Chlamydia pneumoniae Influence on Cytokine Production in Steroid-Resistant and Steroid-Sensitive Asthmatics
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics and Demographics
2.2. C. pneumoniae-Specific Serological Status of Asthmatic Patients
2.3. IL-10 Cytokine Production in Asthmatics in Response to Specific (C. pneumoniae) and Nonspecific phytohemagglutinin (PHA) Stimulation
2.4. TNF-α Production in Asthmatics in Response to Specific (C. pneumoniae) and Nonspecific PHA Stimulation
2.5. MMP-9 Production in Steroid-Sensitive and Steroid-Resistant Asthmatic Patients
3. Discussion
4. Materials and Methods
4.1. Study Population and Participants
4.2. C. pneumoniae-Specific Enzyme-Linked Immunosorbent Assay
4.3. Preparation of the C. pneumoniae Antigen
4.4. Separation and Stimulation of PBMCs
4.5. Cytokine ELISA
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- 2018 GINA Report: Global Strategy for Asthma Management and Prevention|Global Initiative for Asthma—GINA. Available online: http://ginasthma.org/2018-gina-report-global-strategy-for-asthma-management-and-prevention/ (accessed on 9 June 2018).
- Schwartz, H.J.; Lowell, F.C.; Melby, J.C. Steroid resistance in bronchial asthma. Ann. Intern. Med. 1968, 69, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.Y.; Horvat, J.C.; Pinkerton, J.W.; Starkey, M.R.; Essilfie, A.T.; Mayall, J.R.; Nair, P.N.; Hansbro, N.H.; Jones, B.; Haw, T.J.; et al. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase-mediated suppression of histone deacetylase 2. J. Allergy Clin. Immunol. 2017, 139, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Li, L.-B.; Leung, D.Y.M.; Martin, R.J.; Goleva, E. Inhibition of histone deacetylase 2 expression by elevated glucocorticoid receptor beta in steroid-resistant asthma. Am. J. Respir. Crit. Care Med. 2010, 182, 877–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansbro, P.M.; Kim, R.Y.; Starkey, M.R.; Donovan, C.; Dua, K.; Mayall, J.R.; Liu, G.; Hansbro, N.H.; Simpson, J.L.; Wood, L.H.; et al. Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma. Immunol. Rev. 2017, 278, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Horvat, J.C.; Starkey, M.R.; Kim, R.Y.; Phipps, S.; Gibson, P.G.; Beagley, K.W.; Foster, P.S.; Hansbro, P.M. Early-life chlamydial lung infection enhances allergic airways disease through age-dependent differences in immunopathology. J. Allergy Clin. Immunol. 2010, 125, 617–625. [Google Scholar] [CrossRef]
- Hansbro, P.M.; Starkey, M.R.; Mattes, J.; Horvat, J.C. Pulmonary immunity during respiratory infections in early life and the development of severe asthma. Ann. Am. Thorac. Soc. 2014, 11 (Suppl. 5), S297–S302. [Google Scholar] [CrossRef]
- Starkey, M.R.; Nguyen, D.H.; Kim, R.Y.; Nair, P.M.; Brown, A.C.; Essifie, A.T.; Horvat, J.C.; Hansbro, P.M. Programming of the lung in early life by bacterial infections predisposes to chronic respiratory disease. Clin. Obstet. Gynecol. 2013, 56, 566–576. [Google Scholar] [CrossRef]
- Grayston, J.T.; Campbell, L.A.; Kuo, C.C.; Mordhorst, C.H.; Saikku, P.; Thorn, D.H.; Wang, S.P. A new respiratory tract pathogen: Chlamydia pneumoniae strain TWAR. J. Infect. Dis. 1990, 161, 618–625. [Google Scholar] [CrossRef]
- Patel, K.K.; Vicencio, A.G.; Du, Z.; Tsirilakis, K.; Salva, P.S.; Webley, W.C. Infectious Chlamydia pneumoniae is associated with elevated interleukin-8 and airway neutrophilia in children with refractory asthma. Pediatric Infect. Dis. J. 2010, 29, 1093–1098. [Google Scholar] [CrossRef]
- Black, P.N.; Scicchitano, R.; Jenkins, C.R.; Blasi, F.; Allegra, L.; Wlodarczyk, J.; Cooper, B.C. Serological evidence of infection with Chlamydia pneumoniae is related to the severity of asthma. Eur. Respir. J. 2000, 15, 254–259. [Google Scholar] [CrossRef] [Green Version]
- Borish, L.; Aarons, A.; Rumbyrt, J.; Cvietusa, P.; Negri, J.; Wenzel, S. Interleukin-10 regulation in normal subjects and patients with asthma. J. Allergy Clin. Immunol. 1996, 97, 1288–1296. [Google Scholar] [CrossRef]
- Matsumoto, K.; Inoue, H.; Fukuyama, S.; Tsuda, M.; Ikegami, T.; Kibe, A.; Yoshiura, Y.; Komori, M.; Hamasaki, N.; Aizawa, H.; et al. Decrease of interleukin-10-producing T cells in the peripheral blood of severe unstable atopic asthmatics. Int. Arch. Allergy Immunol. 2004, 134, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.Y.; Pinkerton, J.W.; Essilfie, A.T.; Robertson, A.A.B.; Baines, K.J.; Brown, A.C.; Mayall, J.R.; Ali, M.K.; Starkey, M.R.; Hansbro, N.G.; et al. Role for NLRP3 Inflammasome-mediated, IL-1β-Dependent Responses in Severe, Steroid-Resistant Asthma. Am. J. Respir. Crit. Care Med. 2017, 196, 283–297. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Prabhala, P.; Rumzhum, N.N.; Patel, B.S.; Wickop, T.; Hansbro, P.M.; Verrills, N.M.; Ammit, A.J. TLR2 ligation induces corticosteroid insensitivity in A549 lung epithelial cells: Anti-inflammatory impact of PP2A activators. Int. J. Biochem. Cell Biol. 2016, 78, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.; Brightling, C.; Pavord, I.; Wardlaw, A. TNF-alpha in asthma. Curr. Opin. Pharmacol. 2007, 7, 279–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adcock, I.M.; Barnes, P.J. Molecular mechanisms of corticosteroid resistance. Chest 2008, 134, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.S.; Kim, T.-B.; Lee, T.-H.; Moon, K.A.; Lee, J.; Kim, Y.K.; Lee, K.Y.; Moon, H.B. Chlamydia pneumoniae infection enhances cellular proliferation and reduces steroid responsiveness of human peripheral blood mononuclear cells via a tumor necrosis factor-alpha-dependent pathway. Clin. Exp. Allergy 2005, 35, 1625–1631. [Google Scholar] [CrossRef]
- Bossé, M.; Chakir, J.; Rouabhia, M.; Boulet, L.P.; Audette, M.; Laviolette, M. Serum matrix metalloproteinase-9: Tissue inhibitor of metalloproteinase-1 ratio correlates with steroid responsiveness in moderate to severe asthma. Am. J. Respir. Crit. Care Med. 1999, 159, 596–602. [Google Scholar] [CrossRef] [Green Version]
- Mautino, G.; Oliver, N.; Chanez, P.; Bousquet, J.; Capony, F. Increased release of matrix metalloproteinase-9 in bronchoalveolar lavage fluid and by alveolar macrophages of asthmatics. Am. J. Respir. Cell Mol. Biol. 1997, 17, 583–591. [Google Scholar] [CrossRef]
- Rödel, J.; Prochnau, D.; Prager, K.; Pentcheva, E.; Hartmann, M.; Straube, E. Increased production of matrix metalloproteinases 1 and 3 by smooth muscle cells upon infection with Chlamydia pneumoniae. FEMS Immunol. Med. Microbiol. 2003, 38, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Park, C.-S.; Lee, Y.S.; Kwon, H.-S.; Lee, T.; Kim, T.B.; Moon, K.A.; Yoo, B.; Moon, H.B.; Cho, Y.S. Chlamydophila pneumoniae inhibits corticosteroid-induced suppression of metalloproteinase-9 and tissue inhibitor metalloproteinase-1 secretion by human peripheral blood mononuclear cells. J. Med. Microbiol. 2012, 61 Pt 5, 705–711. [Google Scholar] [CrossRef]
- Grzela, K.; Zagorska, W.; Krejner, A.; Litwiniuk, M.; Zawadzka-Krajewska, A.; Banaszkiewicz, A.; Kulus, M.; Grzela, T. Prolonged Treatment with Inhaled Corticosteroids does not Normalize High Activity of Matrix Metalloproteinase-9 in Exhaled Breath Condensates of Children with Asthma. Arch. Immunol. Ther. Exp. (Warszawa) 2015, 63, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Barbaro, M.P.F.; Spanevello, A.; Palladino, G.P.; Salerno, F.G.; Lacedonia, D.; Carpagnano, G.E. Exhaled matrix metalloproteinase-9 (MMP-9) in different biological phenotypes of asthma. Eur. J. Intern. Med. 2014, 25, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.; Ho, C.Y.; Ko, F.W.; Chan, C.H.; Ho, A.S.; Hui, D.S.; Lam, C.W. Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN-gamma, IL-4, IL-10 and IL-13) in patients with allergic asthma. Clin. Exp. Immunol. 2001, 125, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-L.; Luan, B.; Wang, X.-F.; Qiao, J.Y.; Song, L.; Lei, R.R.; Gao, W.X.; Liu, Y. Peripheral blood MDSCs, IL-10 and IL-12 in children with asthma and their importance in asthma development. PLoS ONE 2013, 8, e63775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xystrakis, E.; Kusumakar, S.; Boswell, S.; Peek, E.; Urry, Z.; Richards, D.F.; Adikibi, T.; Pridgeon, C.; Dallman, M.; Loke, T.K.; et al. Reversing the defective induction of IL-10-secreting regulatory T cells in glucocorticoid-resistant asthma patients. J. Clin. Investig. 2006, 116, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Hawrylowicz, C.; Richards, D.; Loke, T.-K.; Corrigan, C.; Lee, T. A defect in corticosteroid-induced IL-10 production in T lymphocytes from corticosteroid-resistant asthmatic patients. J. Allergy Clin. Immunol. 2002, 109, 369–370. [Google Scholar] [CrossRef]
- Smith-Norowitz, T.A.; Chotikanatis, K.; Weaver, D.; Ditkowsky, J.; Norowitz, Y.M.; Hammerschlag, M.R.; Joks, R.; Kohlhoff, S. Chlamydia pneumoniae-induced tumour necrosis factor alpha responses are lower in children with asthma compared with non-asthma. BMJ Open Respir. Res. 2018, 5, e000239. [Google Scholar] [CrossRef]
- Vanders, R.L.; Gibson, P.G.; Wark, P.A.B.; Murphy, V.E. Alterations in inflammatory, antiviral and regulatory cytokine responses in peripheral blood mononuclear cells from pregnant women with asthma. Respirology 2013, 18, 827–833. [Google Scholar] [CrossRef] [Green Version]
- Shima, K.; Coopmeiners, J.; Graspeuntner, S.; Dalhoff, K.; Rupp, J. Impact of micro-environmental changes on respiratory tract infections with intracellular bacteria. FEBS Lett. 2016, 590, 3887–3904. [Google Scholar] [CrossRef]
- Ren, J.; Sun, Y.; Li, G.; Zhu, X.-J.; Cui, J.-G. Tumor necrosis factor-α, interleukin-8 and eosinophil cationic protein as serum markers of glucocorticoid efficacy in the treatment of bronchial asthma. Respir. Physiol. Neurobiol. 2018, 258, 86–90. [Google Scholar] [CrossRef]
- Berry, M.A.; Hargadon, B.; Shelley, M.; Parker, D.; Shaw, D.E.; Green, R.H.; Bradding, P.; Brightling, C.E.; Wardlaw, A.J.; Pavord, I.D. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N. Engl. J. Med. 2006, 354, 697–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulay, M.-E.; Prince, P.; Deschesnes, F.; Chakir, J.; Boulet, L.-P. Metalloproteinase-9 in induced sputum correlates with the severity of the late allergen-induced asthmatic response. Respiration 2004, 71, 216–224. [Google Scholar] [CrossRef]
- Goleva, E.; Hauk, P.J.; Boguniewicz, J.; Martin, R.J.; Leung, D.Y.M. Airway remodeling and lack of bronchodilator response in steroid-resistant asthma. J. Allergy Clin. Immunol. 2007, 120, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Arno, G.; Kaski, J.C.; Smith, D.A.; Akiyu, J.P.; Hughes, S.E.; Baboonian, C. Matrix metalloproteinase-9 expression is associated with the presence of Chlamydia pneumoniae in human coronary atherosclerotic plaques. Heart 2005, 91, 521–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paolillo, R.; Iovene, M.R.; Romano Carratelli, C.; Rizzo, A. Induction of VEGF and MMP-9 expression by toll-like receptor 2/4 in human endothelial cells infected with Chlamydia pneumoniae. Int. J. Immunopathol. Pharmacol. 2012, 25, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Cataldo, D.D.; Tournoy, K.G.; Vermaelen, K.; Munaut, C.; Foidart, J.M.; Louis, R.; Noël, A.; Pauwels, R.A. Matrix metalloproteinase-9 deficiency impairs cellular infiltration and bronchial hyperresponsiveness during allergen-induced airway inflammation. Am. J. Pathol. 2002, 161, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Chiba, N.; Shimada, K.; Chen, S.; Jones, H.D.; Alsabeh, R.; Slepenkin, A.V.; Peterson, E.; Crother, T.R.; Arditi, M. Mast cells play an important role in chlamydia pneumoniae lung infection by facilitating immune cell recruitment into the airway. J. Immunol. 2015, 194, 3840–3851. [Google Scholar] [CrossRef] [Green Version]
- Penttilä, J.M.; Anttila, M.; Puolakkainen, M.; Laurila, A.; Varkila, K.; Sarvas, M.; Mäkelä, P.H.; Rautonen, N. Local immune responses to Chlamydia pneumoniae in the lungs of BALB/c mice during primary infection and reinfection. Infect. Immun. 1998, 66, 5113–5118. [Google Scholar] [CrossRef] [Green Version]
- Walsh, G.M. Biologics targeting IL-5, IL-4 or IL-13 for the treatment of asthma—An update. Expert Rev. Clin. Immunol. 2017, 13, 143–149. [Google Scholar] [CrossRef]
- Dominguez-Ortega, J.; Delgado, J.; Blanco, C.; Prieto, L.; Arroabarren, E.; Cimarra, M.; Henriquez-Santana, A.; Iglesias-Souto, J.; Vega-Chicote, J.M.; Tabar, A.I. Specific allergen immunotherapy for the treatment of allergic asthma: A review of current evidence. J. Investig. Allergol Clin. Immunol. 2017, 27 (Suppl. 1), 1–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Steroid-sensitive n = 40 | Steroid-resistant n = 40 | p Value | |
Mean age (median) | 59 (63) | 63 (67) | 0.13 |
Gender | male: 14 (35%), female: 26 (65%) | male: 13 (32%), female: 27 (68%) | - |
Smoking, mean py | n = 15 (24, 5) | n = 19 (31) | 0.14 |
Smoking status | Never: 25 Previously: 7 Habitual: 8 | Never: 21 Previously: 10 Habitual: 9 | |
Atopic subjects (allergic rhinitis, sinusitis, nasal polyposis) | n = 22 (55%) | n = 25 (63%) | - |
CHD | n = 2 (5%) | n = 17 (42%) | - |
Blood eosinophilia | n = 11 (27%) | n = 17 (42%) | 0.319 |
FEV1 (L, %) | 2.1 ± 0.8 (72 ± 0.2%) | 1.4 ± 0.6 (56 ± 0.2%) | 0.01 |
FEV1 reversibility rate (mean, %) | 15.2 ± 2.6 | 12.6 ± 3.3 | 0.41 |
FVC (L, %) | 3.3 ± 1.1 (92.8 ± 24%) | 2.5 ± 0.9 (79.9 ± 21%) | 0.03 |
FEV1/FVC (%) | 65.4 ± 11.3% | 60.1 ± 14.8% | 0.09 |
FEF25/75 (L/s) | 1.4 ± 0.8 | 0.8 ± 0.4 | 0.004 |
BMI (kg/m2) | 29.4 ± 8.1 | 27.6 ± 5.1 | 0.3 |
Asthma medications | ICS: 8 patients ICS/LABA: 32 patients SABA: 28 patients LTI: 20 patients | ICS/LABA: 40 patients LAMA: 8 patients SABA: 31 patients LTI: 27 patients |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paróczai, D.; Mosolygó, T.; Kókai, D.; Endrész, V.; Virok, D.P.; Somfay, A.; Burián, K. Chlamydia pneumoniae Influence on Cytokine Production in Steroid-Resistant and Steroid-Sensitive Asthmatics. Pathogens 2020, 9, 112. https://doi.org/10.3390/pathogens9020112
Paróczai D, Mosolygó T, Kókai D, Endrész V, Virok DP, Somfay A, Burián K. Chlamydia pneumoniae Influence on Cytokine Production in Steroid-Resistant and Steroid-Sensitive Asthmatics. Pathogens. 2020; 9(2):112. https://doi.org/10.3390/pathogens9020112
Chicago/Turabian StyleParóczai, Dóra, Tímea Mosolygó, Dávid Kókai, Valéria Endrész, Dezső P. Virok, Attila Somfay, and Katalin Burián. 2020. "Chlamydia pneumoniae Influence on Cytokine Production in Steroid-Resistant and Steroid-Sensitive Asthmatics" Pathogens 9, no. 2: 112. https://doi.org/10.3390/pathogens9020112
APA StyleParóczai, D., Mosolygó, T., Kókai, D., Endrész, V., Virok, D. P., Somfay, A., & Burián, K. (2020). Chlamydia pneumoniae Influence on Cytokine Production in Steroid-Resistant and Steroid-Sensitive Asthmatics. Pathogens, 9(2), 112. https://doi.org/10.3390/pathogens9020112