Animal Models of Varicella Zoster Virus Infection
Abstract
:1. Introduction
1.1. Virological Features of VZV
1.2. VZV Transmission and Clinical Manifestations
1.3. VZV Vaccines
2. Animal Models of VZV Infection
2.1. Guinea Pigs
2.2. Mice and Rats
2.3. SCID-hu Mouse
2.4. Nonhuman Primates
3. Simian Varicella Virus
3.1. Patas Monkeys (Erythrocebus patas)
3.2. Cynomolgus Monkeys (Macaca fascicularis)
3.3. Chlorocebus ssp.
3.4. Rhesus Macaque (Macaca mulata)
4. Conclusions
References
- Cohen, J.; Straus, S.E.; Arvin, A.M. Varicella-zoster virus replication, pathogenesis, and management; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; Volume 2. [Google Scholar]
- Puvion-Dutilleul, F.; Pichard, E.; Laithier, M.; Leduc, E.H. Effect of dehydrating agents on DNA organization in herpes viruses. J. Histochem. Cytochem. 1987, 35, 635–645. [Google Scholar] [CrossRef]
- Almeida, J.D.; Howatson, A.F.; Williams, M.G. Morphology of varicella (chicken pox) virus. Virology 1962, 16, 353–355. [Google Scholar] [CrossRef]
- Cok, M.L.; Stevens, J.G. Replication of varicella-zoster virus in cell culture: An ultrastructural study. J. Ultrastruct. Res. 1970, 32, 334–350. [Google Scholar] [CrossRef]
- Cohen, J.I. The varicella-zoster virus genome. Curr. Top. Microbiol. Immunol. 2010, 342, 1–14. [Google Scholar] [CrossRef]
- Davison, A.J.; Scott, J.E. The complete DNA sequence of varicella-zoster virus. J. Gen. Virol. 1986, 67 (Pt 9), 1759–1816. [Google Scholar]
- Cohen, J.I.; Brunell, P.A.; Straus, S.E.; Krause, P.R. Recent advances in varicella-zoster virus infection. Ann. Intern. Med. 1999, 130, 922–932. [Google Scholar]
- Leclair, J.M.; Zaia, J.A.; Levin, M.J.; Congdon, R.G.; Goldmann, D.A. Airborne transmission of chickenpox in a hospital. N. Engl. J. Med. 1980, 302, 450–453. [Google Scholar] [CrossRef]
- Sawyer, M.H.; Chamberlin, C.J.; Wu, Y.N.; Aintablian, N.; Wallace, M.R. Detection of varicella-zoster virus DNA in air samples from hospital rooms. J. Infect. Dis. 1994, 169, 91–94. [Google Scholar] [CrossRef]
- Suzuki, K.; Yoshikawa, T.; Tomitaka, A.; Matsunaga, K.; Asano, Y. Detection of aerosolized varicella-zoster virus DNA in patients with localized herpes zoster. J. Infect. Dis. 2004, 189, 1009–1012. [Google Scholar] [CrossRef]
- Grose, C. Variation on a theme by fenner: The pathogenesis of chickenpox. Pediatrics 1981, 68, 735–737. [Google Scholar]
- Heininger, U.; Seward, J.F. Varicella. Lancet 2006, 368, 1365–1376. [Google Scholar]
- Morrow, G.; Slobedman, B.; Cunningham, A.L.; Abendroth, A. Varicella-zoster virus productively infects mature dendritic cells and alters their immune function. J. Virol. 2003, 77, 4950–4959. [Google Scholar] [CrossRef]
- Abendroth, A.; Morrow, G.; Cunningham, A.L.; Slobedman, B. Varicella-zoster virus infection of human dendritic cells and transmission to T cells: Implications for virus dissemination in the host. J. Virol. 2001, 75, 6183–6192. [Google Scholar] [CrossRef]
- Taylor, S.L.; Moffat, J.F. Replication of varicella-zoster virus in human skin organ culture. J. Virol. 2005, 79, 11501–11506. [Google Scholar] [CrossRef]
- Huch, J.H.; Cunningham, A.L.; Arvin, A.M.; Nasr, N.; Santegoets, S.J.; Slobedman, E.; Slobedman, B.; Abendroth, A. Impact of varicella-zoster virus on dendritic cell subsets in human skin during natural infection. J. Virol. 2010, 84, 4060–4072. [Google Scholar] [CrossRef]
- Mohsen, A.H.; McKendrick, M. Varicella pneumonia in adults. Eur. Respir. J. 2003, 21, 886–891. [Google Scholar] [CrossRef]
- Chiner, E.; Ballester, I.; Betlloch, I.; Blanquer, J.; Aguar, M.C.; Blanquer, R.; Fernandez-Fabrellas, E.; Andreu, A.L.; Briones, M.; Sanz, F. Varicella-zoster virus pneumonia in an adult population: Has mortality decreased? Scand. J. Infect. Dis. 2010, 42, 215–221. [Google Scholar] [CrossRef]
- Moffat, J.F.; Stein, M.D.; Kaneshima, H.; Arvin, A.M. Tropism of varicella-zoster virus for human CD4+ and CD8+ t lymphocytes and epidermal cells in SCID-hu mice. J. Virol. 1995, 69, 5236–5242. [Google Scholar]
- Ku, C.-C.; Zerboni, L.; Ito, H.; Graham, B.S.; Wallace, M.; Arvin, A.M. Varicella-zoster virus transfer to skin by T cells and modulation of viral replication by epidermal cell interferon-{alpha}. J. Exp. Med. 2004, 200, 917–925. [Google Scholar]
- Eshleman, E.; Shahzad, A.; Cohrs, R.J. Varicella zoster virus latency. Future Virol. 2011, 6, 341–355. [Google Scholar] [CrossRef]
- Bearer, E.L.; Breakefield, X.O.; Schuback, D.; Reese, T.S.; LaVail, J.H. Retrograde axonal transport of herpes simplex virus: Evidence for a single mechanism and a role for tegument. Proc. Natl. Acad. Sci. USA 2000, 97, 8146–8150. [Google Scholar] [CrossRef]
- Haanpaa, M.; Laippala, P.; Nurmikko, T. Allodynia and pinprick hypesthesia in acute herpes zoster, and the development of postherpetic neuralgia. J. Pain Symptom Manage. 2000, 20, 50–58. [Google Scholar] [CrossRef]
- Cohrs, R.J.; Mehta, S.K.; Schmid, D.S.; Gilden, D.H.; Pierson, D.L. Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. J. Med. Virol. 2008, 80, 1116–1122. [Google Scholar] [CrossRef]
- Mehta, S.K.; Cohrs, R.J.; Forghani, B.; Zerbe, G.; Gilden, D.H.; Pierson, D.L. Stress-induced subclinical reactivation of varicella zoster virus in astronauts. J. Med. Virol. 2004, 72, 174–179. [Google Scholar] [CrossRef]
- Amanna, I.J.; Carlson, N.E.; Slifka, M.K. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 2007, 357, 1903–1915. [Google Scholar] [CrossRef]
- Insinga, R.P.; Itzler, R.F.; Pellissier, J.M.; Saddier, P.; Nikas, A.A. The incidence of herpes zoster in a United States administrative database. J. Gen. Intern. Med. 2005, 20, 748–753. [Google Scholar] [CrossRef]
- Gershon, A.A.; Gershon, M.D.; Breuer, J.; Levin, M.J.; Oaklander, A.L.; Griffiths, P.D. Advances in the understanding of the pathogenesis and epidemiology of herpes zoster. J. Clin. Virol. 2010, 48 (Suppl. 1), S2–S7. [Google Scholar]
- Gilden, D.; Nagel, M.A.; Mahalingam, R.; Mueller, N.H.; Brazeau, E.A.; Pugazhenthi, S.; Cohrs, R.J. Clinical and molecular aspects of varicella zoster virus infection. Future Neurol. 2009, 4, 103–117. [Google Scholar] [CrossRef]
- Helgason, S.; Petursson, G.; Gudmundsson, S.; Sigurdsson, J.A. Prevalence of postherpetic neuralgia after a first episode of herpes zoster: Prospective study with long term follow up. BMJ 2000, 321, 794–796. [Google Scholar]
- Liesegang, T.J. Herpes zoster ophthalmicus natural history, risk factors, clinical presentation, and morbidity. Ophthalmology 2008, 115, S3–S12. [Google Scholar] [CrossRef]
- Yeo, S.W.; Lee, D.H.; Jun, B.C.; Chang, K.H.; Park, Y.S. Analysis of prognostic factors in Bell's palsy and Ramsay Hunt syndrome. Auris Nasus Larynx 2007, 34, 159–164. [Google Scholar] [CrossRef]
- Gilden, D.H.; Cohrs, R.J.; Mahalingam, R. Clinical and molecular pathogenesis of varicella virus infection. Viral Immunol. 2003, 16, 243–258. [Google Scholar] [CrossRef]
- Gilden, D.H.; Wright, R.R.; Schneck, S.A.; Gwaltney, J.M., Jr.; Mahalingam, R. Zoster sine herpete, a clinical variant. Ann. Neurol. 1994, 35, 530–533. [Google Scholar]
- Lewis, G.W. Zoster sine herpete. Br. Med. J. 1958, 2, 418–421. [Google Scholar] [CrossRef]
- Easton, H.G. Zoster sine herpete causing acute trigeminal neuralgia. Lancet 1970, 2, 1065–1066. [Google Scholar]
- Oxman, M.N.; Levin, M.J.; Johnson, G.R.; Schmader, K.E.; Straus, S.E.; Gelb, L.D.; Arbeit, R.D.; Simberkoff, M.S.; Gershon, A.A.; Davis, L.E.; et al. A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N. Engl. J. Med. 2005, 352, 2271–2284. [Google Scholar] [CrossRef]
- Dworkin, M.S.; Jennings, C.E.; Roth-Thomas, J.; Lang, J.E.; Stukenberg, C.; Lumpkin, J.R. An Outbreak of Varicella among children attending preschool and elementary school in Illinois. Clin. Infect. Dis. 2002, 35, 102–104. [Google Scholar] [CrossRef]
- Galil, K.; Lee, B.; Strine, T.; Carraher, C.; Baughman, A.L.; Eaton, M.; Montero, J.; Seward, J. Outbreak of varicella at a day-care center despite vaccination. N. Engl. J. Med. 2002, 347, 1909–1915. [Google Scholar] [CrossRef]
- Vazquez, M.; LaRussa, P.S.; Gershon, A.A.; Niccolai, L.M.; Muehlenbein, C.E.; Steinberg, S.P.; Shapiro, E.D. Effectiveness over time of varicella vaccine. JAMA 2004, 291, 851–855. [Google Scholar]
- Marin, M.; Zhang, J.X.; Seward, J.F. Near elimination of varicella deaths in the US after implementation of the vaccination program. Pediatrics 2011, 128, 214–220. [Google Scholar] [CrossRef]
- Oxman, M.N.; Levin, M.J. Vaccination against herpes zoster and postherpetic neuralgia. J. Infect. Dis. 2008, 197 (Suppl. 2), S228–S236. [Google Scholar]
- Levin, M.J.; Oxman, M.N.; Zhang, J.H.; Johnson, G.R.; Stanley, H.; Hayward, A.R.; Caulfield, M.J.; Irwin, M.R.; Smith, J.G.; Clair, J.; et al. Varicella-zoster virus-specific immune responses in elderly recipients of a herpes zoster vaccine. J. Infect. Dis. 2008, 197, 825–835. [Google Scholar] [CrossRef]
- Schmader, K.E.; Oxman, M.N.; Levin, M.J.; Johnson, G.; Zhang, J.H.; Betts, R.; Morrison, V.A.; Gelb, L.; Guatelli, J.C.; Harbecke, R.; et al. Persistence of the efficacy of zoster vaccine in the shingles prevention study and the short-term persistence substudy. Clin. Infect. Dis. 2012, 55, 1320–1328. [Google Scholar] [CrossRef]
- Kinchington, P.R.; Goins, W.F. Varicella zoster virus-induced pain and post-herpetic neuralgia in the human host and in rodent animal models. J. Neurovirol. 2011, 17, 590–599. [Google Scholar] [CrossRef]
- Myers, M.G.; Connelly, B.L.; Stanberry, L.R. Varicella in hairless guinea pigs. J. Infect. Dis. 1991, 163, 746–751. [Google Scholar] [CrossRef]
- Myers, M.G.; Stanberry, L.R.; Edmond, B.J. Varicella-zoster virus infection of strain 2 guinea pigs. J. Infect. Dis. 1985, 151, 106–113. [Google Scholar] [CrossRef]
- Lowry, P.W.; Sabella, C.; Koropchak, C.M.; Watson, B.N.; Thackray, H.M.; Abbruzzi, G.M.; Arvin, A.M. Investigation of the pathogenesis of varicella-zoster virus infection in guinea pigs by using polymerase chain reaction. J. Infect. Dis. 1993, 167, 78–83. [Google Scholar] [CrossRef]
- Myers, M.G.; Duer, H.L.; Hausler, C.K. Experimental infection of guinea pigs with varicella-zoster virus. J. Infect. Dis. 1980, 142, 414–420. [Google Scholar] [CrossRef]
- Matsunaga, Y.; Yamanishi, K.; Takahashi, M. Experimental infection and immune response of guinea pigs with varicella-zoster virus. Infect. Immun. 1982, 37, 407–412. [Google Scholar]
- Nomdedeu, J.F.; Nomdedeu, J.; Martino, R.; Bordes, R.; Portorreal, R.; Sureda, A.; Domingo-Albos, A.; Rutllant, M.; Soler, J. Ogilvie's syndrome from disseminated varicella-zoster infection and infarcted celiac ganglia. J. Clin. Gastroenterol. 1995, 20, 157–159. [Google Scholar] [CrossRef]
- Keene, J.K.; Lowe, D.K.; Grosfeld, J.L.; Fitzgerald, J.F.; Gonzales-Crussi, F. Disseminated varicella complicating ulcerative colitis. JAMA 1978, 239, 45–46. [Google Scholar]
- Milligan, K.L.; Jain, A.K.; Garrett, J.S.; Knutsen, A.P. Gastric ulcers due to varicella-zoster reactivation. Pediatrics 2012, 130, e1377–e1381. [Google Scholar] [CrossRef]
- Chen, J.J.; Gershon, A.A.; Li, Z.; Cowles, R.A.; Gershon, M.D. Varicella zoster virus (VZV) infects and establishes latency in enteric neurons. J. Neurovirol. 2011, 17, 578–589. [Google Scholar] [CrossRef]
- Gray, W.L. Simian varicella: A model for human varicella-zoster virus infections. Rev. Med. Virol. 2004, 14, 363–381. [Google Scholar] [CrossRef]
- Sadzot-Delvaux, C.; Merville-Louis, M.P.; Delree, P.; Marc, P.; Piette, J.; Moonen, G.; Rentier, B. An in vivo model of varicella-zoster virus latent infection of dorsal root ganglia. J. Neurosci. Res. 1990, 26, 83–89. [Google Scholar] [CrossRef]
- Brunell, P.A.; Ren, L.C.; Cohen, J.I.; Straus, S.E. Viral gene expression in rat trigeminal ganglia following neonatal infection with varicella-zoster virus. J. Med. Virol. 1999, 58, 286–290. [Google Scholar] [CrossRef]
- Wroblewska, Z.; Valyi-Nagy, T.; Otte, J.; Dillner, A.; Jackson, A.; Sole, D.P.; Fraser, N.W. A mouse model for varicella-zoster virus latency. Microb. Pathog. 1993, 15, 141–151. [Google Scholar] [CrossRef]
- Annunziato, P.; LaRussa, P.; Lee, P.; Steinberg, S.; Lungu, O.; Gershon, A.A.; Silverstein, S. Evidence of latent varicella-zoster virus in rat dorsal root ganglia. J. Infect. Dis. 1998, 178 (Suppl. 1), S48–S51. [Google Scholar]
- Cohrs, R.J.; Barbour, M.B.; Mahalingam, R.; Wellish, M.; Gilden, D.H. Varicella-zoster virus (VZV) transcription during latency in human ganglia: Prevalence of VZV gene 21 transcripts in latently infected human ganglia. J. Virol. 1995, 69, 2674–2678. [Google Scholar]
- Kennedy, P.G.; Grinfeld, E.; Bontems, S.; Sadzot-Delvaux, C. Varicella-zoster virus gene expression in latently infected rat dorsal root ganglia. Virology 2001, 289, 218–223. [Google Scholar] [CrossRef]
- Croen, K.D.; Ostrove, J.M.; Dragovic, L.J.; Straus, S.E. Patterns of gene expression and sites of latency in human nerve ganglia are different for varicella-zoster and herpes simplex viruses. Proc. Natl. Acad. Sci. USA 1988, 85, 9773–9777. [Google Scholar]
- Mahalingam, R.; Wellish, M.; Wolf, W.; Dueland, A.N.; Cohrs, R.; Vafai, A.; Gilden, D. Latent varicella-zoster viral DNA in human trigeminal and thoracic ganglia. N. Engl. J. Med. 1990, 323, 627–631. [Google Scholar] [CrossRef]
- Meier, J.L.; Holman, R.P.; Croen, K.D.; Smialek, J.E.; Straus, S.E. Varicella-zoster virus transcription in human trigeminal ganglia. Virology 1993, 193, 193–200. [Google Scholar] [CrossRef]
- Fleetwood-Walker, S.M.; Quinn, J.P.; Wallace, C.; Blackburn-Munro, G.; Kelly, B.G.; Fiskerstrand, C.E.; Nash, A.A.; Dalziel, R.G. Behavioural changes in the rat following infection with varicella-zoster virus. J. Gen. Virol. 1999, 80 (Pt 9), 2433–2436. [Google Scholar]
- Dalziel, R.G.; Bingham, S.; Sutton, D.; Grant, D.; Champion, J.M.; Dennis, S.A.; Quinn, J.P.; Bountra, C.; Mark, M.A. Allodynia in rats infected with varicella zoster virus--a small animal model for post-herpetic neuralgia. Brain Res. Brain Res. Rev. 2004, 46, 234–242. [Google Scholar] [CrossRef]
- Ku, C.-C.; Besser, J.; Abendroth, A.; Grose, C.; Arvin, A.M. Varicella-zoster virus pathogenesis and immunobiology: New concepts emerging from investigations with the SCIDhu mouse model. J. Virol. 2005, 79, 2651–2658. [Google Scholar] [CrossRef]
- Ku, C.C.; Padilla, J.A.; Grose, C.; Butcher, E.C.; Arvin, A.M. Tropism of varicella-zoster virus for human tonsillar CD4(+) T lymphocytes that express activation, memory, and skin homing markers. J. Virol. 2002, 76, 11425–11433. [Google Scholar] [CrossRef]
- Heineman, T.C.; Cohen, J.I. The varicella-zoster virus (VZV) open reading frame 47 (ORF47) protein kinase is dispensable for viral replication and is not required for phosphorylation of ORF63 protein, the VZV homolog of herpes simplex virus ICP22. J. Virol. 1995, 69, 7367–7370. [Google Scholar]
- Heineman, T.C.; Seidel, K.; Cohen, J.I. The varicella-zoster virus ORF66 protein induces kinase activity and is dispensable for viral replication. J. Virol. 1996, 70, 7312–7317. [Google Scholar]
- Kinchington, P.R.; Ling, P.; Pensiero, M.; Gershon, A.; Hay, J.; Ruyechan, W.T. A possible role for glycoprotein gpV in the pathogenesis of varicella-zoster virus. Adv. Exp. Med. Biol. 1990, 278, 83–91. [Google Scholar]
- Cohen, J.I.; Seidel, K.E. Absence of varicella-zoster virus (VZV) glycoprotein V does not alter growth of VZV in vitro or sensitivity to heparin. J. Gen. Virol. 1994, 75 (Pt 11), 3087–3093. [Google Scholar]
- Moffat, J.F.; Zerboni, L.; Sommer, M.H.; Heineman, T.C.; Cohen, J.I.; Kaneshima, H.; Arvin, A.M. The ORF47 and ORF66 putative protein kinases of varicella-zoster virus determine tropism for human T cells and skin in the SCID-hu mouse. Proc. Natl. Acad. Sci. USA 1998, 95, 11969–11974. [Google Scholar]
- Zerboni, L.; Ku, C.C.; Jones, C.D.; Zehnder, J.L.; Arvin, A.M. Varicella-zoster virus infection of human dorsal root ganglia in vivo. Proc. Natl. Acad. Sci. USA 2005, 102, 6490–6495. [Google Scholar]
- Reichelt, M.; Zerboni, L.; Arvin, A.M. Mechanisms of varicella-zoster virus neuropathogenesis in human dorsal root ganglia. J. Virol. 2008, 82, 3971–3983. [Google Scholar] [CrossRef]
- Mahalingam, R.; Wellish, M.; Cohrs, R.; Debrus, S.; Piette, J.; Rentier, B.; Gilden, D.H. Expression of protein encoded by varicella-zoster virus open reading frame 63 in latently infected human ganglionic neurons. Proc. Natl. Acad. Sci. USA 1996, 93, 2122–2124. [Google Scholar]
- Cohrs, R.J.; Barbour, M.; Gilden, D.H. Varicella-zoster virus (VZV) transcription during latency in human ganglia: Detection of transcripts mapping to genes 21, 29, 62, and 63 in a cDNA library enriched for VZV RNA. J. Virol. 1996, 70, 2789–2796. [Google Scholar]
- Heuschele, W.P. Varicella (chicken pox) in three young anthropoid apes. J. Am. Vet. Med. Assoc. 1960, 136, 256–257. [Google Scholar]
- White, R.J.; Simmons, L.; Wilson, R.B. Chickenpox in young anthropoid apes: Clinical and laboratory findings. J. Am. Vet. Med. Assoc. 1972, 161, 690–692. [Google Scholar]
- Myers, M.G.; Kramer, L.W.; Stanberry, L.R. Varicella in a gorilla. J. Med. Virol. 1987, 23, 317–322. [Google Scholar] [CrossRef]
- Cohen, J.I.; Moskal, T.; Shapiro, M.; Purcell, R.H. Varicella in chimpanzees. J. Med. Virol. 1996, 50, 289–292. [Google Scholar] [CrossRef]
- Schneider, H.; Schneider, M.P.; Sampaio, I.; Harada, M.L.; Stanhope, M.; Czelusniak, J.; Goodman, M. Molecular phylogeny of the New World monkeys (platyrrhini, primates). Mol. Phylogenet. Evol. 1993, 2, 225–242. [Google Scholar] [CrossRef]
- Schrago, C.G.; Russo, C.A. Timing the origin of New World monkeys. Mol. Biol. Evol. 2003, 20, 1620–1625. [Google Scholar]
- Provost, P.J.; Keller, P.M.; Banker, F.S.; Keech, B.J.; Klein, H.J.; Lowe, R.S.; Morton, D.H.; Phelps, A.H.; McAleer, W.J.; Ellis, R.W. Successful infection of the common marmoset (callithrix jacchus) with human varicella-zoster virus. J. Virol. 1987, 61, 2951–2955. [Google Scholar]
- Felsenfeld, A.D.; Schmidt, N.J. Varicella-zoster virus immunizes patas monkeys against simian varicella-like disease. J. Gen. Virol. 1979, 42, 171–178. [Google Scholar]
- Willer, D.O.; Ambagala, A.P.; Pilon, R.; Chan, J.K.; Fournier, J.; Brooks, J.; Sandstrom, P.; Macdonald, K.S. Experimental infection of cynomolgus macaques (macaca fascicularis) with human varicella-zoster virus. J. Virol. 2012, 86, 3626–3634. [Google Scholar] [CrossRef]
- Clarkson, M.J.; Thorpe, E.; McCarthy, K. A virus disease of captive vervet monkeys (cercopithecus aethiops) caused by a new herpesvirus. Arch. Gesamte. Virusforsch. 1967, 22, 219–234. [Google Scholar] [CrossRef]
- Fletcher, T.M., 3rd; Gray, W.L. Simian varicella virus: Characterization of virion and infected cell polypeptides and the antigenic cross-reactivity with varicella-zoster virus. J. Gen. Virol. 1992, 73 (Pt 5), 1209–1215. [Google Scholar]
- Gray, W.L.; Pumphrey, C.Y.; Ruyechan, W.T.; Fletcher, T.M. The simian varicella virus and varicella zoster virus genomes are similar in size and structure. Virology 1992, 186, 562–572. [Google Scholar]
- Pumphrey, C.Y.; Gray, W.L. The genomes of simian varicella virus and varicella zoster virus are colinear. Virus Res. 1992, 26, 255–266. [Google Scholar] [CrossRef]
- Gray, W.L.; Starnes, B.; White, M.W.; Mahalingam, R. The DNA sequence of the simian varicella virus genome. Virology 2001, 284, 123–130. [Google Scholar] [CrossRef]
- Clarke, P.; Rabkin, S.D.; Inman, M.V.; Mahalingam, R.; Cohrs, R.; Wellish, M.; Gilden, D.H. Molecular analysis of simian varicella virus DNA. Virology 1992, 190, 597–605. [Google Scholar]
- Gray, W.L.; Oakes, J.E. Simian varicella virus DNA shares homology with human varicella-zoster virus DNA. Virology 1984, 136, 241–246. [Google Scholar] [CrossRef]
- Sato, H.; Pesnicak, L.; Cohen, J.I. Varicella-zoster virus open reading frame 2 encodes a membrane phosphoprotein that is dispensable for viral replication and for establishment of latency. J. Virol. 2002, 76, 3575–3578. [Google Scholar] [CrossRef]
- Gray, W.L. Simian varicella virus: Molecular virology. Curr. Top. Microbiol. Immunol. 2010, 342, 291–308. [Google Scholar]
- Ou, Y.; Davis, K.A.; Traina-Dorge, V.; Gray, W.L. Simian varicella virus expresses a latency-associated transcript that is antisense to open reading frame 61 (ICP0) mRNA in neural ganglia of latently infected monkeys. J. Virol. 2007, 81, 8149–8156. [Google Scholar]
- Meyer, C.; Kerns, A.; Barron, A.; Kreklywich, C.; Streblow, D.N.; Messaoudi, I. Simian varicella virus gene expression during acute and latent infection of rhesus macaques. J. Neurovirol. 2011, 17, 600–612. [Google Scholar] [CrossRef]
- Blakely, G.A.; Lourie, B.; Morton, W.G.; Evans, H.H.; Kaufmann, A.F. A varicella-like disease in macaque monkeys. J. Infect. Dis. 1973, 127, 617–625. [Google Scholar]
- Felsenfeld, A.D.; Schmidt, N.J. Antigenic relationships among several simian varicella-like viruses and varicella-zoster virus. Infect. Immun. 1977, 15, 807–812. [Google Scholar]
- Felsenfeld, A.D.; Schmidt, N.J. Immunological relationship between delta herpesvirus of patas monkeys and varicells-zoster virus of humans. Infect. Immun. 1975, 12, 261–266. [Google Scholar]
- Wolf, R.H.; Smetana, H.F.; Allen, W.P.; Felsenfeld, A.D. Pathology and clinical history of delta herpesvirus infection in patas monkeys. Lab. Anim. Sci. 1974, 24, 218–221. [Google Scholar]
- Allen, W.P.; Felsenfeld, A.D.; Wolf, R.H.; Smetana, H.F. Recent studies on the isolation and characterization of delta herpesvirus. Lab. Anim. Sci. 1974, 24, 222–228. [Google Scholar]
- Iltis, J.P.; Arrons, M.C.; Castellano, G.A.; Madden, D.L.; Sever, J.L.; Curfman, B.L.; London, W.T. Simian varicella virus (delta herpesvirus) infection of patas monkeys leading to pneumonia and encephalitis. Proc. Soc. Exp. Biol. Med. 1982, 169, 266–279. [Google Scholar]
- Felsenfeld, A.D.; Abee, C.R.; Gerone, P.J.; Soike, K.F.; Williams, S.R. Phosphonoacetic acid in the treatment of simian varicella. Antimicrob. Agents Chemother. 1978, 14, 331–335. [Google Scholar]
- Soike, K.F.; Felsenfeld, A.D.; Gerone, P.J. Acyclovir treatment of experimental simian varicella infection of monkeys. Antimicrob. Agents Chemother. 1981, 20, 291–297. [Google Scholar]
- Soike, K.F.; Felsenfeld, A.D.; Gibson, S.; Gerone, P.J. Ineffectiveness of adenine arabinoside and adenine arabinoside 5'-monophosphate in simian varicella infection. Antimicrob. Agents Chemother. 1980, 18, 142–147. [Google Scholar]
- Soike, K.F. Simian varicella virus infection in african and asian monkeys. The potential for development of antivirals for animal diseases. Ann. N. Y. Acad. Sci. 1992, 653, 323–333. [Google Scholar]
- Gray, W.L. Simian varicella in old world monkeys. Comp. Med. 2008, 58, 22–30. [Google Scholar]
- Wenner, H.A.; Barrick, S.; Abel, D.; Seshumurty, P. The pathogenesis of simian varicella virus in cynomolgus monkeys. Proc. Soc. Exp. Biol. Med. 1975, 150, 318–323. [Google Scholar]
- Mahalingam, R.; Traina-Dorge, V.; Wellish, M.; Lorino, R.; Sanford, R.; Ribka, E.P.; Alleman, S.J.; Brazeau, E.; Gilden, D.H. Simian varicella virus reactivation in cynomolgus monkeys. Virology 2007, 368, 50–59. [Google Scholar] [CrossRef]
- Mahalingam, R.; Traina-Dorge, V.; Wellish, M.; Deharo, E.; Singletary, M.L.; Ribka, E.P.; Sanford, R.; Gilden, D. Latent simian varicella virus reactivates in monkeys treated with tacrolimus with or without exposure to irradiation. J. Neurovirol. 2010, 16, 342–354. [Google Scholar]
- Ouwendijk, W.J.; Abendroth, A.; Traina-Dorge, V.; Getu, S.; Steain, M.; Wellish, M.; Andeweg, A.C.; Osterhaus, A.D.; Gilden, D.; Verjans, G.M.; et al. T-cell infiltration correlates with CXCL10 expression in ganglia of cynomolgus macaques with reactivated simian varicella virus. J. Virol. 2013, 87, 2979–2982. [Google Scholar] [CrossRef]
- Steain, M.; Gowrishankar, K.; Rodriguez, M.; Slobedman, B.; Abendroth, A. Upregulation of CXCL10 in human dorsal root ganglia during experimental and natural varicella-zoster virus infection. J. Virol. 2011, 85, 626–631. [Google Scholar] [CrossRef]
- Lehner, N.D.; Bullock, B.C.; Jones, N.D. Simian varicella infection in the African green monkey (Cercopithecus aethiops). Lab. Anim. Sci. 1984, 34, 281–285. [Google Scholar]
- Roberts, E.D.; Baskin, G.B.; Soike, K.; Gibson, S.V. Pathologic changes of experimental simian varicella (Delta herpesvirus) infection in African green monkeys (Cercopithecus aethiops). Am. J. Vet. Res. 1984, 45, 523–530. [Google Scholar]
- Soike, K.F.; Keller, P.M.; Ellis, R.W. Immunization of monkeys with varicella-zoster virus glycoprotein antigens and their response to challenge with simian varicella virus. J. Med. Virol. 1987, 22, 307–313. [Google Scholar] [CrossRef]
- White, T.M.; Mahalingam, R.; Traina-Dorge, V.; Gilden, D.H. Simian varicella virus DNA is present and transcribed months after experimental infection of adult African green monkeys. J. Neurovirol. 2002, 8, 191–203. [Google Scholar]
- White, T.M.; Mahalingam, R.; Traina-Dorge, V.; Gilden, D.H. Persistence of simian varicella virus DNA in CD4(+) and CD8(+) blood mononuclear cells for years after intratracheal inoculation of african green monkeys. Virology 2002, 303, 192–198. [Google Scholar] [CrossRef]
- Mahalingam, R.; Traina-Dorge, V.; Wellish, M.; Smith, J.; Gilden, D.H. Naturally acquired simian varicella virus infection in African green monkeys. J. Virol. 2002, 76, 8548–8550. [Google Scholar]
- Mahalingam, R.; Wellish, M.; Soike, K.; White, T.; Kleinschmidt-DeMasters, B.K.; Gilden, D.H. Simian varicella virus infects ganglia before rash in experimentally infected monkeys. Virology 2001, 279, 339–342. [Google Scholar] [CrossRef]
- Messaoudi, I.; Barron, A.; Wellish, M.; Engelmann, F.; Legasse, A.; Planer, S.; Gilden, D.; Nikolich-Zugich, J.; Mahalingam, R. Simian varicella virus infection of rhesus macaques recapitulates essential features of varicella zoster virus infection in humans. PLoS Pathog. 2009, 5, e1000657. [Google Scholar] [CrossRef]
- Ouwendijk, W.J.; Mahalingam, R.; Traina-Dorge, V.; van Amerongen, G.; Wellish, M.; Osterhaus, A.D.; Gilden, D.; Verjans, G.M. Simian varicella virus infection of Chinese rhesus macaques produces ganglionic infection in the absence of rash. J. Neurovirol. 2012, 18, 91–99. [Google Scholar] [CrossRef]
- Ling, B.; Veazey, R.S.; Luckay, A.; Penedo, C.; Xu, K.; Lifson, J.D.; Marx, P.A. SIV(mac) pathogenesis in rhesus macaques of chinese and indian origin compared with primary HIV infections in humans. AIDS 2002, 16, 1489–1496. [Google Scholar]
- Trichel, A.M.; Rajakumar, P.A.; Murphey-Corb, M. Species-specific variation in SIV disease progression between Chinese and Indian subspecies of rhesus macaque. J. Med. Primatol. 2002, 31, 171–178. [Google Scholar] [CrossRef]
- Meyer, C.; Kerns, A.; Haberthur, K.; Dewane, J.; Walker, J.; Gray, W.; Messaoudi, I. Attenuation of the adaptive immune response in rhesus macaques infected with simian varicella virus lacking open reading frame 61. J. Virol. 2013, 87, 2151–2163. [Google Scholar]
- Kolappaswamy, K.; Mahalingam, R.; Traina-Dorge, V.; Shipley, S.T.; Gilden, D.H.; Kleinschmidt-Demasters, B.K.; McLeod, C.G., Jr.; Hungerford, L.L.; DeTolla, L.J. Disseminated simian varicella virus infection in an irradiated rhesus macaque (Macaca mulatta). J. Virol. 2007, 81, 411–415. [Google Scholar]
- Gourishankar, S.; McDermid, J.C.; Jhangri, G.S.; Preiksaitis, J.K. Herpes zoster infection following solid organ transplantation: Incidence, risk factors and outcomes in the current immunosuppressive era. Am. J. Transplant. 2004, 4, 108–115. [Google Scholar] [CrossRef]
- Herrero, J.I.; Quiroga, J.; Sangro, B.; Pardo, F.; Rotellar, F.; Alvarez-Cienfuegos, J.; Prieto, J. Herpes zoster after liver transplantation: Incidence, risk factors, and complications. Liver. Transpl. 2004, 10, 1140–1143. [Google Scholar]
- Fuks, L.; Shitrit, D.; Fox, B.D.; Amital, A.; Raviv, Y.; Bakal, I.; Kramer, M.R. Herpes zoster after lung transplantation: Incidence, timing, and outcome. Ann. Thorac. Surg. 2009, 87, 423–426. [Google Scholar] [CrossRef]
- Schuchter, L.M.; Wingard, J.R.; Piantadosi, S.; Burns, W.H.; Santos, G.W.; Saral, R. Herpes zoster infection after autologous bone marrow transplantation. Blood 1989, 74, 1424–1427. [Google Scholar]
- Locksley, R.M.; Flournoy, N.; Sullivan, K.M.; Meyers, J.D. Infection with varicella-zoster virus after marrow transplantation. J. Infect. Dis. 1985, 152, 1172–1181. [Google Scholar]
- Dahl, H.; Marcoccia, J.; Linde, A. Antigen detection: The method of choice in comparison with virus isolation and serology for laboratory diagnosis of herpes zoster in human immunodeficiency virus-infected patients. J. Clin. Microbiol. 1997, 35, 347–349. [Google Scholar]
- Haberthur, K.; Engelmann, F.; Park, B.; Barron, A.; Legasse, A.; Dewane, J.; Fischer, M.; Kerns, A.; Brown, M.; Messaoudi, I. CD4 T cell immunity is critical for the control of simian varicella virus infection in a nonhuman primate model of VZV infection. PLoS Pathog. 2011, 7, e1002367. [Google Scholar] [CrossRef]
- Cohrs, R.J.; Hurley, M.P.; Gilden, D.H. Array analysis of viral gene transcription during lytic infection of cells in tissue culture with varicella-zoster virus. J. Virol. 2003, 77, 11718–11732. [Google Scholar] [CrossRef]
- Cohrs, R.J.; Gilden, D.H. Prevalence and abundance of latently transcribed varicella-zoster virus genes in human ganglia. J. Virol. 2007, 81, 2950–2956. [Google Scholar] [CrossRef]
- Cohrs, R.J.; Randall, J.; Smith, J.; Gilden, D.H.; Dabrowski, C.; van Der Keyl, H.; Tal-Singer, R. Analysis of individual human trigeminal ganglia for latent herpes simplex virus type 1 and varicella-zoster virus nucleic acids using real-time PCR. J. Virol. 2000, 74, 11464–11471. [Google Scholar] [CrossRef]
- Kennedy, P.G.; Grinfeld, E.; Bell, J.E. Varicella-zoster virus gene expression in latently infected and explanted human ganglia. J. Virol. 2000, 74, 11893–11898. [Google Scholar] [CrossRef]
- Nagel, M.A.; Choe, A.; Traktinskiy, I.; Cordery-Cotter, R.; Gilden, D.; Cohrs, R.J. Varicella-zoster virus transcriptome in latently infected human ganglia. J. Virol. 2011, 85, 2276–2287. [Google Scholar] [CrossRef]
- Mahalingam, R.; Traina-Dorge, V.; Wellish, M.; Deharo, E.; Golive, A.; Messaoudi, I.; Gilden, D. Effect of time delay after necropsy on analysis of simian varicella-zoster virus expression in latently infected ganglia of rhesus macaques. J. Virol. 2010, 84, 12454–12457. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Haberthur, K.; Messaoudi, I. Animal Models of Varicella Zoster Virus Infection. Pathogens 2013, 2, 364-382. https://doi.org/10.3390/pathogens2020364
Haberthur K, Messaoudi I. Animal Models of Varicella Zoster Virus Infection. Pathogens. 2013; 2(2):364-382. https://doi.org/10.3390/pathogens2020364
Chicago/Turabian StyleHaberthur, Kristen, and Ilhem Messaoudi. 2013. "Animal Models of Varicella Zoster Virus Infection" Pathogens 2, no. 2: 364-382. https://doi.org/10.3390/pathogens2020364
APA StyleHaberthur, K., & Messaoudi, I. (2013). Animal Models of Varicella Zoster Virus Infection. Pathogens, 2(2), 364-382. https://doi.org/10.3390/pathogens2020364