, RGS14, STAT2, AJUBA, MKS1, CCNB3, RNF115, TIMELESS, SERPINF1, SERPINF2, CD82, NGFR, VAMP2, DST, KPNA2, KLF4 | 0.041 |
GO_MF | GO:0004672~protein kinase activity | 5 | MAP3K7, PAK2, AURKA, MLKL, AURKB | 0.076 |
GO_MF | GO:0019901~protein kinase binding | 5 | CCNB3, PAK2, AURKA, MLKL, RGS14 | 0.086 |
KEGG | hsa04015:Rap1 signaling pathway | 4 | ADCY7, FLT4, NGFR, RGS14 | 0.073 |
KEGG | hsa04014:Ras signaling pathway | 4 | PAK2, FLT4, NGFR, PLA2G3 | 0.086 |
KEGG | hsa00220:Arginine biosynthesis | 2 | ACY1, ARG2 | 0.089 |
lncRNA Name | Neighboring Genes | Coexpressed Genes | p-Value | Correlation | FDR | Human Syntenic lncRNA |
---|---|---|---|---|---|---|
LOC106505099 | HoxB2 | NA | HoxB-AS1 | |||
HoxB1 | ||||||
HoxB3 | ||||||
HoxB5 | ||||||
HoxB6 | ||||||
HoxB7 | ||||||
HoxB8 | ||||||
LOC106509609 | ARHGEF37 | NA | ||||
PPARGC113 | ||||||
LOC102168077 | SPG7 | DNAAF3 | 1.10 × 10−6 | 0.999 | 0.0097 | |
RPL13 | ||||||
CPNE7 | ||||||
ANKRD11 | ||||||
LOC102158335 | NA | NA | ||||
LOC100525935 | NDST3 | PPP3CB | 7.44 × 10−7 | 0.999 | 0.0066 | |
PRSS12 | ||||||
LOC102161888 | NDUFAF2 | CKMT1A | 7.40 × 10−6 | −0.998 | 0.065 | SMIM15-AS1 |
SMIM15 | ||||||
ZSWIM6 |
Category | Term | Count | p-Value | Genes |
---|---|---|---|---|
GO_BP | GO:0048704~embryonic skeletal system morphogenesis | 7 | 1.91 × 10−12 | HOXB3, HOXB1, HOXB2, HOXB7, HOXB8, HOXB5, HOXB6 |
GO_BP | GO:0009952~anterior/posterior pattern specification | 7 | 1.71 × 10−10 | HOXB3, HOXB1, HOXB2, HOXB7, HOXB8, HOXB5, HOXB6 |
GO_BP | GO:0007275~multicellular organism development | 5 | 0.0020 | HOXB3, HOXB1, HOXB2, HOXB7, HOXB8 |
GO_BP | GO:0021570~rhombomere 4 development | 2 | 0.0021 | HOXB1, HOXB2 |
GO_BP | GO:0021612~facial nerve structural organization | 2 | 0.0096 | HOXB1, HOXB2 |
GO_BP | GO:0006355~regulation of transcription, DNA-templated | 6 | 0.018 | HOXB3, HOXB1, HOXB2, HOXB7, HOXB8, HOXB6 |
GO_BP | GO:0006351~transcription, DNA-templated | 6 | 0.050 | HOXB3, HOXB1, HOXB2, HOXB7, HOXB8, HOXB6 |
GO_CC | GO:0005634~nucleus | 10 | 0.056 | HOXB3, HOXB1, HOXB2, HOXB7, RPL13, HOXB8, HOXB5, ANKRD11, CPNE7, HOXB6 |
GO_MF | GO:0043565~sequence-specific DNA binding | 6 | 8.80 × 10−5 | HOXB3, HOXB1, HOXB2, HOXB7, HOXB8, HOXB6 |
GO_MF | GO:0003700~transcription factor activity, sequence-specific DNA binding | 5 | 0.011 | HOXB3, HOXB2, HOXB7, HOXB8, HOXB6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Leng, C.; Pan, J.; Li, A.; Zhang, H.; Cong, F.; Wang, H. Identification of lncRNAs Involved in PCV2 Infection of PK-15 Cells. Pathogens 2020, 9, 479. https://doi.org/10.3390/pathogens9060479
He J, Leng C, Pan J, Li A, Zhang H, Cong F, Wang H. Identification of lncRNAs Involved in PCV2 Infection of PK-15 Cells. Pathogens. 2020; 9(6):479. https://doi.org/10.3390/pathogens9060479
Chicago/Turabian StyleHe, Jin, Chaoliang Leng, Jiazhen Pan, Aoqi Li, Hua Zhang, Feng Cong, and Huanan Wang. 2020. "Identification of lncRNAs Involved in PCV2 Infection of PK-15 Cells" Pathogens 9, no. 6: 479. https://doi.org/10.3390/pathogens9060479
APA StyleHe, J., Leng, C., Pan, J., Li, A., Zhang, H., Cong, F., & Wang, H. (2020). Identification of lncRNAs Involved in PCV2 Infection of PK-15 Cells. Pathogens, 9(6), 479. https://doi.org/10.3390/pathogens9060479