Feed Supplementation with a Commercially Available Probiotic Solution Does Not Alter the Composition of the Microbiome in the Biofilters of Recirculating Aquaculture Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Units, Fish, and Feed
2.2. Sample Collection
3. Results and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability Statement
References
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018; Volume 2. [Google Scholar]
- The World Bank. FISH TO 2030: Prospects for Fisheries and Aquaculture; WORLD BANK REPORT NUMBER 83177-GLB; Agriculture and Environmental Services (AES): Washington, DC, USA, 2013. [Google Scholar]
- Leung, T.L.F.; Bates, A.E. More rapid and severe disease outbreaks for aquaculture at the tropics: Implications for food security. J. Appl. Ecol. 2013, 50, 215–222. [Google Scholar] [CrossRef]
- Adams, A.; Thompson, K.D. Development of diagnostics for aquaculture: Challenges and opportunities. Aquac. Res. 2011, 42, 93–102. [Google Scholar] [CrossRef]
- O’Neil, J. Tackling Drug-Resistant Infections Globally: Final report and recommendations. In Review on Antimicrobial Resistance; Wellcome Trust: London, UK, 2016. [Google Scholar]
- Urdaci, M.C.; Bressollier, P.; Pinchuk, I. Bacillus clausii Probiotic Strains: Antimicrobial and Immunomodulatory Activities. J. Clin. Gastroenterol. 2004, 38, S86–S90. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, G.; Ray, A.K. The advancement of probiotics research and its application in fish farming industries. Res. Vet. Sci. 2017, 115, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Corr, S.C.; Hill, C.; Gahan, C.G.M. Chapter 1 Understanding the Mechanisms by Which Probiotics Inhibit Gastrointestinal Pathogens. In Advances in Food and Nutrition Research; Elsevier BV: Amsterdam, The Netherlands, 2009; Volume 56, pp. 1–15. [Google Scholar]
- Ghanei-Motlagh, R.; Mohammadian, T.; Gharibi, D.; Khosravi, M.; Mahmoudi, E.; Zarea, M.; El-Matbouli, M.; Menanteau-Ledouble, S. Quorum quenching probiotics modulated digestive enzymes activity, growth performance, gut microflora, haemato-biochemical parameters and resistance against Vibrio harveyi in Asian seabass (Lates calcarifer). Aquaculture 2020, 531, 735874. [Google Scholar] [CrossRef]
- Ghanei-Motlagh, R.; Mohammadian, T.; Gharibi, D.; Menanteau-Ledouble, S.; Mahmoudi, E.; Khosravi, M.; Zarea, M.; El-Matbouli, M. Quorum Quenching Properties and Probiotic Potentials of Intestinal Associated Bacteria in Asian Sea Bass Lates calcarifer. Mar. Drugs 2019, 18, 23. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, C.; Mason, T. Zebrafish housing systems: A review of basic operating principles and considerations for design and functionality. ILAR J. 2012, 53, 179–191. [Google Scholar] [CrossRef]
- Schreier, H.J.; Mirzoyan, N.; Saito, K. Microbial diversity of biological filters in recirculating aquaculture systems. Curr. Opin. Biotechnol. 2010, 21, 318–325. [Google Scholar] [CrossRef]
- Van Kessel, M.A.H.J.; Harhangi, H.R.; Flik, G.; Jetten, M.S.M.; Klaren, P.H.M.; den Camp, H.J.M.O. Anammox bacteria in different compartments of recirculating aquaculture systems. Biochem. Soc. Trans. 2011, 39, 1817–1821. [Google Scholar] [CrossRef]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef]
- Masser, M.P.; Rakocy, J.; Losordo, T.M. Recirculating Aquaculture Tank Production Systems Management of Recirculating Systems. 1999, p. 453. Available online: https://cals.arizona.edu/azaqua/extension/Classroom/SRAC/453fs.pdf (accessed on 9 October 2020).
- Gonçalves, A.A.; Gagnon, G.A. Ozone Application in Recirculating Aquaculture System: An Overview. Ozone Sci. Eng. 2011, 33, 345–367. [Google Scholar] [CrossRef]
- Ramos, M.A.; Batista, S.; Pires, M.A.; Silva, A.P.; Pereira, L.F.; Saavedra, M.J.; Ozório, R.O.A.; Rema, P. Dietary probiotic supplementation improves growth and the intestinal morphology of Nile tilapia. Animal 2017, 11, 1259–1269. [Google Scholar] [CrossRef] [PubMed]
- Kesselring, J.C.; Gruber, C.; Standen, B.; Wein, S. Continuous and pulse-feeding application of multispecies probiotic bacteria in whiteleg shrimp, Litopenaeus vannamei. J. World Aquac. Soc. 2019, 50, 1123–1132. [Google Scholar] [CrossRef]
- Standen, B.T.; Peggs, D.L.; Rawling, M.D.; Foey, A.; Davies, S.J.; Santos, G.A.; Merrifield, D.L. Dietary administration of a commercial mixed-species probiotic improves growth performance and modulates the intestinal immunity of tilapia, Oreochromis niloticus. Fish. Shellfish Immunol. 2016, 49, 427–435. [Google Scholar] [CrossRef]
- Krummenauer, D.; Poersch, L.; Romano, L.A.; Lara, G.R.; Encarnação, P.; Wasielesky, W. The Effect of Probiotics in a Litopenaeus vannamei Biofloc Culture System Infected with Vibrio parahaemolyticus. J. Appl. Aquac. 2014, 26, 370–379. [Google Scholar] [CrossRef]
- Herlemann, D.P.; Labrenz, M.; Jürgens, K.; Bertilsson, S.; Waniek, J.J.; Andersson, A.F. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011, 5, 1571–1579. [Google Scholar] [CrossRef] [PubMed]
- Rosén, A. Denitrification by Rhizobium meliloti, Swedish University of Agricultural Sciences. 1996. Available online: https://www.osti.gov/etdeweb/servlets/purl/378189 (accessed on 9 October 2020).
- Delmont, T.O.; Quince, C.; Shaiber, A.; Esen, Ö.C.; Lee, S.T.; Rappé, M.S.; McLellan, S.L.; Lücker, S.; Eren, A.M. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 2018, 3, 804–813. [Google Scholar] [CrossRef]
- Sorokin, D.Y.; Lücker, S.; Vejmelkova, D.; Kostrikina, N.A.; Kleerebezem, R.; Rijpstra, W.I.C.; Damsté, J.S.S.; Le Paslier, D.; Muyzer, G.; Wagner, M.; et al. Nitrification expanded: Discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J. 2012, 6, 2245–2256. [Google Scholar] [CrossRef]
- Hüpeden, J.; Wemheuer, B.; Indenbirken, D.; Schulz, C.; Spieck, E. Taxonomic and functional profiling of nitrifying biofilms in freshwater, brackish and marine RAS biofilters. Aquac. Eng. 2020, 90, 102094. [Google Scholar] [CrossRef]
- Brailo, M.; Schreier, H.J.; McDonald, R.; Maršić-Lučić, J.; Gavrilović, A.; Pećarević, M.; Jug-Dujaković, J. Bacterial community analysis of marine recirculating aquaculture system bioreactors for complete nitrogen removal established from a commercial inoculum. Aquaculture 2019, 503, 198–206. [Google Scholar] [CrossRef]
- Bartelme, R.P.; McLellan, S.L.; Newton, R.J. Freshwater Recirculating Aquaculture System Operations Drive Biofilter Bacterial Community Shifts around a Stable Nitrifying Consortium of Ammonia-Oxidizing Archaea and Comammox Nitrospira. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Chakraborty, T.; Prusty, A.K.; Das, P.; Paniprasad, K.; Mohanta, K.N. Use of different microbial probiotics in the diet of rohu, Labeo rohita fingerlings: Effects on growth, nutrient digestibility and retention, digestive enzyme activities and intestinal microflora. Aquac. Nutr. 2012, 18, 1–11. [Google Scholar] [CrossRef]
Control A | Control B | Probiotics A | Probiotics B | ||||
---|---|---|---|---|---|---|---|
Most Common Bacteria | Read Counts | Most Common Bacteria | Read Counts | Most Common Bacteria | Read Counts | Most Common Bacteria | Read Counts |
Planctomycetes sp. | 12,906 | Chloroflexi sp. | 6142 | Chloroflexi sp. | 21,679 | Chloroflexi sp. | 16,001 |
Chitinophaga sp. | 9586 | Planctomycetes sp. | 5041 | Planctomycetes sp. | 11,622 | Planctomycetes sp. | 12,180 |
Ramlibacter sp. | 9030 | Bradyrhizobium sp. | 2845 | Microbacterium paraoxydans | 2810 | No match | 3596 |
Acidovorax sp. | 8561 | Chitinophaga sp. | 2710 | Chitinophaga sp. | 2645 | Microbacterium paraoxydans | 3572 |
No match | 5346 | Mesorhizobium sp. | 2447 | Mesorhizobium sp. | 2550 | Mesorhizobium sp. | 3517 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menanteau-Ledouble, S.; Gonçalves, R.A.; El-Matbouli, M. Feed Supplementation with a Commercially Available Probiotic Solution Does Not Alter the Composition of the Microbiome in the Biofilters of Recirculating Aquaculture Systems. Pathogens 2020, 9, 830. https://doi.org/10.3390/pathogens9100830
Menanteau-Ledouble S, Gonçalves RA, El-Matbouli M. Feed Supplementation with a Commercially Available Probiotic Solution Does Not Alter the Composition of the Microbiome in the Biofilters of Recirculating Aquaculture Systems. Pathogens. 2020; 9(10):830. https://doi.org/10.3390/pathogens9100830
Chicago/Turabian StyleMenanteau-Ledouble, Simon, Rui A. Gonçalves, and Mansour El-Matbouli. 2020. "Feed Supplementation with a Commercially Available Probiotic Solution Does Not Alter the Composition of the Microbiome in the Biofilters of Recirculating Aquaculture Systems" Pathogens 9, no. 10: 830. https://doi.org/10.3390/pathogens9100830
APA StyleMenanteau-Ledouble, S., Gonçalves, R. A., & El-Matbouli, M. (2020). Feed Supplementation with a Commercially Available Probiotic Solution Does Not Alter the Composition of the Microbiome in the Biofilters of Recirculating Aquaculture Systems. Pathogens, 9(10), 830. https://doi.org/10.3390/pathogens9100830