Extracts from Six Native Plants of the Yucatán Peninsula Hinder Mycelial Growth of Fusarium equiseti and F. oxysporum, Pathogens of Capsicum chinense
Abstract
:1. Introduction
2. Results
2.1. Antifungal Activity of Plant Extracts Against Fusarium spp.
2.2. Minimum Inhibitory Concentration of Ethanolic Extracts, Fractions and α-Asarone
2.3. Inhibitory Concentration (IC50 and IC95)
2.4. Effect of Active Extracts from Mosannona depressa on Morphology of Fusarium Strains
2.5. Identification of Active Components in Extracts from Mosannona depressa by LC-UV-HRMS
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Preparation of Plant Extracts
4.2.1. Aqueous Extracts
4.2.2. Ethanolic Extracts
4.3. Fungal Cultures
4.4. Antifungal Microdilution Assay of Extracts
4.4.1. Preparation of Conidial Suspension
4.4.2. Bioassay with Aqueous Extracts
4.4.3. Bioassay with Ethanolic Extracts
4.4.4. Minimum Inhibitory Concentration of Active EEs and Fractions
4.5. Effect of Ethanolic Extracts on Hyphal Morphology of Fusarium Strains
4.6. Chromatographic and Spectrometric Analyses
4.6.1. Thin Layer Chromatography (TLC)
4.6.2. LC-UV-HRMS
4.7. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kajmann, R.; Ellis, J.; et al. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant. Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [Green Version]
- Velarde-Félix, S.; Garzón-Tiznado, J.A.; Hernández-Verdugo, S.; López-Orona, C.A.; Retes-Manjarrez, J.E. Occurrence of Fusarium oxysporum causing wilt on pepper in México. Can. J. Plant. Pathol. 2018, 40, 238–247. [Google Scholar] [CrossRef]
- Bosland, P.W.; Votava, E.J. Peppers: Vegetable and Spice Capsicums, 2nd ed.; CABI: Wallingford, Oxfordshire, UK, 2012; Volume 22, pp. 16–36. ISBN 9781845938253. [Google Scholar]
- Naves, E.R.; de Ávila Silva, L.; Sulpice, R.; Araújo, W.L.; Nunes-Nesi, A.; Pérez, L.E.; Zsögön, A. Capsaicinoids: Pungency beyond. Capsicum. Trends Plant. Sci. 2019, 24, 109–120. [Google Scholar] [CrossRef]
- Chiles y Pimientos. Available online: https://www.gob.mx/cms/uploads/attachment/file/255626/Planeaci_n_Agr_cola_Nacional_2017-2030-_parte_tres (accessed on 14 September 2020).
- Srinivasan, K. Biological activities of red pepper (Capsicum annuum) and its pungent principle capsaicin: A review. Crit. Rev. Food Sci. Nutr. 2015, 56, 1488–1500. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Lau, N.; Medina-Lara, F.; Martínez-Estévez, M. El chile habanero: Su origen y usos. Ciencia 2011, 63, 70–77. [Google Scholar]
- Anuario Estadístico de la Producción Agrícola. Available online: https://nube.siap.gob.mx/cierreagricola (accessed on 14 September 2020).
- Mejía-Bautista, M.Á.; Reyes-Ramírez, A.; Cristóbal-Alejo, J.; Tun-Suárez, J.M.; Borges-Gómez, L.D.C.; Pacheco-Aguilar, J.R. Bacillus spp. en el control de la marchitez causada por Fusarium spp. en Capsicum chinense. Rev. Mex. Fitopatol. 2016, 34, 208–222. [Google Scholar] [CrossRef] [Green Version]
- Mis-Mut, D.M. Identificación Molecular de Trichoderma spp. con Aplicación Agrícola y su Efectividad in vitro Contra Fusarium spp. Tesis de Maestría; Instituto Tecnológico de Conkal: Mérida, Yucatán, Mexico, 2015. [Google Scholar]
- Shi, W.; Tan, Y.; Wang, S.; Gardiner, D.M.; De Saeger, A.; Liao, Y.; Wang, C.; Fan, Y.; Wang, Z.; Wu, A. Mycotoxigenic potentials of Fusarium species in various culture matrices revealed by mycotoxin profiling. Toxins 2017, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Bashir, M.R.; Atiq, M.; Sajid, M.; Mohsan, M.; Abbas, W.; Alam, M.W.; Bashair, M. Antifungal exploitation of fungicides against Fusarium oxysporum f. sp. capsici causing Fusarium wilt of chilli pepper in Pakistan. Environ. Sci. Pollut. Res. 2018, 25, 6797–6801. [Google Scholar] [CrossRef]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energ. Sec. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Gaherwal, S.; Prakash, M.M.; Khasdeo, K.; Sharma, A. Impact of selected chemical and herbal pesticide on beneficial soil microorganism. Int. J. Microbiol. Res. 2015, 6, 236–239. [Google Scholar] [CrossRef]
- Matyjaszczyk, E. “Biorationals” in integrated pest management strategies. J. Plant. Dis. Prot. 2018, 125, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Moya-Elizondo, E.A.; Jacobsen, B.J. Integrated management of Fusarium crown rot of wheat using fungicide seed treatment, cultivar resistance, and induction of systemic acquired resistance (SAR). Biol. Control. 2016, 92, 153–163. [Google Scholar] [CrossRef]
- Walia, S.; Saha, S.; Tripathi, V.; Sharma, K.K. Phytochemical biopesticides: Some recent developments. Phytochem. Rev. 2017, 16, 989–1007. [Google Scholar] [CrossRef]
- Ramírez-Mares, M.V.; Hernández-Carlos, B. Plant-derived natural products from the American continent for the control of phytopathogenic fungi: A review. J. Glob. Innov. Agric. Soc. Sci. 2015, 3, 96–118. [Google Scholar] [CrossRef]
- Peñuelas-Rubio, O.; Arellano-Gil, M.; Verdugo-Fuentes, A.A.; Chaparro-Encinas, L.A.; Hernández-Rodríguez, S.E.; Martínez-Carrillo, J.L.; Vargas-Arispuro, I.D.C. Larrea tridentata extracts as an ecological strategy against Fusarium oxysporum radicis-lycopersici in tomato plants under greenhouse conditions. Rev. Mex. Fitopatol. 2017, 35, 360–376. [Google Scholar] [CrossRef]
- Sesan, T.E.; Enache, E.; Iacomi, B.M.; Oprea, M.; Oancea, F.; Iacomi, C. In vitro antifungal activity of some plant extracts against Fusarium oxysporum in blackcurrant (Ribes nigrum L.). Acta Sci. Pol. Hortorum Cultus. 2017, 16, 163–172. [Google Scholar] [CrossRef]
- De Rodríguez, D.J.; Trejo-González, F.A.; Rodríguez-García, R.; Díaz-Jimenez, M.L.V.; Sáenz-Galindo, A.; Hernández-Castillo, F.D.; Peña-Ramos, F.M. Antifungal activity in vitro of Rhus muelleri against Fusarium oxysporum f. sp. lycopersici. Ind. Crops Prod. 2015, 75, 150–158. [Google Scholar] [CrossRef]
- Villaseñor, J.L. Checklist of the native vascular plants of México. Rev. Mex. Biodivers. 2016, 87, 559–902. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Morillo, I.M. La flora de la península de Yucatán: ¿Diversa? ¿Bien conocida? ¿Protegida? No, no y ¿No? Desde Herb. CICY 2019, 11, 130–137. [Google Scholar]
- Vargas-Díaz, A.A.; Gamboa Angulo, M.; Medina Baizabal, I.L.; Pérez Brito, D.; Cristóbal Alejo, J.; Ruiz Sánchez, E. Evaluation of native Yucatecan plant extracts against Alternaria chrysanthemi and antifungal spectrum of Acalypha gaumeri. Rev. Mex. Fitopatol. 2014, 32, 01–11. [Google Scholar]
- Gamboa-Angulo, M.M.; Cristóbal-Alejo, J.; Medina-Baizabal, I.L.; Chí-Romero, F.; Méndez-González, R.; Simá-Polanco, P.; May-Pat, F. Antifungal properties of selected plants from the Yucatan peninsula, Mexico. World J. Microbiol. Biotechnol. 2008, 24, 1955–1959. [Google Scholar] [CrossRef]
- Peraza-Sánchez, S.R.; Chan-Che, E.O.; Ruiz-Sánchez, E. Screening of Yucatecan plant extracts to control Colletotrichum gloeosporioides and isolation of a new pimarene from Acacia pennatula. J. Agric. Food Chem. 2005, 53, 2429–2432. [Google Scholar] [CrossRef] [PubMed]
- Digital Flora: Península de Yucatán, Herbario CICY, Unidad de Recursos Naturales. Available online: http://www.cicy.mx/sitios/flora%20digital/ficha_virtual.php?especie=820 (accessed on 21 May 2020).
- Baños, S.B.; Necha, L.L.B.; Luna, L.B.; Torres, K.B. Antifungal activity of leaf and stem extracts from various plant species on the incidence of Colletotrichum gloeosporioides of papaya and mango fruit after storage. Rev. Mex. Fitopatol. 2002, 20, 8–12. [Google Scholar]
- Mogle, U.P. Efficacy of leaf extracts against the post-harvest fungal pathogens of cowpea. Biosci. Discov. 2013, 4, 39–42. [Google Scholar]
- Enríquez, R.G.; Chávez, M.A.; Jauregui, F. Propenylbenzenes from Guatteria gaumeri. Phytochemistry 1980, 19, 2024–2025. [Google Scholar] [CrossRef]
- Jimenez Arellanes, A.; Mata, R.; Lotina-Henssen, B.; Lang, A.L.A.; Ibarra, L.V. Phytogrowth-inhibitory compounds from Malmea depressa. J. Nat. Prod. 1996, 59, 202–204. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, R.; Thakre, B. Antifungal activity of leaf extracts of Ocimum sanctum against fungal pathogens. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1210–1214. [Google Scholar] [CrossRef]
- Gupta, M.; Sharma, S.; Bhadauria, R. In vitro efficacy of Momordica charantia extracts against phytopathogenic fungi, Fusarium oxysporum. J. Biopest. 2016, 9, 8–22. [Google Scholar]
- Mejía, R. Guatteria gaumeri, Malmea depressa o Yumel, una revisión sobre su historia, sus propiedades y su uso en la homeopatía. Homeopatia Méx. 2016, 85, 28–38. [Google Scholar]
- Fort, R.S.; Barnech, T.J.M.; Dourron, J.; Colazzo, M.; Aguirre-Crespo, F.J.; Duhagon, M.A.; Álvarez, G. Isolation and structural characterization of bioactive molecules on prostate cancer from Mayan traditional medicinal plants. Pharmaceuticals 2018, 11, 78. [Google Scholar] [CrossRef] [Green Version]
- Husain, A.; Indani, A.; Bhutada, P. Hypercholesterolemia effectively managed with homoeopathic medicine Gautteria gaumeri (Yumel): Results from a clinical study in academic clinical set up in north India. Int. J. Adv. Med. 2017, 4, 772. [Google Scholar] [CrossRef] [Green Version]
- Godoy-Rodríguez, T. Actividad Antifúngica de Plantas Nativas de la Península de Yucatán Para el Control de Fitopatógenos Poscosecha de Capsicum spp. Tesis de Maestría; Centro de Investigación Científica de Yucatán: Mérida, Yucatán, Mexico, 2019. [Google Scholar]
- Saha, A.; Rahman, M.S. Antimicrobial activity of crude extract from Calycopteris floribunsa. Bangladesh J. Microbiol. 2008, 25, 137–139. [Google Scholar] [CrossRef] [Green Version]
- Begum, J.; Yusuf, M.; Chowdhury, J.U.; Khan, S.; Anwar, M.N. Antifungal activity of forty higher plants against phytopathogenic fungi. Bangladesh J. Microbiol. 2007, 24, 76–78. [Google Scholar] [CrossRef] [Green Version]
- Rinez, A.; Daami-Remadi, M.; Ladhari, A.; Omezzine, F.; Rinez, I.; Haouala, R. Antifungal activity of Datura metel L. organic and aqueous extracts on some pathogenic and antagonistic fungi. Afr. J. Microbiol. Res. 2013, 7, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Matos, O.C.; Baeta, J.; Silva, M.J.; Ricardo, C.P. Sensitivity of Fusarium strains to Chelidonium majus L. extracts. J. Ethnopharmacol. 1999, 66, 151–158. [Google Scholar] [CrossRef]
- Tian, J.; Zeng, X.; Zhang, S.; Wang, Y.; Zhang, P.; Lü, A.; Peng, X. Regional variation in components and antioxidant and antifungal activities of Perilla frutescens essential oils in China. Ind. Crops Prod. 2014, 59, 69–79. [Google Scholar] [CrossRef]
- De-la-Cruz-Chacón, I.; Riley-Saldaña, C.A.; Arrollo-Gómez, S.; Sancristóbal-Domínguez, T.J.; Castro-Moreno, M.; González-Esquinca, A.R. Spatio-temporal variation of alkaloids in Annona purpurea and the associated influence on their antifungal activity. Chem. Biodiv. 2019, 16, 1–14. [Google Scholar] [CrossRef]
- Lee, H.S. Fungicidal property of active component derived from Acorus gramineus rhizome against phytopathogenic fungi. Bioresour. Technol. 2007, 98, 1324–1328. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Li, S.X.; Zhao, J.; Bernier, U.R.; Becnel, J.J.; Agramonte, N.M.; Duke, S.O.; Cantrell, C.L.; Wedge, D.E. Identification and characterization of biopesticides from Acorus tatarinowii and A. calamus. In Medicinal and Aromatic Crops: Production, Phytochemistry and Utilization; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2016; pp. 121–143. [Google Scholar] [CrossRef]
- Momin, R.A.; Nair, M.G. Pest-managing efficacy of trans-asarone isolated from Daucus carota L. seeds. J. Agric. Food Chem. 2002, 50, 4475–4478. [Google Scholar] [CrossRef]
- Perrett, S.; Whitfield, P.J. Anthelmintic and pesticidal activity of Acorus gramineus (Araceae) is associated with penylpropanoid asarones. Phytother. Res. 1995, 9, 405–409. [Google Scholar] [CrossRef]
- Phongpaichit, S.; Pujenjob, N.; Rukachaisirikul, V.; Ongsakul, M. Antimicrobial activities of the crude methanol extract of Acorus calamus Linn. Songklanakarin J. Sci. Technol. 2005, 27, 517–523. [Google Scholar]
- Dissanayake, M.L.M.C.; Ito, S.I.; Akakabe, Y. TLC bioautography guided detection and biological activity of antifungal compounds from medicinal plant Acorus calamus Linn. Asian J. Plant. Pathol. 2015, 9, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Venkatesan, R.; Karuppiah, P.S.; Arumugam, G.; Balamuthu, K. β-Asarone exhibits antifungal activity by inhibiting ergosterol biosynthesis in Aspergillus niger ATCC 16888. Proc. Natl. Acad. Sci. India 2019, 89, 173–184. [Google Scholar] [CrossRef]
- Rajput, S.B.; Karuppayil, S.M. β-Asarone, an active principle of Acorus calamus rhizome, inhibits morphogenesis, biofilm formation and ergosterol biosynthesis in Candida albicans. Phytomedicine 2013, 20, 139–142. [Google Scholar] [CrossRef]
- Cruz, S.; Cáceres, A.; Álvarez, L.; Apel, M.; Henríquez, A. Chemical diversity of essential oils from 15 Piper species from Guatemala. Acta Hortic. 2012, 964, 39–46. [Google Scholar] [CrossRef]
- Giovannini, P.; Howes, M.J.R. Medicinal plants used to treat snakebite in Central America: Review and assessment of scientific evidence. J. Ethnopharmacol. 2017, 199, 240–256. [Google Scholar] [CrossRef]
- Cáceres, A.; Cruz, S.M.; Gaitán, I.; Guerrero, K.; Álvarez, L.E.; Marroquín, M.N. Antioxidant activity and quantitative composition of extracts of Piper species from Guatemala with potential use in natural product industry. Acta Hortic. 2012, 964, 77–84. [Google Scholar] [CrossRef]
- Almeda, F.; Astorga, L.; Orellana, A.; Sampuel, L.; Sierra, P.; Gaitán, I.; Cáceres, A. Piper genus: Source of natural products with anti-tyrosinase activity favored in phytocosmetics. Int. J. Phytocos. Nat. Ingred. 2015, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Cáceres, A.; Almeda, F.; Astorga, L.M.; Orellana, A.C.; Sampuel, L.I.; Sierra, P.; Zelada, V.F. Anti-urease activity of native species of genus Piper from Guatemala with potential application in infection control. Int. J. Phytocos. Nat. Ingred. 2018, 5. [Google Scholar] [CrossRef]
- Calderón, Á.I.; Romero, L.I.; Ortega-Barría, E.; Solís, P.N.; Zacchino, S.; Jiménez, A.; Espinosa, A. Screening of Latin American plants for antiparasitic activities against malaria, Chagas disease, and leishmaniasis. Pharm. Biol. 2010, 48, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Ober, A.G.; Fischer, N.H.; Parodi, F. Jamaicolides AD, four sesquiterpene lactones from Calea jamaicensis. Phytochemistry 1986, 25, 877–881. [Google Scholar] [CrossRef]
- Lima, T.C.; de Jesus Souza, R.; da Silva, F.A.; Biavatti, M.W. The genus Calea L.: A review on traditional uses, phytochemistry, and biological activities. Phytother. Res. 2018, 32, 769–795. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Estrada, A.; Medina-Baizabal, I.L.; Ruiz-Sánchez, E.; Gamboa-Angulo, M. Effect of Eugenia winzerlingii extracts on Bemuse tabaci and evaluation of its nursery propagation. Phyton. Int. J. Exp. Bot. 2019, 88, 161–170. [Google Scholar] [CrossRef]
- Abou-Jawdah, Y.; Sobh, H.; Salameh, A. Antimycotic activities of selected plant flora, growing wild in Lebanon, against phytopathogenic fungi. J. Agric. Food Chem. 2002, 50, 3208–3213. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard M38-A2; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2002. [Google Scholar]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irkin, R.; Korukluoglu, M. Control of Aspergillus niger with garlic, onion and leek extracts. Afr. J. Biotechnol. 2007, 6, 384–387. [Google Scholar]
- Martín, J.; Crespo, G.; González-Menéndez, V.; Pérez-Moreno, G.; Sánchez-Carrasco, P.; Pérez-Victoria, I.; Bills, G.F. MDN-0104, an antiplasmodial betaine lipid from Heterospora chenopodii. J. Nat. Prod. 2014, 77, 2118–2123. [Google Scholar] [CrossRef]
Species | Local Name a | Family | Site | Voucher | Plant Parts Used |
---|---|---|---|---|---|
Alseis yucatanensis Standl. | ja’as che’ | Rubiaceae | Kiuic | JLT-3179 | L |
Alvaradoa amorphoides Liebm. | bel siinik che’ | Simaroubaceae | Jahuactal | GC-8236 | L, S, R |
Annona primigenia Standl. & Steyerm | Annonaceae | Jahuactal | GC-8057 | L, SB | |
Bakeridesia notolophium (A. Gray) Hochr. | Malvaceae | Punta Pulticub | RD-s/n | L, S | |
Bravaisia berlandieriana (Nees) T.F.Daniel | Juluub | Acanthaceae | Punta Laguna | GC-8168 | L, S, R |
Byrsonima bucidifolia Standl. | Malpighiaceae | Jahuactal | GC-8087 | L, S, R | |
Calea jamaicensis (L.) L. | tu’ xikin | Asteraceae | Jahuactal | GC-8084 | WP |
Cameraria latifolia L. | cheechen blanco | Apocynaceae | Jahuactal | JLT-1165 | L, SB, R |
Chrysophyllum mexicanum Brandegee ex Standl. | chi’kéej | Sapotaceae | Jahuactal | GC-8082 | L, S, R |
Coccoloba sp. | Polygonaceae | Xmaben | GC-8258 | L, S | |
Croton arboreus Millsp. | pak che’ | Euphorbiaceae | Jahuactal | JLT-1132 | L, S, R |
Croton itzaeus Lundell | Euphorbiaceae | Jahuactal | JLT-1138 | L, SB, RB | |
Croton sp. | Euphorbiaceae | Xmaben | GC-8262 | WP | |
Cupania sp. | Sapindaceae | Chacchoben Limones | GC-8009 | L, S | |
Diospyros sp. | Ebenaceae | Punta Laguna | GC-8147 | L | |
Erythroxylum confusum Britton | Erythroxylaceae | Jahuactal | JLT-1143 | L, S, R | |
Erythroxylum rotundifolium Lunan | baak soots’ | Erythroxylaceae | Jahuactal | GC-8179 | L, S |
Erythroxylum sp. | Erythroxylaceae | Punta Laguna | GC-8137 | L | |
Eugenia sp. | Myrtaceae | Punta Laguna | GC-8127 | L, S, R | |
Euphorbia armourii Millsp. | kabal chakaj | Euphorbiaceae | Kaxil Kiuic | JLT-3182 | WP |
Guettarda combsii Urb. | Rubiaceae | Jahuactal | GC-8047 | L, SB, RB | |
Helicteres baruensis Jacq. | Sutup | Malvaceae | Kaxil Kiuic | GC-8127 | L, S, R |
Heteropterys laurifolia (L.) A. Juss. | chilillo aak’ | Malpighiaceae | Jahuactal | GC-8035 | L, SB, R |
Hybanthus yucatanensis Millsp. | Violaceae | Punta Laguna | GC-8158 | L, S | |
Ipomoea clavata (G. Don) Ooststr. ex J.F.Macbr. | ulu’um ja’ | Convolvulaceae | Kaxil Kiuic | JLT-3181 | WP |
Karwinskia humboldtiana (Willd. ex Roem. & Schult.) Zucc. | I u’um che’ | Rhamnaceae | Kaxil Kiuic | JLT-3188 | L |
Licaria sp. | Lauraceae | Jahuactal | GC-8037 | L, SB, RB | |
Macroscepis diademata (Ker Gawl.) W.D. Stevens | aak’tóom paap | Apocynaceae | Kaxil Kiuic | JLT-3187 | L, SB |
Malpighia glabra L. | Malpighiaceae | Punta Laguna | GC-8144 | L, S, R | |
Morella cerifera (L.) Small. | Myricaceae | Jahuactal | JLT-1137 | L, S, RB | |
Mosannona depressa (Ball.) Chatrou | sak éelemuy | Annonaceae | Jahuactal | GC-8085 | L, SB, RB |
Parathesis cubana (A. DC.) Molinet & M.Gómez | Primulaceae | Jahuactal | JLT-1133 | L, SB, RB | |
Paullinia sp. | Sapindaceae | Punta Laguna | GC-8106 | L, R | |
Piper neesianum C.DC. | Piperaceae | Jahuactal | GC-8080 | L, S, R | |
Psychotria sp. | Rubiaceae | Jahuactal | GC-8086 | WP | |
Randia aculeata L. | kat ku’uk | Rubiaceae | Punta Laguna | GC-8156 | L, S, R |
Serjania caracasana (Jacq.) Willd | Sapindaceae | Punta Laguna | GC-8114 | L, S, R | |
Simarouba glauca DC. | Simaroubaceae | Jahuactal | GC-8081 | L, SB, RB | |
Stemmadenia donnell-smithii (Rose) Woodson | Apocynaceae | Jahuactal | GC-8056 | L, SB | |
Turnera aromatica Arbo | Passifloraceae | Jahuactal | GC-8081 | WP |
Extract Concentration | Plant Species | Mycelial Growth Inhibition (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fusarium equiseti | Fusarium oxysporum | ||||||||||
L | S | R | WP | L | S | R | WP | ||||
Ethanolic | Mosannona depressa | 0 c | 100 a | 100 a | ne | 0 b | 100 a | 100 a | ne | ||
2000 µg/mL | Parathesis cubana | 0 c | 0 b | 100 a | ne | 0 b | 0 b | 100 a | ne | ||
Piper neesianum | 100 a | 0 b | 0 c | ne | 75 a | 0 b | 0 b | ne | |||
Aqueous | Cameraria latifolia | 0 c | 0 b | 25 b | ne | 0 b | 0 b | 0 b | ne | ||
3% w/v | Calea jamaicensis | ne | ne | ne | 75 | ne | ne | ne | 0 | ||
Heteropterys laurifolia | 25 b | 0 b | 0 | ne | 0 b | 0 b | 0 b | ne | |||
Negative C | RPMI | 0 b | 0 b | ||||||||
blank | 0 b | 0 b | |||||||||
Positive C | Prochloraz 0.11% | 100 a | 100 a |
Extract/ Fraction | Solvent | Fusarium equiseti | Fusarium oxysporum | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Concentration of Extracts (µg/mL) | |||||||||||
2000 | 1000 | 500 | 250 | MIC | 2000 | 1000 | 500 | 250 | MIC | ||
MDT | E | 100 a | 100 a | 75 c | 0 c | 1000++ | 100 a | 75 b | 0 f | 0 b | 2000+ |
MDT-a | H | ne | 100 a | 0 e | 0 c | 1000++ | ne | 100 a | 0 f | 0 b | 1000+ |
MDT-b | A | ne | 100 a | 83 b | 0 c | 1000++ | ne | 100 a | 75 b | 0 b | 1000+ |
MDT-c | P | ne | 75 c | 50 d | 0 c | >1000 | ne | 75 b | 50 d | 0 b | >1000 |
MDR | E | 100 a | 83 b | 0 e | 0 c | 2000++ | 100 a | 75 b | 0 f | 0 b | 2000+ |
MDR-a | H | ne | 0 d | 0 e | 0 c | >1000 | ne | 0 d | 0 f | 0 b | >1000 |
MDR-b | A | ne | 75 c | 0 e | 0 c | >1000 | ne | 0 d | 0 f | 0 b | >1000 |
MDR-c | P | ne | 83 b | 50 d | 0 c | >1000 | ne | 75 b | 50 d | 0 b | >1000 |
PCR | E | 100 a | 100 a | 0 e | 0 c | 1000++ | 100 a | 58 c | 25 e | 0 b | 2000+ |
PCR-a | H | ne | 100 a | 0 e | 0 c | 1000++ | ne | 100 a | 0 f | 0 b | 1000++ |
PCR-b | A | ne | 100 a | 0 e | 0 c | 1000++ | ne | 0 d | 0 f | 0 b | >1000 |
PCR-c | P | ne | 0 d | 0 e | 0 c | >1000 | ne | 0 d | 0 f | 0 b | >1000 |
PNH | E | 100 a | 100 a | 0 e | 0 c | 1000+ | 75 b | ne | ne | ne | 2000+ |
PNH-a | H | ne | 0 d | 0 e | 0 c | >1000 | ne | ne | ne | ne | |
PNH-b | A | ne | 100 a | 83 b | 0 c | 1000++ | ne | ne | ne | ne | |
PNH-c | P | ne | 100 a | 0 e | 0 c | 1000+ | ne | ne | ne | ne | |
α-Asarone | CS | ne | 100a | 75 b | 500++ | ne | ne | 66 c | 0 b | >500 | |
NC | 0 b | 0 d | 0 e | 0 c | 0 c | 0 d | 0 f | 0 b | |||
PC | 100 a | 100 a | 100 a | 100 a | 100 a | 100 a | 100 a | 100 a |
Source | Extract/Fraction | Fusarium equiseti | Fusarium oxysporum | ||
---|---|---|---|---|---|
IC50 (CI) | IC95 (CI) | IC50 (CI) | IC95 (CI) | ||
M. depressa | MDT | 468 (455–477) | 545 (534–561) | 944 (889–965) | 1079 (1051–1156) |
MDT-b | 462 (412–476) | 526 (515–562) | 472 (432–483) | 539 (524–596) | |
α-asarone | CS | 236 (216–244) | 269 (259–289) | 482 (459–494) | 526 (521–582) |
P. cubana | PCR | 788 (545–984) | 866 (638–1063) | 876 (836–920) | 1494 (1407–1602) |
P. neesianum | PNH | 788 (545–984) | 866 (638–1063) | ne | ne |
PNH-b | 462 (412–476) | 526 (515–562) | ne | ne |
Peak | Retention Time (min) | [M + H]+ | MW | Molecular Formula | Compound |
---|---|---|---|---|---|
1 | 2.23 | 225.1120 | 224.1120 | C12H16O4 | Not identified |
2 | 2.55 | 197.0808 | 196.0735 | C10H12O4 | Asaraldehyde |
3 | 4.27 | 209.1172 | 208.1099 | C12H16O3 | α-Asarone |
4 | 4.81 | 221.1170 | 220.1097 | C13H16O3 | Not identified |
5 | 4.89 | 193.0857 | 192.0784 | C11H12O3 | Isomyristicin |
Peak | Retention Time (min) | [M + H]+ | MW | Molecular Formula | Compound |
---|---|---|---|---|---|
1 | 4.25 | 209.1172 | 208.1094 | C12H16O3 | α-Asarone |
2 | 4.37 | 239.1278 | 238.1205 | C13H18O4 | 1,2,3,4-Tetramethoxy-5- (2-propenyl) benzene |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-Cerino, P.; Cristóbal-Alejo, J.; Ruiz-Carrera, V.; Carnevali, G.; Vera-Ku, M.; Martín, J.; Reyes, F.; Gamboa-Angulo, M. Extracts from Six Native Plants of the Yucatán Peninsula Hinder Mycelial Growth of Fusarium equiseti and F. oxysporum, Pathogens of Capsicum chinense. Pathogens 2020, 9, 827. https://doi.org/10.3390/pathogens9100827
Cruz-Cerino P, Cristóbal-Alejo J, Ruiz-Carrera V, Carnevali G, Vera-Ku M, Martín J, Reyes F, Gamboa-Angulo M. Extracts from Six Native Plants of the Yucatán Peninsula Hinder Mycelial Growth of Fusarium equiseti and F. oxysporum, Pathogens of Capsicum chinense. Pathogens. 2020; 9(10):827. https://doi.org/10.3390/pathogens9100827
Chicago/Turabian StyleCruz-Cerino, Patricia, Jairo Cristóbal-Alejo, Violeta Ruiz-Carrera, Germán Carnevali, Marina Vera-Ku, Jesús Martín, Fernando Reyes, and Marcela Gamboa-Angulo. 2020. "Extracts from Six Native Plants of the Yucatán Peninsula Hinder Mycelial Growth of Fusarium equiseti and F. oxysporum, Pathogens of Capsicum chinense" Pathogens 9, no. 10: 827. https://doi.org/10.3390/pathogens9100827
APA StyleCruz-Cerino, P., Cristóbal-Alejo, J., Ruiz-Carrera, V., Carnevali, G., Vera-Ku, M., Martín, J., Reyes, F., & Gamboa-Angulo, M. (2020). Extracts from Six Native Plants of the Yucatán Peninsula Hinder Mycelial Growth of Fusarium equiseti and F. oxysporum, Pathogens of Capsicum chinense. Pathogens, 9(10), 827. https://doi.org/10.3390/pathogens9100827