Characterization of Staphylococci and Streptococci Isolated from Milk of Bovides with Mastitis in Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Cultivation
2.2. MALDI-TOF MS
2.3. DNA Extraction
2.4. Antibiotic Susceptibility Testing
2.5. Detection of Resistance-Associated Genes
2.6. Microarray Analysis
3. Results
3.1. Bacterial Isolation and Identification by MALDI-TOF MS
3.2. Antimicrobial Susceptibility Profiles of Staphylococci
3.3. Detection of Resistance-associated Genes in Staphylococci
3.4. Detection of Resistance-Associated Genes in Streptococci
3.5. Microarray Analysis of Streptococcus Isolates
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Zhang, Z.; Huang, C.; Gao, X.; Wang, Z.; Liu, Y.; Tian, C.; Hong, W.; Niu, S.; Liu, M. The phylogenetic group, antimicrobial susceptibility, and virulence genes of Escherichia coli from clinical bovine mastitis. J. Dairy Sci. 2018, 101, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Oliver, S.P.; Calvinho, L.F. Influence of inflammation on mammary gland metabolism and milk composition. J. Anim. Sci. 1995, 73, 18–33. [Google Scholar] [CrossRef]
- Mahantesh, M.K.; Basappa, B.K. Prevalence and antimicrobial susceptibility of bacteria isolated from bovine mastitis. Adv. Appl. Sci. Res. 2011, 2, 229–235. [Google Scholar]
- Cervinkova, D.; Vlkova, H.; Borodacova, I.; Makovcova, J.; Babak, V.; Lorencova, A.; Vrtkova, I.; Marosevic, D.; Jaglic, Z. Prevalence of mastitis pathogens in milk from clinically healthy cows. Vet. Med. 2013, 58, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Radostits, O.M.; Gay, C.C.; Hinchcliff, K.W.; Constable, P.D. Veterinary Medicine: A Text Book of the Diseases of Cattle, Horses, Sheep, Pigs and Goats, 10th ed.; Elsevier Ltd.: London, UK, 2007. [Google Scholar]
- Smith, K.L.; Todhunter, D.A.; Schoenberger, P.S. Environmental mastitis: Cause, prevalence, prevention. J. Dairy Sci. 1985, 68, 1531–1553. [Google Scholar] [CrossRef]
- Harmon, R.J. Physiology of mastitis and factors affecting somatic cell counts. J. Dairy Sci. 1994, 77, 2103–2112. [Google Scholar] [CrossRef]
- Seixas, R.; Varanda, D.; Bexiga, R.; Tavares, L.; Oliveira, M. Biofilm-formation by Staphylococcus aureus and Staphylococcus epidermidis isolates from subclinical mastitis in conditions mimicking the udder environment. Pol. J. Vet. Sci. 2015, 18, 787–792. [Google Scholar] [CrossRef] [Green Version]
- Ochoa-Zarzosa, A.; Loeza-Lara, P.D.; Torres-Rodríguez, F.; Loeza-Ángeles, H.; Mascot-Chiquito, N.; Sanchez-Baca, S.; Lopez-Meza, J.E. Antimicrobial susceptibility and invasive ability of Staphylococcus aureus isolates from mastitis from dairy backyard systems. Antonie Leeuwenhoek 2008, 94, 199–206. [Google Scholar] [CrossRef]
- Gomes, F.; Saavedra, M.J.; Henriques, M. Bovine mastitis disease/pathogenicity: Evidence of the potential role of microbial biofilms. Pathog. Dis. 2016, 74, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, U.B.S.; Klaas, I.C.; Boes, J.; Farre, M. The distribution of clones of Streptococcus agalactiae (group B streptococci) among herdspersons and dairy cows demonstrates lack of host specificity for some lineages. Vet. Microbiol. 2019, 235, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Saini, V.; McClure, J.T.; Léger, D.; Keefe, G.P.; Scholl, D.T.; Morck, D.W.; Barkema, H.W. Antimicrobial resistance profiles of common mastitis pathogens on Canadian dairy farms. J. Dairy Sci. 2012, 95, 4319–4332. [Google Scholar] [CrossRef] [PubMed]
- Parra, S.A.; Rather, M.I.; Para, P.A.; Ganguly, S. The emergence of drug resistant bacteria: Effects on human health. J. Environ. Life Sci. 2017, 2, 77–79. [Google Scholar]
- Galal Abdel Hameed, K.; Sender, G.; Korwin-Kossakowska, A. Public health hazard due to mastitis in dairy cows. Anim. Sci. Pap. Rep. 2006, 25, 73–85. [Google Scholar]
- Monecke, S.; Slickers, P.; Ehricht, R. Assignment of Staphylococcus aureus isolates to clonal complexes based on microarray analysis and pattern recognition. FEMS Immunol. Med. Microbiol. 2008, 53, 237–251. [Google Scholar] [CrossRef] [Green Version]
- National Mastitis Council (U.S.) (NMC). Microbiological Procedures for the Diagnosis of Udder Infection and Determination of Milk Quality, 4th ed.; National Mastitis Council Inc.: Verona, CA, USA, 2004. [Google Scholar]
- Bizzini, A.; Greub, G. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin. Microbiol. Infect. 2010, 16, 1614–1619. [Google Scholar] [CrossRef] [Green Version]
- Pedroso, S.H.S.P.; Sandes, S.H.C.; Filho, R.A.T.; Nunes, A.C.; Serufo, J.C.; Farias, L.M.; Carvalho, M.A.R.; Bomfim, M.R.Q.; Santos, S.G. Coagulase-negative staphylococci isolated from human bloodstream infections showed multidrug resistance profile. Microb. Drug Resist. 2018, 24, 635–647. [Google Scholar] [CrossRef]
- Becker, K.; van Alen, S.; Idelevich, E.A.; Schleimer, N.; Seggewiß, J.; Mellmann, A.; Kaspar, U.; Peters, G. Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureus. Emerg. Infect. Dis. 2018, 24, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Vesterholm-Nielsen, M.; Olhom Larsen, M.; Elmerdahl Olsen, J.; Moller Aarestrup, F. Occurrence of the blaZ gene in penicillin resistant Staphylococcus aureus isolated from bovine mastitis in Denmark. Acta Vet. Scand. 1999, 40, 279–286. [Google Scholar]
- Getachew, Y.; Hassan, L.; Zakaria, Z.; Zaid, C.Z.; Yardi, A.; Shukor, R.A.; Marawin, L.T.; Embong, F.; Aziz, S.A. Characterization and risk factors of vancomycin-resistant enterococci (VRE) among animal-affiliated workers in Malaysia. J. Appl. Microbiol. 2012, 113, 1184–1195. [Google Scholar] [CrossRef]
- Ünal, N.; Askar, S.; Yildirim, M. Antibiotic resistance profile of Enterococcus faecium and Enterococcus faecalis isolated from broiler cloacal samples. Turk. J. Vet. Anim. Sci. 2017, 41, 199–203. [Google Scholar] [CrossRef]
- Sutcliffe, J.; Grebe, T.; Tait-Kamradt, A.; Wondrack, L. Detection of erythromycin-resistant determinants by PCR. Antimicrob. Agents Chemother. 1996, 40, 2562–2566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villaseñor-Sierra, A.; Katahira, E.; Jaramillo-Valdivia, A.N.; Barajas-García Mde, L.; Bryant, A.; Morfín-Otero, R.; Márquez-Díaz, F.; Tinoco, J.C.; Sánchez-Corona, J.; Stevens, D.L. Phenotypes and genotypes of erythromycin-resistant Streptococcus pyogenes strains isolated from invasive and non-invasive infections from Mexico and the USA during 1999–2010. Int. J. Infect. Dis. 2012, 16, e178–e181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werner, G.; Hildebrandt, B.; Witte, W. The newly described msrC gene is not equally distributed among all isolates of Enterococcus faecium. Antimicrob. Agents Chemother. 2001, 45, 3672–3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, L.K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 2001, 15, 209–215. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; Agerso, Y.; Gerner-Smidt, P.; Madsen, M.; Jensen, L.B. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn. Microbiol. Infect. Dis. 2000, 37, 127–137. [Google Scholar] [CrossRef]
- Van Asselt, G.J.; Vliegenthart, J.S.; Petit, P.L.; Van de Klundert, J.A.; Mouton, R.P. High-level aminoglycoside resistance among enterococci and group A streptococci. J. Antimicrob. Chemother. 1992, 30, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Poyart-Salmeron, C.; Carlier, C.; Trieu-Cuot, P.; Courtieu, A.L.; Courvalin, P. Transferable plasmid-mediated antibiotic resistance in Listeria monocytogenes. Lancet 1990, 335, 1422–1426. [Google Scholar] [CrossRef]
- Poyart, C.; Celli, J.; Trieu-Cuot, P. Conjugative transposition of Tn916-related elements from Enterococcus faecalis to Escherichia coli and Pseudomonas fluorescens. Antimicrob. Agents Chemother. 1995, 39, 500–506. [Google Scholar] [CrossRef] [Green Version]
- Fan, R.; Li, D.; Feßler, A.T.; Wu, C.; Schwarz, S.; Wang, Y. Distribution of optrA and cfr in florfenicol-resistant Staphylococcus sciuri of pig origin. Vet. Microbiol. 2017, 210, 43–48. [Google Scholar] [CrossRef]
- Moawad, A.A.; Hotzel, H.; Awad, O.; Roesler, U.; Hafez, H.M.; Tomaso, H.; Neubauer, H.; El-Adawy, H. Evolution of antibiotic resistance of coagulase-negative staphylococci isolated from healthy turkeys in Egypt: First report of linezolid resistance. Microorganisms 2019, 7, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haenni, M.; Saras, E.; Chaussière, S.; Treilles, M.; Madec, J.Y. ermB-mediated erythromycin resistance in Streptococcus uberis from bovine mastitis. Vet. J. 2011, 189, 356–358. [Google Scholar] [CrossRef] [PubMed]
- Lina, G.; Quaglia, A.; Reverdy, M.E.; Leclercq, R.; Vandenesch, F.; Etienne, J. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob. Agents Chemother. 1999, 43, 1062–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitschke, H.; Slickers, P.; Müller, E.; Ehricht, R.; Monecke, S. DNA microarray-based typing of Streptococcus agalactiae isolates. J. Clin. Microbiol. 2014, 52, 3933–3943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamal, R.M.; Bayoumi, M.A.; Abd El Aal, S.F.A. MRSA detection in raw milk, some dairy products and hands of dairy workers in Egypt, a mini-survey. Food Control 2013, 33, 49–53. [Google Scholar] [CrossRef]
- Kadariya, J.; Smith, T.C.; Thapaliya, D. Staphylococcus aureus and staphylococcal food-borne disease: An ongoing challenge in public health. BioMed Res. Int. 2014, 827965. [Google Scholar]
- Dorgham, S.M.; Hamza, D.; Khairy, E.A.; Hedia, H.S. Methicillin-resistant staphylococci in mastitic animals in Egypt. Glob. Vet. 2013, 11, 714–720. [Google Scholar]
- Asfour, H.A.E.; Darwish, S.F. Phenotypic and genotypic detection of both mecA- and blaZ-genes mediated β-lactam resistance in Staphylococcus strains isolated from bovine mastitis. Glob. Vet. 2011, 6, 39–50. [Google Scholar]
- Salem-Bekhit, M.M.; Muharram, M.M.; Alhosiny, I.M.; Ehab, S.Y. Molecular detection of genes encoding virulence determinants in Staphylococcus aureus strains isolated from bovine mastitis. J. Appl. Sci. Res. 2010, 6, 121–128. [Google Scholar]
- Amin, A.S.; Hamouda, R.H.; Abdel-All, A.A.A. PCR assays for detecting major pathogens of mastitis in milk samples. World J. Dairy Food Sci. 2011, 6, 199–206. [Google Scholar]
- Elbably, M.A.; Emeash, H.H.; Asmaa, N.M. Risk factors associated with mastitis occurrence in dairy herds in Benisuef, Egypt. Worlds Vet. J. 2013, 3, 5–10. [Google Scholar] [CrossRef]
- Hamed, M.I.; Ziatoun, A.M.A. Prevalence of Staphylococcus aureus subclinical mastitis in dairy buffaloes farms at different lactation seasons at Assiut Governorate, Egypt. Int. J. Livest Res. 2014, 4, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Elhaig, M.M.; Selim, A. Molecular and bacteriological investigation of subclinical mastitis caused by Staphylococcus aureus and Streptococcus agalactiae in domestic bovids from Ismailia, Egypt. Trop. Anim. Health Prod. 2015, 47, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, M.S.; Mahmoud El-Bagoury, A.E.; Dawoud, M.A. Phenotypic and genotypic detection of virulence factors of Staphylococcus aureus isolated from clinical and subclinical mastitis in cattle and water buffaloes from different farms of Sadat City in Egypt. Vet. World 2015, 8, 1051–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Razik, K.A.A.; Arafa, A.A.; Hedia, R.H.; Ibrahim, E.S. Tetracycline resistance phenotypes and genotypes of coagulase-negative staphylococcal isolates from bubaline mastitis in Egypt. Vet. World 2017, 10, 702–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawant, A.A.; Gillespie, B.E.; Oliver, S.P. Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk. Vet. Microbiol. 2009, 134, 73–81. [Google Scholar] [CrossRef]
- Piessens, V.; Van Coillie, E.; Verbist, B.; Supre, K.; Braem, G.; Van Nuffel, A.; De Vuyst, L.; Heyndrickx, M.; De Vliegher, S. Distribution of coagulase-negative Staphylococcus species from milk and environment of dairy cows differs between herds. J. Dairy Sci. 2011, 94, 2933–2944. [Google Scholar] [CrossRef]
- El-Jakee, J.K.; Aref, N.E.; Gomaa, A.; El-Hariri, M.D.; Galal, H.M.; Omar, S.A.; Samir, A. Emerging of coagulase negative staphylococci as a cause of mastitis in dairy animals: An environmental hazard. Int. J. Vet. Sci. Med. 2013, 1, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Wyder, A.B.; Boss, R.; Naskova, J.; Kaufmann, T.; Steiner, A.; Graber, H.U. Streptococcus spp. and related bacteria: Their identification and their pathogenic potential for chronic mastitis—A molecular approach. Res. Vet. Sci. 2011, 91, 349–357. [Google Scholar] [CrossRef]
- Tian, X.Y.; Zheng, N.; Han, R.W.; Ho, H.; Wang, J.; Wang, Y.T.; Wang, S.Q.; Li, H.G.; Liu, H.W.; Yu, Z.N. Antimicrobial resistance and virulence genes of Streptococcus isolated from dairy cows with mastitis in China. Microb. Pathog. 2019, 131, 33–39. [Google Scholar] [CrossRef]
- Awad, A.; Ramadan, H.; Nasr, S.; Ateya, A.; Atwa, S. Genetic characterization, antimicrobial resistance patterns and virulence determinants of Staphylococcus aureus isolated from bovine mastitis. Pak. J. Biol. Sci. 2017, 20, 298–305. [Google Scholar] [PubMed]
- Elkenany, R.M. Genetic characterization of enterotoxigenic strains of methicillin-resistant and susceptible Staphylococcus aureus recovered from bovine mastitis. 2018. Asian J. Biol. Sci. 2018, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Monecke, S.; Kuhnert, P.; Hotzel, H.; Slickers, P.; Ehricht, R. Microarray based study on virulence-associated genes and resistance determinants of Staphylococcus aureus isolates from cattle. Vet. Microbiol. 2007, 125, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.S.; Qureshi, S.; Kashoo, Z.; Farooq, S.; Wani, S.A.; Hussain, M.I.; Banday, M.S.; Khan, A.A.; Gull, B.; Habib, A.; et al. Methicillin resistance genes and in vitro biofilm formation among Staphylococcus aureus isolates from bovine mastitis in India. Comp. Immunol. Microbio. Infect. Dis. 2019, 64, 117–124. [Google Scholar] [CrossRef]
- Qu, Y.; Zhao, H.; Nobrega, D.B.; Cobo, E.R.; Han, B.; Zhao, Z.; Li, S.; Li, M.; Barkema, H.W.; Gao, J. Molecular epidemiology and distribution of antimicrobial resistance genes of Staphylococcus species isolated from Chinese dairy cows with clinical mastitis. J. Dairy Sci. 2019, 102, 1571–1583. [Google Scholar] [CrossRef] [Green Version]
- Magro, G.; Rebolini, M.; Beretta, D.; Piccinini, R. Methicillin-resistant Staphylococcus aureus CC22-MRSA-IV as an agent of dairy cow intramammary infections. Vet. Microbiol. 2018, 227, 29–33. [Google Scholar] [CrossRef]
- Klibi, A.; Maaroufi, A.; Torres, C.; Jouini, A. Detection and characterization of methicillin-resistant and susceptible coagulase-negative staphylococci in milk from cows with clinical mastitis in Tunisia. Int. J. Antimicrob. Agents. 2018, 52, 930–935. [Google Scholar] [CrossRef]
- Mello, P.L.; Pinheiro, L.; Martins, L.A.; Brito, M.A.V.P.; Ribeiro de Souza da Cunha, M.L. Short communication: β-lactam resistance and vancomycin heteroresistance in Staphylococcus spp. isolated from bovine subclinical mastitis. J. Dairy Sci. 2017, 100, 6567–6571. [Google Scholar] [CrossRef]
- Turutoglu, H.; Hasoksuz, M.; Ozturk, D.; Yildirim, M.; Sagnak, S. Methicillin and aminoglycoside resistance in Staphylococcus aureus isolates from bovine mastitis and sequence analysis of their mecA genes. Vet. Res. Commun. 2009, 33, 945–956. [Google Scholar] [CrossRef]
- Can, H.Y.; Celik, T.H. Detection of enterotoxigenic and antimicrobial resistant S. aureus in Turkish cheeses. Food Cont. 2012, 24, 100–103. [Google Scholar] [CrossRef]
- Al-Ashmawy, M.A.; Sallam, K.I.; Abd-Elghany, S.M.; Elhadidy, M.; Tamura, T. Prevalence, molecular characterization, and antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus isolated from milk and dairy products. Foodborne Pathog. Dis. 2016, 13, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Schlotter, K.; Huber-Schlenstedt, R.; Gangl, A.; Hotzel, H.; Monecke, S.; Müller, E.; Reißig, A.; Proft, S.; Ehricht, R. Multiple cases of methicillin-resistant CC130 Staphylococcus aureus harboring mecC in milk and swab samples from a Bavarian dairy herd. J. Dairy Sci. 2014, 97, 2782–2788. [Google Scholar] [CrossRef] [PubMed]
- Da Costa Krewer, C.; Santos Amanso, E.; Veneroni Gouveia, G.; de Lima Souza, R.; da Costa, M.M.; Aparecido Mota, R. Resistance to antimicrobials and biofilm formation in Staphylococcus spp. isolated from bovine mastitis in the Northeast of Brazil. Trop. Anim. Health Prod. 2015, 47, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Kaczorek, E.; Małaczewska, J.; Wójcik, R.; Rękawek, W.; Siwicki, A.K. Phenotypic and genotypic antimicrobial susceptibility pattern of Streptococcus spp. isolated from cases of clinical mastitis in dairy cattle in Poland. J. Dairy Sci. 2017, 100, 6442–6453. [Google Scholar] [CrossRef] [PubMed]
- Thakker-Varia, S.; Jenssen, W.D.; Moon-McDermott, L.; Weinstein, M.P.; Dubin, D.T. Molecular epidemiology of macrolides-lincosamides-streptogramin B resistance in Staphylococcus aureus and coagulase-negative staphylococci. Antimicrob. Agents Chemother. 1987, 31, 735–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loch, I.M.; Glenn, K.; Zadoks, R.N. Macrolide and lincosamide resistance genes of environmental streptococci from bovine milk. Vet. Microbiol. 2005, 111, 133–138. [Google Scholar] [CrossRef]
- Gao, J.; Yu, F.Q.; Luo, L.P.; He, J.Z.; Hou, R.G.; Zhang, H.Q.; Li, S.M.; Su, J.L.; Han, B. Antibiotic resistance of Streptococcus agalactiae from cows with mastitis. Vet. J. 2012, 194, 423–424. [Google Scholar] [CrossRef]
- Rato, M.G.; Bexiga, R.; Florindo, C.; Cavaco, L.M.; Vilela, C.L.; Santos-Sanches, I. Antimicrobial resistance and molecular epidemiology of streptococci from bovine mastitis. Vet. Microbiol. 2013, 161, 286–294. [Google Scholar] [CrossRef]
- Dogan, B.; Schukken, Y.H.; Santisteban, C.; Boor, K.J. Distribution of serotypes and antimicrobial resistance genes among Streptococcus agalactiae isolates from bovine and human hosts. J. Clin. Microbiol. 2005, 43, 5899–5906. [Google Scholar] [CrossRef] [Green Version]
- Levy, S.B.; McMurry, L.M.; Barbosa, T.M.; Burdett, V.; Courvalin, P.; Hillen, W.; Roberts, M.C.; Rood, J.I.; Taylor, D.E. Nomenclature for new tetracycline resistance determinants. Antimicrob. Agents Chemother. 1999, 43, 523–524. [Google Scholar] [CrossRef] [Green Version]
- Jamali, H.; Paydar, M.; Radmehr, B.; Ismail, S.; Dadrasnia, A. Prevalence and antimicrobial resistance of Staphylococcus aureus isolated from raw milk and dairy products. Food Control 2015, 54, 383–388. [Google Scholar] [CrossRef]
- Gu, B.; Kelesidis, T.; Tsiodras, S.; Hindler, J.; Humphries, R.M. The emerging problem of linezolid-resistant Staphylococcus. J. Antimicrob. Chemother. 2013, 68, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Osman, K.; Badr, J.; Al-Maary, K.S.; Moussa, I.M.I.; Hessain, A.M.; Girah, Z.M.S.A.; Abo-Shama, U.H.; Orabi, A.; Saad, A. Prevalence of the antibiotic resistance genes in coagulase-positive-and negative-Staphylococcus in chicken meat retailed to consumers. Front. Microbiol. 2016, 7, 1846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Lv, Y.; Cai, J.; Schwarz, S.; Cui, L.; Hu, Z.; Zhang, R.; Li, J.; Zhao, Q.; He, T.; et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J. Antimicrob. Chemother. 2015, 70, 2182–2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, R.; Li, D.; Wang, Y.; He, T.; Feßler, A.T.; Schwarz, S.; Wu, C. Presence of the optrA gene in methicillin-resistant Staphylococcus sciuri of porcine origin. Antimicrob. Agents Chemother. 2016, 60, 7200–7205. [Google Scholar] [PubMed] [Green Version]
- Li, D.; Wang, Y.; Schwarz, S.; Cai, J.; Fan, R.; Li, J.; Feßler, A.T.; Zhang, R.; Wu, C.; Shen, J. Co-location of the oxazolidinone resistance genes optrA and cfr on a multiresistance plasmid from Staphylococcus sciuri. J. Antimicrob. Chemother. 2016, 71, 1474–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, B.; Singh, A.K.; Ghosh, A.; Bal, M. Identification and characterization of a vancomycin-resistant Staphylococcus aureus isolated from Koklata (South Asia). J. Med. Microbiol. 2008, 57, 72–79. [Google Scholar] [CrossRef]
- Öztürk, D.; Türütoglu, H.; Pehlivanoglu, F.; Sahan Yapicier, Ö. Identification of bacteria isolated from dairy goats with subclinical mastitis and investigation of methicillin and vancomycin resistant Staphylococcus aureus strains. Ankara Üniv. Vet. Fak. Derg. 2019, 66, 191–196. [Google Scholar]
- Petinaki, E.; Guérin-Faublée, V.; Pichereau, V.; Villers, C.; Achard, A.; Malbruny, B.; Leclercq, R. Lincomycin resistance gene lnu(D) in Streptococcus uberis. Antimicrob Agents Chemother. 2008, 52, 626–630. [Google Scholar] [CrossRef] [Green Version]
- Arana, D.M.; Rojo-Bezares, B.; Torres, C.; Alós, J.I. First clinical isolate in Europe of clindamycin-resistant group B Streptococcus mediated by the lnu(B) gene. Rev. Esp. Quimioter. 2014, 27, 106–109. [Google Scholar]
- Sievert, D.M.; Rudrik, J.T.; Patel, J.B.; McDonald, L.C.; Wilkins, M.J.; Hagemann, J.C. Vancomycin-resistant Staphylococcus aureus in the United States. 2002–2006. Clin. Infect. Dis. 2008, 46, 668–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antibiotic | Target Gene | Primer Sequences (5′-3′) | Expected Amplicon Size (bp) | Reference |
---|---|---|---|---|
Methicillin/ oxacillin | mecA | F: TCC AGA TTA CAA CTT CAC CAG G R: CCA CTT CAT ATC TTG TAA CG | 161 | [19] |
mecB | F: TTA ACA TAT ACA CCC GCT TG R: TAA AGT TCA TTA GGC ACC TCC | 2263 | [20] | |
mecC | AL3: TCA AAT TGA GTT TTT CCA TTA TCA AL4: AAC TTG GTT ATT CAA AGA TGA CGA | 1931 | [20] | |
Penicillin | blaZ | F: ACT TCA ACA CCT GCT GCT GCT TTC R: TGA CCA CTT TTA TCA GCA ACC | 172 | [19] |
blaZ | F: AAG AGA TTT GCC TAT GCT TC R: GCT TGA CCA CTT TTA TCA GC | 517 | [21] | |
Vancomycin | vanA | F: ATG AAT AGA ATA AAA GTT GCA ATA R: CCC CTT TAA CGC TAA TAC GAT CAA | 1030 | [22] |
vanB | F: AAG CTA TGC AAG AAG CCA TG R: CCG ACA AAA TCA TCC TC | 536 | [22] | |
vanC1 | F: GGA ATC AAG GAA ACC TC R: CTT CCG CCA TCA TAG CT | 822 | [23] | |
Erythromycin | erm(B) | F: GAA AAG GTA CTC AAC CAA ATA R: AGT AAC GGT ACT TAA ATT GTT TAC | 639 | [24] |
erm(A) | F: TAT CTT ATC GTT GAG AAG GGA TT R: CTA CAC TTG GCT TAG GAT GAA A | 138 | [19] | |
erm(C) | F: CTT CTT GAT CAC GAT AAT TTC C R: ATC TTT TAG CAA ACC CGT ATT C | 189 | [19] | |
erm(TR) | F: ATAGAAATTGGGTCAGGAAAAGG R: CCCTGTTTACCCATTTATAAACG | 376 | [25] | |
Macrolides | msrC | F: AAG GAA TCC TTC TCT CTC CG R: GTA AAC AAA ATC GTT CCC G | 342 | [26] |
mefA | F: AGT ATC ATT AAT CAC TAG TGC R: TTC TTC TGG TAC TAA AAG TGG | 500 | [25] | |
Tetracycline | tetK | F: TCG ATA GGA ACA GCA GTA R: CAG CAG ATC CTA CTC CTT | 169 | [27] |
tetL | F: TCG TTA GCG TGC TGT CAT R: GTA TCC CAC CAA TGT AGC CG | 267 | [27] | |
tetM | F: GTG GAC AAA GGT ACA ACG AG R: CGG TAA AGT TCG TCA CAC AC | 406 | [27] | |
tetO | F: AAC TTA GGC ATT CTG GCT CAC R: TCC CAC TGT TCC ATA TCG TCA | 515 | [27] | |
tetS | F: TGG AAC GCC AGA GAG GTA TT R: ACA TAG ACA AGC CGT TGA CC | 660 | [28] | |
Aminoglyco-sides | aac6-aph2 | F: CCA AGA GCA ATA AGG GCA TA R: CAC TAT CAT AAC CAC TAC CG | 219 | [29] |
aac-aphD | F: TAA TCC AAG AGC AAT AAG GGC R: GCC ACA CTA TCA TAA CCA CTA | 227 | [19] | |
aad-6 | F: AGA AGA TGT AAT AAT ATA G R: CTG TAA TCA CTG TTC CCG CCT | 978 | [30] | |
aphA-3 | F: GGG GTA CCT TTA AAT ACT GTA G R: TCT GGA TCC TAA AAC AAT TCA TCC | 848 | [31] | |
Linezolid, chlor-amphenicol | optrA | F: AGG TGG TCA GCG AAC TCA R: ATC AAC TGT TCC CAT TCA | 1400 | [32] |
Linezolid | valS | F: GTA ACG ATC ATC ATT TGG G R: CTT TAT TAG AGC TCA ATG GGC | 339 | [33] |
Oxazolidinone | cfr | F: TGA AGT ATA AAG CAG GTT GGG AGT CA R: ACC ATA TAA TTG ACC ACA AGC AGC | 400 | [32] |
Lincosamide | lnuD | F: ACG GAG GGA TCA CAT GGT AA R: TCT CTC GCA TAA TAA CCT TAC GTC | 475 | [34] |
lnuA | F: GGT GGC TGG GGG GTA GAT GTA TTA ACT GG R: GCT CTC TTT GAA ATA CAT GGT ATT TTT CGA TC | 323 | [35] |
Type of Mastitis | Origin of Milk | Number of Samples | Staphylococcus aureus Isolates | Non-Staphylococ- cus aureus Isolates | Streptococcus Isolates | |||
---|---|---|---|---|---|---|---|---|
No. | % | No. | % | No. | % | |||
Clinical mastitis | Cattle | 22 | 2 | 9.1 | 12 | 54.6 | 1 | 4.6 |
Buffaloes | 10 | 1 | 10.0 | 9 | 90.0 | 1 | 10.0 | |
Subclinical mastitis | Cattle | 5 | 1 | 20.0 | 5 | 100 | 1 | 20.0 |
Buffaloes | 13 | 4 | 30.8 | 4 | 30.8 | 3 | 23.1 | |
Total | 50 | 8 | 16.0 | 30 | 60.0 | 6 | 12.0 |
CoNS | S. warneri | S. pasteuri | S. xylosus | S. epidermidis | S. chromogenes | S. cohnii | S. hyicus | S. haemolyticus | S. sciuri | S. lentus | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Cattle | 3 | 5 | 3 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 17 |
Buffaloes | 6 | 3 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 13 |
Antibiotic | Class | Staphylococcus aureus Isolates (n = 8) | Non-Staphylococcus aureus Isolates (n = 30) | ||||||
---|---|---|---|---|---|---|---|---|---|
S | I | R | RR (%) | S | I | R | RR (%) | ||
Ampicillin | β-Lactam | 2 | 0 | 6 | 75.0 | 9 | 0 | 21 | 70.0 |
Cefoxitin | β-Lactam; cephamycin | 4 | 0 | 4 | 50.0 | 15 | 3 | 12 | 40.0 |
Ceftaroline | Cephalosporin 5th generation | 8 | 0 | 0 | 0.0 | 22 | 2 | 6 | 20.0 |
Clindamycin | Lincosamide | 2 | 0 | 6 | 75.0 | 5 | 0 | 25 | 83.3 |
Daptomycin | Cyclic lipopeptide | 2 | 1 | 5 | 62.5 | 3 | 2 | 25 | 83.3 |
Erythromycin | Macrolide | 2 | 0 | 6 | 75.0 | 1 | 0 | 29 | 96.7 |
Erythromycin/ clindamycin | 2 | 0 | 6 | 75.0 | 2 | 0 | 28 | 93.3 | |
Fosfomycin | Epoxide antibiotic | 6 | 0 | 2 | 25.0 | 1 | 1 | 28 | 93.3 |
Fusidic acid | Steroide antibiotic | 4 | 0 | 4 | 50.0 | 2 | 1 | 27 | 90.0 |
Gentamicin | Aminoglyside | 3 | 0 | 5 | 62.5 | 5 | 1 | 24 | 80.0 |
Gentamicin high level | Aminoglyside | 3 | 0 | 5 | 62.5 | 16 | 2 | 12 | 40.0 |
Linezolid | Oxazolidinone | 4 | 0 | 4 | 50.0 | 7 | 2 | 21 | 70.0 |
Moxifloxacin | Fluorchinolone 4th generation | 4 | 0 | 4 | 50.0 | 5 | 1 | 24 | 80.0 |
Mupirocin | 5 | 1 | 2 | 25.0 | 21 | 5 | 4 | 13.3 | |
Oxacillin | β-Lactam | 4 | 0 | 4 | 50.0 | 7 | 3 | 20 | 66.7 |
Penicillin G | β-Lactam | 1 | 0 | 7 | 87.5 | 6 | 2 | 22 | 73.3 |
Rifampicin | Ansamycine | 3 | 1 | 4 | 50.0 | 17 | 0 | 13 | 43.3 |
Synercid | Streptogramine | 5 | 0 | 3 | 37.5 | 11 | 2 | 17 | 56.7 |
Teicoplanin | Glycopeptide | 8 | 7 | 0 | 0.0 | 8 | 17 | 5 | 16.7 |
Tigecycline | Glycylcycline | 4 | 0 | 4 | 50.0 | 9 | 1 | 20 | 66.7 |
Trimethoprim/ sulphamethoxazole | Dihdrofolatreductase/ sulfonamide | 2 | 1 | 5 | 62.5 | 6 | 3 | 21 | 70.0 |
Vancomycin | Glycopeptide | 8 | 0 | 0 | 0.0 | 17 | 9 | 4 | 13.3 |
Resistance-Associated Genes | Staphylococcus aureus (n = 8) | Non-Staphylococcus aureus (n = 30) | |||
---|---|---|---|---|---|
Detected (n) | % | Detected (n) | % | ||
β-Lactam resistance | mecA | 7 | 87.5 | 29 | 96.7 |
mecB | 0 | 0.0 | 0 | 0.0 | |
mecC | 0 | 0.0 | 0 | 0.0 | |
Penicillin resistance | blaZ | 8 | 100 | 22 | 73.3 |
Linezolid resistance | optrA | 4 | 50.0 | 3 | 10.0 |
valS | 8 | 100 | 9 | 30.0 | |
cfr | 0 | 0.0 | 0 | 0.0 | |
Erythromycin resistance | erm(B) | 6 | 75.0 | 15 | 50.0 |
erm(A) | 2 | 25.0 | 1 | 3.33 | |
erm(C) | 7 | 87.5 | 16 | 53.3 | |
Vancomycin resistance | vanA | 0 | 0.0 | 2 | 6.7 |
vanB | 0 | 0.0 | 9 | 30.0 | |
vanC1 | 5 | 62.5 | 2 | 6.7 | |
Macrolide resistance | msrC | 6 | 75.0 | 4 | 13.3 |
Aminoglycoside resistance | aac-aphD | 7 | 87.5 | 17 | 56.7 |
Tetracycline resistance | tetK | 8 | 100 | 24 | 80.0 |
tetM | 2 | 25.0 | 4 | 13.3 | |
tetL | 4 | 50.0 | 7 | 23.3 | |
tetS | 0 | 0.0 | 3 | 10.0 | |
tetO | 0 | 0.0 | 0 | 0.0 |
Penicillin Resistance | Macrolide Resistance | Lincosamide Resistance | Aminoglycoside Resistance | Tetracycline Resistance | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
blaZ | mefA | erm(TR) | erm(C) | erm(B) | erm(A) | lnuA | lnuD | aphA-3 | aad-6 | tetS | tetK | tetL | tetM | tetO | |
Streptococcus dysgalactiae (n = 3) | 3 | 0 | 0 | 3 | 3 | 3 | 3 | 0 | 2 | 0 | 0 | 0 | 3 | 3 | 0 |
Streptococcus agalactiae (n = 1) | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
Streptococcus suis (n = 1) | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
Streptococcus gallolyticus (n = 1) | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, W.; Neubauer, H.; Tomaso, H.; El Hofy, F.I.; Monecke, S.; Abdeltawab, A.A.; Hotzel, H. Characterization of Staphylococci and Streptococci Isolated from Milk of Bovides with Mastitis in Egypt. Pathogens 2020, 9, 381. https://doi.org/10.3390/pathogens9050381
Ahmed W, Neubauer H, Tomaso H, El Hofy FI, Monecke S, Abdeltawab AA, Hotzel H. Characterization of Staphylococci and Streptococci Isolated from Milk of Bovides with Mastitis in Egypt. Pathogens. 2020; 9(5):381. https://doi.org/10.3390/pathogens9050381
Chicago/Turabian StyleAhmed, Wedad, Heinrich Neubauer, Herbert Tomaso, Fatma Ibrahim El Hofy, Stefan Monecke, Ashraf Awad Abdeltawab, and Helmut Hotzel. 2020. "Characterization of Staphylococci and Streptococci Isolated from Milk of Bovides with Mastitis in Egypt" Pathogens 9, no. 5: 381. https://doi.org/10.3390/pathogens9050381