Impact of Porcine Arterivirus, Influenza B, and Their Coinfection on Antiviral Response in the Porcine Lung
Abstract
1. Introduction
2. Results
2.1. Infections (PRRSV, IBV, and IBV/PRRSV) vs. Control for Lung Samples
2.1.1. PRRSV vs. Controls
2.1.2. IBV/PRRSV vs. Controls
2.1.3. IBV vs. Controls
2.2. Venn Diagram Results of Genes Shared by All Three Treatment Groups
2.3. Gene Ontology (GO) and Pathway Analysis of Treatment Groups
2.3.1. PRRSV
2.3.2. IBV/PRRSV
3. Discussion
3.1. Swine IFN-Induced Antiviral Response to PRRSV and IBV Driven by Handful of Transcription Factors
3.2. Analysis Reveals Candidate Immune Effector Genes Involved in Promoting Host Antiviral State
3.3. Host Immune Response Spotlights Complement and Neutrophil Degranulation Pathways in PRRSV and PRRSV/IBV Infections
4. Materials and Methods
4.1. Animals
4.2. Sample Preparation and Sequencing Analysis
4.3. Gene Ontology (G.O.), Over-Enrichment, and Pathway Analysis of DEG for Each Treatment by dpi and for Shared Gene Lists from Venn
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The UniProt Consurtium. Uniprot: The universal protein knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169. [Google Scholar] [CrossRef] [PubMed]
- Yates, A.D.; Achuthan, P.; Akanni, W.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; et al. Ensembl 2020. Nucleic Acids Res. 2020, 48, D682–D688. [Google Scholar] [CrossRef] [PubMed]
- Schoggins, J.W.; Wilson, S.J.; Panis, M.; Murphy, M.Y.; Jones, C.T.; Bieniasz, P.; Rice, C.M. A diverse range of gene products are effectors of the type i interferon antiviral response. Nature 2011, 472, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Schoggins, J.W.; Wilson, S.J.; Panis, M.; Murphy, M.Y.; Jones, C.T.; Bieniasz, P.; Rice, C.M. Corrigendum: A diverse range of gene products are effectors of the type i interferon antiviral response. Nature 2015, 525, 144. [Google Scholar] [CrossRef]
- Huang, K.J.; Su, I.J.; Theron, M.; Wu, Y.C.; Lai, S.K.; Liu, C.C.; Lei, H.Y. An interferon-gamma-related cytokine storm in sars patients. J. Med. Virol. 2005, 75, 185–194. [Google Scholar] [CrossRef]
- Kane, M.; Zang, T.M.; Rihn, S.J.; Zhang, F.; Kueck, T.; Alim, M.; Schoggins, J.; Rice, C.M.; Wilson, S.J.; Bieniasz, P.D. Identification of interferon-stimulated genes with antiretroviral activity. Cell Host Microbe 2016, 20, 392–405. [Google Scholar] [CrossRef]
- Huang, C.; Du, Y.; Yu, Z.; Zhang, Q.; Liu, Y.; Tang, J.; Shi, J.; Feng, W.H. Highly pathogenic porcine reproductive and respiratory syndrome virus nsp4 cleaves visa to impair antiviral responses mediated by rig-i-like receptors. Sci. Rep. 2016, 6, 28497. [Google Scholar] [CrossRef]
- Beura, L.K.; Sarkar, S.N.; Kwon, B.; Subramaniam, S.; Jones, C.; Pattnaik, A.K.; Osorio, F.A. Porcine reproductive and respiratory syndrome virus nonstructural protein 1beta modulates host innate immune response by antagonizing irf3 activation. J. Virol. 2010, 84, 1574–1584. [Google Scholar] [CrossRef]
- Zhou, P.; Zhai, S.; Zhou, X.; Lin, P.; Jiang, T.; Hu, X.; Jiang, Y.; Wu, B.; Zhang, Q.; Xu, X.; et al. Molecular characterization of transcriptome-wide interactions between highly pathogenic porcine reproductive and respiratory syndrome virus and porcine alveolar macrophages in vivo. Int. J. Biol. Sci. 2011, 7, 947–959. [Google Scholar] [CrossRef]
- Miller, L.C.; Jiang, Z.; Sang, Y.; Harhay, G.P.; Lager, K.M. Evolutionary characterization of pig interferon-inducible transmembrane gene family and member expression dynamics in tracheobronchial lymph nodes of pigs infected with swine respiratory disease viruses. Vet. Immunol. Immunopathol. 2014, 159, 180–191. [Google Scholar] [CrossRef]
- Lunney, J.K.; Fang, Y.; Ladinig, A.; Chen, N.; Li, Y.; Rowland, B.; Renukaradhya, G.J. Porcine reproductive and respiratory syndrome virus (prrsv): Pathogenesis and interaction with the immune system. Annu. Rev. Anim. Biosci. 2016, 4, 129–154. [Google Scholar] [CrossRef] [PubMed]
- Kurotaki, D.; Yamamoto, M.; Nishiyama, A.; Uno, K.; Ban, T.; Ichino, M.; Sasaki, H.; Matsunaga, S.; Yoshinari, M.; Ryo, A.; et al. Irf8 inhibits c/ebpalpha activity to restrain mononuclear phagocyte progenitors from differentiating into neutrophils. Nat. Commun. 2014, 5, 4978. [Google Scholar] [CrossRef] [PubMed]
- White, C.L.; Kessler, P.M.; Dickerman, B.K.; Ozato, K.; Sen, G.C. Interferon regulatory factor 8 (irf8) impairs induction of interferon induced with tetratricopeptide repeat motif (ifit) gene family members. J. Biol. Chem. 2016, 291, 13535–13545. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liang, S.; Liu, H.; Sun, Y.; Kang, L.; Jiang, Y. Identification of a short interspersed repetitive element insertion polymorphism in the porcine mx1 promoter associated with resistance to porcine reproductive and respiratory syndrome virus infection. Anim. Genet. 2015, 46, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.R.; Hem, V.; Katz, K.S.; Ovetsky, M.; Wallin, C.; Ermolaeva, O.; Tolstoy, I.; Tatusova, T.; Pruitt, K.D.; Maglott, D.R.; et al. Gene: A gene-centered information resource at ncbi. Nucleic Acids Res. 2015, 43, D36–D42. [Google Scholar] [CrossRef]
- Meyer, K.; Kwon, Y.C.; Liu, S.; Hagedorn, C.H.; Ray, R.B.; Ray, R. Interferon-alpha inducible protein 6 impairs egfr activation by cd81 and inhibits hepatitis c virus infection. Sci. Rep. 2015, 5, 9012. [Google Scholar] [CrossRef]
- Chen, S.; Li, S.; Chen, L. Interferon-inducible protein 6-16 (ifi-6-16, isg16) promotes hepatitis c virus replication in vitro. J. Med. Virol. 2016, 88, 109–114. [Google Scholar] [CrossRef]
- Ran, Z.; Shen, H.; Lang, Y.; Kolb, E.A.; Turan, N.; Zhu, L.; Ma, J.; Bawa, B.; Liu, Q.; Liu, H.; et al. Domestic pigs are susceptible to infection with influenza b viruses. J. Virol. 2015, 89, 4818–4826. [Google Scholar] [CrossRef]
- Lee, J.; Wang, L.; Palinski, R.; Walsh, T.; He, D.; Li, Y.; Wu, R.; Lang, Y.; Sunwoo, S.Y.; Richt, J.A.; et al. Comparison of pathogenicity and transmissibility of influenza b and d viruses in pigs. Viruses 2019, 11, 905. [Google Scholar] [CrossRef]
- Tsai, C.P.; Tsai, H.J. Influenza b viruses in pigs, taiwan. Influenza Other Respir. Viruses 2019, 13, 91–105. [Google Scholar] [CrossRef]
- Ji, L.; Zhou, X.; Liang, W.; Liu, J.; Liu, B. Porcine interferon stimulated gene 12a restricts porcine reproductive and respiratory syndrome virus replication in marc-145 cells. Int. J. Mol. Sci. 2017, 18, 1613. [Google Scholar] [CrossRef] [PubMed]
- Camp, J.V.; Jonsson, C.B. A role for neutrophils in viral respiratory disease. Front. Immunol. 2017, 8, 550. [Google Scholar] [CrossRef] [PubMed]
- Badaoui, B.; Rutigliano, T.; Anselmo, A.; Vanhee, M.; Nauwynck, H.; Giuffra, E.; Botti, S. Rna-sequence analysis of primary alveolar macrophages after in vitro infection with porcine reproductive and respiratory syndrome virus strains of differing virulence. PLoS ONE 2014, 9, e91918. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.F.; Wilson, C.L.; Chow, Y.H.; Schnapp, L.M. Role of integrin alpha8 in murine model of lung fibrosis. PLoS ONE 2018, 13, e0197937. [Google Scholar] [CrossRef]
- Shin, D.M.; Lee, C.H.; Morse, H.C., 3rd. Irf8 governs expression of genes involved in innate and adaptive immunity in human and mouse germinal center b cells. PLoS ONE 2011, 6, e27384. [Google Scholar] [CrossRef] [PubMed]
- Smedly, L.A.; Tonnesen, M.G.; Sandhaus, R.A.; Haslett, C.; Guthrie, L.A.; Johnston, R.B., Jr.; Henson, P.M.; Worthen, G.S. Neutrophil-mediated injury to endothelial cells. Enhancement by endotoxin and essential role of neutrophil elastase. J. Clin. Investig. 1986, 77, 1233–1243. [Google Scholar] [CrossRef]
- Williams, A.E.; Jose, R.J.; Mercer, P.F.; Brealey, D.; Parekh, D.; Thickett, D.R.; O’Kane, C.; McAuley, D.F.; Chambers, R.C. Evidence for chemokine synergy during neutrophil migration in ards. Thorax 2017, 72, 66–73. [Google Scholar] [CrossRef]
- Creasy, B.M.; McCoy, K.L. Cytokines regulate cysteine cathepsins during tlr responses. Cell Immunol. 2011, 267, 56–66. [Google Scholar] [CrossRef]
- Turk, V.; Stoka, V.; Vasiljeva, O.; Renko, M.; Sun, T.; Turk, B.; Turk, D. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta 2012, 1824, 68–88. [Google Scholar] [CrossRef]
- Zhou, Y.; Agudelo, J.; Lu, K.; Goetz, D.H.; Hansell, E.; Chen, Y.T.; Roush, W.R.; McKerrow, J.; Craik, C.S.; Amberg, S.M.; et al. Inhibitors of sars-cov entry--identification using an internally-controlled dual envelope pseudovirion assay. Antiviral Res. 2011, 92, 187–194. [Google Scholar] [CrossRef]
- Afgan, E.; Baker, D.; van den Beek, M.; Blankenberg, D.; Bouvier, D.; Cech, M.; Chilton, J.; Clements, D.; Coraor, N.; Eberhard, C.; et al. The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 2016, 44, W3–W10. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.; Krueger, F.; Segonds-Pichon, A.; Biggins, L.; Krueger, C.; Wingett, S. Fastqc: A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 26 June 2020).
- Krueger, F. Trim Galore! A Wrapper Tool around Cutadapt and Fastqc to Consistently Apply Quality and Adapter Trimming to Fastq Files, with Some Extra Functionality for Mspi-Digested Rrbs-Type (Reduced Representation Bisufite-Seq) Libraries. Available online: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (accessed on 26 June 2020).
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with hisat2 and hisat-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. Featurecounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for rna-seq data with deseq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. G:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. String v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef]
- Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020, 48, D498–D503. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y. Kegg mapper for inferring cellular functions from protein sequences. Protein Sci. 2020, 29, 28–35. [Google Scholar] [CrossRef]
Gene ID 1 | Gene Name | log2(FC)-PRRSV | log2(FC)-IBV/PRRSV | log2(FC)-IBV |
---|---|---|---|---|
ENSSSCG00000037508 | GSN | −0.94 | −1.15 | −0.87 |
ENSSSCG00000034570 | IFI6 | 1.39 | 1.58 | 1.92 |
ENSSSCG00000036383 | LGALS3BP | 1.39 | 1.33 | 1.31 |
ENSSSCG00000032474 | CXCL10 | 3.28 | 1.51 | 1.08 |
ENSSSCG00000016263 | LOC100517129 | 1.08 | 1.22 | 0.75 |
ENSSSCG00000033909 | GIMAP1 | 0.80 | 1.12 | 0.72 |
ENSSSCG00000035379 | JCHAIN | 3.34 | 1.76 | 1.29 |
ENSSSCG00000014540 | FTH1 | 1.38 | 0.98 | 0.95 |
ENSSSCG00000036403 | FAM180A | −1.55 | −1.63 | −1.24 |
ENSSSCG00000035297 | ISG12(A) | 0.86 | 1.46 | 1.46 |
ENSSSCG00000003682 | ANKRD12 | 1.00 | 0.95 | 0.8 |
ENSSSCG00000016092 | SGO2 | 1.76 | 1.29 | 1.08 |
ENSSSCG00000023296 | CENPE | 1.98 | 1.95 | 1.19 |
ENSSSCG00000017236 | CD300C | 1.56 | 1.19 | 1.15 |
ENSSSCG00000035736 | CCL24 | −1.03 | −1.02 | −1.26 |
ENSSSCG00000012077 | MX1 | 0.98 | 1.72 | 0.88 |
GeneID 1 | Gene Name | log2(FC)-PRRSV | log2(FC)-IBV/PRRSV |
---|---|---|---|
ENSSSCG00000036224 | ENSSSCG00000036224 | 2.27 | 2.23 |
ENSSSCG00000017705 | CCL5 | 1.77 | 0.93 |
ENSSSCG00000008973 | NAAA | 1.22 | 1.14 |
ENSSSCG00000004195 | ARG1 | 1.3 | 1.64 |
ENSSSCG00000029414 | FCN1 | 1.4 | 1.49 |
ENSSSCG00000035379 | JCHAIN | 1.49 | 1.08 |
ENSSSCG00000032857 | S100A12 | 0.84 | 0.71 |
ENSSSCG00000011046 | ITGA8 | −0.96 | −0.76 |
ENSSSCG00000004336 | EPHA7 | −1.32 | −1.13 |
ENSSSCG00000001463 | PSMB9 | 0.94 | 0.84 |
ENSSSCG00000023374 | SRGN | 0.73 | 0.89 |
ENSSSCG00000016903 | GZMA | 1.3 | 1.15 |
ENSSSCG00000037645 | COTL1 | 0.91 | 0.75 |
ENSSSCG00000032383 | ENSSSCG00000032383 | −0.81 | −1.05 |
ENSSSCG00000013901 | IFI30 | 0.87 | 1.21 |
ENSSSCG00000021084 | S100A6 | 0.75 | 1.02 |
ENSSSCG00000010554 | SCD | 0.78 | 0.63 |
ENSSSCG00000001770 | CTSH | 0.74 | 0.96 |
ENSSSCG00000002004 | PSME2 | 0.8 | 0.94 |
ENSSSCG00000040981 | GMFG | 0.68 | 0.81 |
ENSSSCG00000001453 | HLA-DRA | 0.8 | 1.02 |
ENSSSCG00000002366 | NPC2 | 0.62 | 0.91 |
ENSSSCG00000001456 | ENSSSCG00000001456 | 0.84 | 1.29 |
ENSSSCG00000015089 | JAML | 1.06 | 1.07 |
ENSSSCG00000006153 | FABP5 | 0.69 | 0.92 |
ENSSSCG00000036096 | ENSSSCG00000036096 | 1.03 | 1.22 |
ENSSSCG00000009216 | SPP1 | 1.12 | 1.08 |
ENSSSCG00000035195 | HNMT | 0.88 | 1.03 |
ENSSSCG00000006800 | CD53 | 0.73 | 0.8 |
ENSSSCG00000014540 | ENSSSCG00000014540 | 0.73 | 0.76 |
ENSSSCG00000023479 | ENSSSCG00000023479 | −0.8 | −0.72 |
ENSSSCG00000007435 | PLTP | 1.06 | 1.23 |
ENSSSCG00000025618 | TAP1 | 0.82 | 0.76 |
ENSSSCG00000004687 | B2M | 0.61 | 0.65 |
ENSSSCG00000015045 | NCAM1 | −0.7 | −0.88 |
ENSSSCG00000001396 | ENSSSCG00000001396 | 0.78 | 0.86 |
ENSSSCG00000037358 | HPS5 | 1.01 | 1.08 |
ENSSSCG00000035820 | TXNDC17 | 0.64 | 1.01 |
ENSSSCG00000014051 | TSPAN17 | 0.77 | 0.9 |
ENSSSCG00000001502 | RPS18 | 0.49 | 0.66 |
ENSSSCG00000036618 | ENSSSCG00000036618 | 0.58 | 0.71 |
ENSSSCG00000007585 | ACTB | −0.81 | −0.88 |
ENSSSCG00000036224 | ENSSSCG00000036224 | 2.27 | 2.23 |
ENSSSCG00000017705 | CCL5 | 1.77 | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fleming, D.S.; Miller, L.C.; Tian, Y.; Li, Y.; Ma, W.; Sang, Y. Impact of Porcine Arterivirus, Influenza B, and Their Coinfection on Antiviral Response in the Porcine Lung. Pathogens 2020, 9, 934. https://doi.org/10.3390/pathogens9110934
Fleming DS, Miller LC, Tian Y, Li Y, Ma W, Sang Y. Impact of Porcine Arterivirus, Influenza B, and Their Coinfection on Antiviral Response in the Porcine Lung. Pathogens. 2020; 9(11):934. https://doi.org/10.3390/pathogens9110934
Chicago/Turabian StyleFleming, Damarius S., Laura C. Miller, Yun Tian, Yonghai Li, Wenjun Ma, and Yongming Sang. 2020. "Impact of Porcine Arterivirus, Influenza B, and Their Coinfection on Antiviral Response in the Porcine Lung" Pathogens 9, no. 11: 934. https://doi.org/10.3390/pathogens9110934
APA StyleFleming, D. S., Miller, L. C., Tian, Y., Li, Y., Ma, W., & Sang, Y. (2020). Impact of Porcine Arterivirus, Influenza B, and Their Coinfection on Antiviral Response in the Porcine Lung. Pathogens, 9(11), 934. https://doi.org/10.3390/pathogens9110934