The Evolving Landscape of Malaria Prevention Strategies: A Review of Recent Developments
Abstract
1. Introduction
2. Vector Control
2.1. Insecticide-Treated Nets
2.2. Indoor Residual Spraying
2.3. Topical Repellents and Insecticides
3. Environmental Control
4. Genetic Modification of the Vector
5. Chemoprotection
5.1. Chemoprevention in Pregnancy
5.2. Seasonal Malaria Chemoprevention
5.3. Additional Chemoprevention Measures in Children
5.4. Mass Drug Administration
5.5. Challenges in Chemoprevention
5.6. Chemoprevention Against P. vivax Malaria
6. Vaccines
6.1. P. falciparum Pre-Erythrocytic Vaccines
6.2. P. falciparum Whole-Sporozoite Vaccines
6.3. P. falciparum Erythrocytic Vaccines
6.4. P. vivax Vaccines
6.5. Bivalent Vaccines for Co-Endemic Regions
6.6. Transmission-Blocking Vaccines
6.7. Combining Vaccines with Chemoprevention
6.8. Vaccine Uptake and Acceptance
7. Monoclonal Antibodies
7.1. P. falciparum Pre-Erythrocytic mAbs
7.2. P. falciparum Transmission-Blocking mAbs
7.3. P. falciparum Erythrocytic mAbs
7.4. mAbs Targeting P. vivax
7.5. Potential Approaches to the Use of mAbs
8. Community Engagement in Malaria Prevention Approaches
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ASHA | Accredited Social Health Activist |
| ASGM | Artisanal and Small-Scale Gold Mining |
| CE | Community Engagement |
| CHW | Community Health Worker |
| DAI | Dual Active Ingredient |
| DDT | Dichlorodiphenyltrichloroethane |
| DEET | N,N-Diethyl-meta-toluamide |
| GMM | Genetically Modified Mosquitoes |
| IEC | Information, Education, and Communication |
| IPTp | Intermittent Preventive Treatment in pregnancy |
| IPTsc | Intermittent Preventive Treatment in school-aged children |
| IRS | Indoor Residual Spraying |
| ITN | Insecticide-Treated Net |
| LLIN | Long-Lasting Insecticidal Net |
| mAb | Monoclonal Antibody |
| MDA | Mass Drug Administration |
| MRP | Mass Relapse Prevention |
| MVIP | Malaria Vaccine Implementation Programme |
| PDMC | Post-Discharge Malaria Chemoprevention |
| PfCSP | Plasmodium falciparum Circumsporozoite Protein |
| PMC | Perennial Malaria Chemoprevention |
| PMD | p-Menthane-3,8-diol |
| PvCSP | Plasmodium vivax Circumsporozoite Protein |
| RDT | Rapid Diagnostic Test |
| RR | Rate Ratio |
| SAE | Severe Adverse Event |
| SMC | Seasonal Malaria Chemoprevention |
| SP | Sulfadoxine-Pyrimethamine |
| SPAQ | Sulfadoxine-Pyrimethamine plus Amodiaquine |
| TBV | Transmission-Blocking Vaccine |
| USEPA | United States Environmental Protection Agency |
| WHO | World Health Organization |
References
- World Health Organization. World Malaria Report 2025. Available online: https://www.who.int/publications/i/item/9789240117822 (accessed on 28 December 2025).
- Poespoprodjo, J.R.; Douglas, N.M.; Ansong, D.; Kho, S.; Anstey, N.M. Malaria. Lancet 2023, 402, 2328–2345. [Google Scholar] [CrossRef]
- World Health Organization. Malaria. Available online: https://www.who.int/news-room/fact-sheets/detail/malaria (accessed on 28 December 2025).
- Daily, J.P.; Minuti, A.; Khan, N. Diagnosis, Treatment, and Prevention of Malaria in the US. JAMA 2022, 328, 460. [Google Scholar] [CrossRef]
- White, N.J. Severe malaria. Malar. J. 2022, 21, 284. [Google Scholar] [CrossRef]
- World Health Organization. World Malaria Report 2024. Available online: https://www.who.int/publications/i/item/9789240104440 (accessed on 28 December 2025).
- Morlino, C.; Byrne, I.; Achan, J.; Baraka, V.; Barry, A.; Bousema, T.; Camara, A.; Chacky, F.; Chico, R.M.; Clarke, S.E.; et al. Barriers to uptake and implementation of malaria chemoprevention in school-aged children: A stakeholder engagement meeting report. Front. Trop. Dis. 2025, 6, 1480907. [Google Scholar] [CrossRef]
- Nkumama, I.N.; O’Meara, W.P.; Osier, F.H.A. Changes in Malaria Epidemiology in Africa and New Challenges for Elimination. Trends Parasitol. 2017, 33, 128–140. [Google Scholar] [CrossRef]
- González-Sanz, M.; Berzosa, P.; Norman, F.F. Updates on Malaria Epidemiology and Prevention Strategies. Curr. Infect. Dis. Rep. 2023, 25, 131–139. [Google Scholar] [CrossRef]
- Verona Mesia, B.; López-Ruiz, N.; Duran-Pla, E. Epidemiological investigation of a case of malaria in a non-endemic area, Campo de Gibraltar, Cadiz, Spain, January 2022. Euro Surveill. 2022, 27, 2200786. [Google Scholar] [CrossRef] [PubMed]
- Boccolini, D.; Menegon, M.; Di Luca, M.; Toma, L.; Severini, F.; Marucci, G.; D’Amato, S.; Caraglia, A.; Maraglino, F.P.; Rezza, G.; et al. Non-imported malaria in Italy: Paradigmatic approaches and public health implications following an unusual cluster of cases in 2017. BMC Public Health 2020, 20, 857. [Google Scholar] [CrossRef] [PubMed]
- Delamare, H.; Tarantola, A.; Thellier, M.; Calba, C.; Gaget, O.; Consigny, P.-H.; Simard, F.; Manguin, S.; Brottet, E.; Paty, M.-C.; et al. Locally acquired malaria: A retrospective analysis of long-term surveillance data, European France, 1995 to 2022. Euro Surveill. 2024, 29, 2400133. [Google Scholar] [CrossRef] [PubMed]
- Tseroni, M.; Baka, A.; Kapizioni, C.; Snounou, G.; Tsiodras, S.; Charvalakou, M.; Georgitsou, M.; Panoutsakou, M.; Psinaki, I.; Tsoromokou, M.; et al. Prevention of Malaria Resurgence in Greece through the Association of Mass Drug Administration (MDA) to Immigrants from Malaria-Endemic Regions and Standard Control Measures. PLoS Negl. Trop. Dis. 2015, 9, e0004215. [Google Scholar] [CrossRef]
- Tseroni, M.; Georgitsou, M.; Baka, A.; Pinaka, O.; Pervanidou, D.; Tsironi, M.; Bleta, P.; Charvalakou, M.; Psinaki, I.; Dionysopoulou, M.; et al. The Importance of an Active Case Detection (ACD) Programme for Malaria among Migrants from Malaria Endemic Countries: The Greek Experience in a Receptive and Vulnerable Area. Int. J. Environ. Res. Public Health 2020, 17, 4080. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Insecticide-Treated Nets. Available online: https://www.cdc.gov/malaria/php/public-health-strategy/insecticide-treated-nets.html#:~:text=Insecticide-treated%20bed%20nets%20%28ITNs%29%20are%20a%20form%20of,and%20death%20due%20to%20malaria%20in%20endemic%20regions (accessed on 28 December 2025).
- Lissenden, N.; Armistead, J.S.; Gleave, K.; Irish, S.R.; Martin, J.L.; Messenger, L.A.; Moore, S.J.; Ngufor, C.; Protopopoff, N.; Oxborough, R.; et al. Developing Consensus Standard Operating Procedures (SOPs) to Evaluate New Types of Insecticide-Treated Nets. Insects 2021, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Curtis, C.F. Approaches to vector control: New and trusted: 4. Appropriate technology for vector control: Impregnated bed nets, polystyrene beads and fly traps. Trans. R. Soc. Trop. Med. Hyg. 1994, 88, 144–146. [Google Scholar] [CrossRef]
- Okumu, F. The fabric of life: What if mosquito nets were durable and widely available but insecticide-free? Malar. J. 2020, 19, 260. [Google Scholar] [CrossRef]
- Lengeler, C. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst. Rev. 2004, 2, CD000363. [Google Scholar] [CrossRef]
- Roll Back Malaria Partnership. The Global Malaria Action Plan for a Malaria Free World. Available online: https://www.afro.who.int/sites/default/files/2017-06/Gmapfull.pdf (accessed on 28 December 2025).
- World Health Organization. 4.1. Insecticide-Treated Nets (ITNs). In Guidelines for Malaria Vector Control; World Health Organization: Geneva, Switzerland, 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538119/ (accessed on 28 December 2025).
- Ngonghala, C.N. Assessing the impact of insecticide-treated nets in the face of insecticide resistance on malaria control. J. Theor. Biol. 2022, 555, 111281. [Google Scholar] [CrossRef]
- Navalith, N.; Jeong, H.J.; Yang, Y.S.; Phonethipsavanh, N.; Kim, S.; Kang, S. Effectiveness of long-lasting insecticidal nets for malaria elimination in Laos (2016–2023). Malar. World J. 2025, 16, 11. [Google Scholar] [CrossRef]
- Wangdi, K.; Furuya-Kanamori, L.; Clark, J.; Barendregt, J.J.; Gatton, M.L.; Banwell, C.; Kelly, G.C.; Doi, S.A.R.; Clements, A.C.A. Comparative effectiveness of malaria prevention measures: A systematic review and network meta-analysis. Parasites Vectors 2018, 11, 210. [Google Scholar] [CrossRef] [PubMed]
- Messenger, L.A.; Furnival-Adams, J.; Chan, K.; Pelloquin, B.; Paris, L.; Rowland, M. Vector control for malaria prevention during humanitarian emergencies: A systematic review and meta-analysis. Lancet Glob. Health 2023, 11, e534–e545. [Google Scholar] [CrossRef] [PubMed]
- Bayou, F.D.; Kebede, N.; Tsega, Y.; Nigussie, S.; Legassu, T.D.; Muche, A.; Muluneh, A.A.; Ayele, F.Y. Under utilization of long-lasting insecticidal nets (LLINs) is challenging malaria elimination program in Ethiopia: A systematic review and meta-analysis. BMC Public Health 2024, 24, 815. [Google Scholar] [CrossRef]
- Duguma, D. Ethiopia Malaria Elimination Strategic Plan: 2021–2025. Available online: http://www.repository.iphce.org/bitstream/handle/123456789/1526/Ethiopia-Malaria-Elimination-Strategic-Plan-2021-2025-Agust-31.pdf?sequence=1 (accessed on 28 December 2025).
- Defo Tamgnoa, E.; Nguefack-Tsaguec, G.; Tiotsa Tsapib, A.; Zogning Makemjiob, E.; Ethgena, O.; Sanou Sobzef, M. Insecticide-Treated Net Use in Sub-Saharan Africa: Systematic Review and Meta-Analysis. Ig. Sanita Pubbl. 2021, 78, 564–582. [Google Scholar] [PubMed]
- Mohammed-Awel, J.; Gumel, A.B. Can insecticide resistance increase malaria transmission? A genetics-epidemiology mathematical modeling approach. J. Math. Biol. 2023, 87, 28. [Google Scholar] [CrossRef]
- Churcher, T.S.; Lissenden, N.; Griffin, J.T.; Worrall, E.; Ranson, H. The impact of pyrethroid resistance on the efficacy and effectiveness of bednets for malaria control in Africa. eLife 2016, 5, e16090. [Google Scholar] [CrossRef]
- Mishra, A.K.; Bharti, P.K.; Chand, G.; Das, A.; Jayswar, H.; Rahi, M.; Raghavendra, K. Monitoring of Insecticide Resistance in Anopheles culicifacies in Twelve Districts of Madhya Pradesh, Central India (2017–2019). J. Trop. Med. 2022, 2022, 4404027. [Google Scholar] [CrossRef] [PubMed]
- Ndjeunia-Mbiakop, P.; Ngangue-Siewe, I.N.; Talipouo, A.; Chi Nji, A.P.; Bamou, R.; Djoufounna, J.; Tombi, J.; Antonio-Nkondjio, C. Malaria transmission, insecticide resistance and efficacy of insecticide-treated nets in Belabo and Ouami, two localities of the East Region of Cameroon. Curr. Res. Parasitol. Vector-Borne Dis. 2025, 7, 100266. [Google Scholar] [CrossRef]
- Wangrawa, D.W.; Odero, J.O.; Baldini, F.; Okumu, F.; Badolo, A. Distribution and insecticide resistance profile of the major malaria vector Anopheles funestus group across the African continent. Med. Vet. Entomol. 2024, 38, 119–137. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Africa. Anopheles stephensi (Malaria). Available online: https://www.afro.who.int/node/17733 (accessed on 28 December 2025).
- World Health Organization. WHO Publishes Recommendations on Two New Types of Insecticide-Treated Nets. Available online: https://www.who.int/news/item/14-03-2023-who-publishes-recommendations-on-two-new-types-of-insecticide-treated-nets (accessed on 28 December 2025).
- Barker, T.H.; Stone, J.C.; Hasanoff, S.; Price, C.; Kabaghe, A.; Munn, Z. Effectiveness of dual active ingredient insecticide-treated nets in preventing malaria: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0289469. [Google Scholar] [CrossRef] [PubMed]
- Lukole, E.A.; Cook, J.; Mosha, J.F.; Mallya, E.; Aziz, T.; Kulkarni, M.A.; Matowo, N.S.; Martin, J.; Rowland, M.; Kleinschmidt, I.; et al. Will a lack of fabric durability be their downfall? Impact of textile durability on the efficacy of three types of dual-active-ingredient long-lasting insecticidal nets: A secondary analysis on malaria prevalence and incidence from a cluster-randomized tr. Malar. J. 2024, 23, 199. [Google Scholar] [CrossRef]
- Pryce, J.; Richardson, M.; Lengeler, C. Insecticide-treated nets for preventing malaria. Cochrane Database Syst. Rev. 2018, 11, CD000363. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, W.-X.; Tembo, E.; Xie, M.-Z.; Zhang, S.-S.; Wang, X.-R.; Wei, T.-T.; Feng, X.; Zhang, Y.-L.; Du, J.; et al. Effectiveness of indoor residual spraying on malaria control: A systematic review and meta-analysis. Infect. Dis. Poverty 2022, 11, 83. [Google Scholar] [CrossRef]
- Pryce, J.; Medley, N.; Choi, L. Indoor residual spraying for preventing malaria in communities using insecticide-treated nets. Cochrane Database Syst. Rev. 2022, 1, CD012688. [Google Scholar] [CrossRef]
- Stanczyk, N.M.; Behrens, R.H.; Chen-Hussey, V.; Stewart, S.A.; Logan, J.G. Mosquito repellents for travellers. BMJ 2015, 350, h99. [Google Scholar] [CrossRef]
- Gabaldón Figueira, J.C.; Wagah, M.G.; Adipo, L.B.; Wanjiku, C.; Maia, M.F. Topical repellents for malaria prevention. Cochrane Database Syst. Rev. 2023, 8, CD015422. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.L.; Chen-Hussey, V.; Logan, J.G.; Lindsay, S.W. Are topical insect repellents effective against malaria in endemic populations? A systematic review and meta-analysis. Malar. J. 2014, 13, 446. [Google Scholar] [CrossRef] [PubMed]
- Sluydts, V.; Durnez, L.; Heng, S.; Gryseels, C.; Canier, L.; Kim, S.; Van Roey, K.; Kerkhof, K.; Khim, N.; Mao, S.; et al. Efficacy of topical mosquito repellent (picaridin) plus long-lasting insecticidal nets versus long-lasting insecticidal nets alone for control of malaria: A cluster randomised controlled trial. Lancet Infect. Dis. 2016, 16, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Tavassoli, M.; Shayeghi, M.; Abai, M.; Vatandoost, H.; Khoobdel, M.; Salari, M.; Ghaderi, A.; Rafi, F. Repellency Effects of Essential Oils of Myrtle (Myrtus communis), Marigold (Calendula officinalis) Compared with DEET against Anopheles stephensi on Human Volunteers. Iran. J. Arthropod-Borne Dis. 2011, 5, 10–22. [Google Scholar] [PubMed]
- Amer, A.; Mehlhorn, H. Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol. Res. 2006, 99, 478–490. [Google Scholar] [CrossRef]
- Trongtokit, Y.; Curtis, C.F.; Rongsriyam, Y. Efficacy of repellent products against caged and free flying Anopheles stephensi mosquitoes. Southeast Asian J. Trop. Med. Public Health 2005, 36, 1423–1431. [Google Scholar] [PubMed]
- Bohbot, J.D.; Dickens, J.C. Insect Repellents: Modulators of Mosquito Odorant Receptor Activity. PLoS ONE 2010, 5, e12138. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Vu, M.N.; Hebert, A.A. Insect repellents: An updated review for the clinician. J. Am. Acad. Dermatol. 2023, 88, 123–130. [Google Scholar] [CrossRef]
- McGready, R.; Hamilton, K.A.; Simpson, J.A.; Cho, T.; Luxemburger, C.; Edwards, R.; Looareesuwan, S.; White, N.J.; Nosten, F.; Lindsay, S.W. Safety of the insect repellent N,N-diethyl-M-toluamide (DEET) in pregnancy. Am. J. Trop. Med. Hyg. 2001, 65, 285. [Google Scholar] [CrossRef]
- Bell, J.W.; Veltri, J.C.; Page, B.C. Human Exposures to N,N-diethyl-m-toluamide Insect Repellents Reported to the American Association of Poison Control Centers 1993–1997. Int. J. Toxicol. 2002, 21, 341–352. [Google Scholar] [CrossRef]
- Hodson, C.N.; Yu, Y.; Plettner, E.; Roitberg, B.D. New repellent effective against African malaria mosquito Anopheles gambiae: Implications for vector control. Med. Vet. Entomol. 2016, 30, 369–376. [Google Scholar] [CrossRef]
- Moore, S.J. A new perspective on the application of mosquito repellents. Lancet Infect. Dis. 2016, 16, 1093–1094. [Google Scholar] [CrossRef]
- Banks, S.D.; Murray, N.; Wilder-Smith, A.; Logan, J.G. Insecticide-treated clothes for the control of vector-borne diseases: A review on effectiveness and safety. Med. Vet. Entomol. 2014, 28, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Boyce, R.M.; Shook-Sa, B.E.; Ndizeye, R.; Baguma, E.; Giandomenico, D.; Cassidy, C.A.; Eshun, S.; Siedner, M.J.; Staedke, S.G.; Ntaro, M.; et al. Permethrin-Treated Baby Wraps for the Prevention of Malaria. N. Engl. J. Med. 2025, 393, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Choi, L.; Majambere, S.; Wilson, A.L. Larviciding to prevent malaria transmission. Cochrane Database Syst. Rev. 2019, 8, CD012736. [Google Scholar] [CrossRef]
- Newby, G.; Chaki, P.; Latham, M.; Marrenjo, D.; Ochomo, E.; Nimmo, D.; Thomsen, E.; Tatarsky, A.; Juma, E.O.; Macdonald, M. Larviciding for malaria control and elimination in Africa. Malar. J. 2025, 24, 16. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Bottomley, C.; Saito, K.; Lines, J.; Tusting, L.S. The control of malaria vectors in rice fields: A systematic review and meta-analysis. Sci. Rep. 2022, 12, 19694. [Google Scholar] [CrossRef]
- Tusting, L.S.; Thwing, J.; Sinclair, D.; Fillinger, U.; Gimnig, J.; Bonner, K.E.; Bottomley, C.; Lindsay, S.W. Mosquito larval source management for controlling malaria. Cochrane Database Syst. Rev. 2013, 8, CD008923. [Google Scholar] [CrossRef]
- Yapabandara, A.M.; Curtis, C.F. Control of vectors and incidence of malaria in an irrigated settlement scheme in Sri Lanka by using the insect growth regulator pyriproxyfen. J. Am. Mosq. Control Assoc. 2004, 20, 395–400. [Google Scholar] [PubMed]
- Yapabandara, A.M.; Curtis, C.F.; Wickramasinghe, M.B.; Fernando, W.P. Control of malaria vectors with the insect growth regulator pyriproxyfen in a gem-mining area in Sri Lanka. Acta Trop. 2001, 80, 265–276. [Google Scholar] [CrossRef]
- Priyadarshana, T.S.; Slade, E.M. A meta-analysis reveals that dragonflies and damselflies can provide effective biological control of mosquitoes. J. Anim. Ecol. 2023, 92, 1589–1600. [Google Scholar] [CrossRef]
- Martello, E.; Yogeswaran, G.; Reithinger, R.; Leonardi-Bee, J. Mosquito aquatic habitat modification and manipulation interventions to control malaria. Cochrane Database Syst. Rev. 2022, 11, CD008923. [Google Scholar] [CrossRef]
- Kefi, M.; Cardoso-Jaime, V.; Saab, S.A.; Dimopoulos, G. Curing mosquitoes with genetic approaches for malaria control. Trends Parasitol. 2024, 40, 487–499. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Genetically Modified Mosquitoes. Available online: https://www.cdc.gov/mosquitoes/mosquito-control/genetically-modified-mosquitoes.html (accessed on 28 December 2025).
- Pascini, T.V.; Jeong, Y.J.; Huang, W.; Pala, Z.R.; Sá, J.M.; Wells, M.B.; Kizito, C.; Sweeney, B.; Alves E Silva, T.L.; Andrew, D.J.; et al. Transgenic Anopheles mosquitoes expressing human PAI-1 impair malaria transmission. Nat. Commun. 2022, 13, 2949. [Google Scholar] [CrossRef] [PubMed]
- Ogoyi, D.O.; Njagi, J.; Tonui, W.; Dass, B.; Quemada, H.; James, S. Post-release monitoring pathway for the deployment of gene drive-modified mosquitoes for malaria control in Africa. Malar. J. 2024, 23, 351. [Google Scholar] [CrossRef]
- Tajudeen, Y.A.; Oladipo, H.J.; Oladunjoye, I.O.; Oladipo, M.K.; Shittu, H.D.; Abdulmumeen, I.-F.; Afolabi, A.O.; El-Sherbini, M.S. Transforming malaria prevention and control: The prospects and challenges of gene drive technology for mosquito management. Ann. Med. 2023, 55, 2302504. [Google Scholar] [CrossRef]
- Kormos, A.; Dimopoulos, G.; Bier, E.; Lanzaro, G.C.; Marshall, J.M.; James, A.A. Conceptual risk assessment of mosquito population modification gene-drive systems to control malaria transmission: Preliminary hazards list workshops. Front. Bioeng. Biotechnol. 2023, 11, 1261123. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Rodrigues, J.; Bilgo, E.; Tormo, J.R.; Challenger, J.D.; De Cozar-Gallardo, C.; Pérez-Victoria, I.; Reyes, F.; Castañeda-Casado, P.; Gnambani, E.J.; et al. Delftia tsuruhatensis TC1 symbiont suppresses malaria transmission by anopheline mosquitoes. Science 2023, 381, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Childs, L.M. Assessing the impact of the Wolbachia-based control of malaria. Math. Biosci. 2025, 387, 109466. [Google Scholar] [CrossRef]
- Mushtaq, I.; Sarwar, M.S.; Chaudhry, A.; Shah, S.A.H.; Ahmad, M.M. Updates on traditional methods for combating malaria and emerging Wolbachia-based interventions. Front. Cell. Infect. Microbiol. 2024, 14, 1330475. [Google Scholar] [CrossRef]
- Littmann, J.; Achu, D.; Laufer, M.K.; Karema, C.; Schellenberg, D. Making the most of malaria chemoprevention. Malar. J. 2024, 23, 51. [Google Scholar] [CrossRef]
- Ashley, E.A.; Poespoprodjo, J.R. Treatment and prevention of malaria in children. Lancet Child Adolesc. Health 2020, 4, 775–789. [Google Scholar] [CrossRef] [PubMed]
- Plowe, C.V. Malaria chemoprevention and drug resistance: A review of the literature and policy implications. Malar. J. 2022, 21, 104. [Google Scholar] [CrossRef]
- World Health Organization. Updated WHO Recommendations for Malaria Chemoprevention Among Children and Pregnant Women. Available online: https://www.who.int/news/item/03-06-2022-Updated-WHO-recommendations-for-malaria-chemoprevention-among-children-and-pregnant-women (accessed on 28 December 2025).
- Adjei, M.R.; Kubio, C.; Buamah, M.; Sarfo, A.; Suuri, T.; Ibrahim, S.; Sadiq, A.; Abubakari, I.I.; Baafi, J.V. Effectiveness of seasonal malaria chemoprevention in reducing under-five malaria morbidity and mortality in the Savannah Region, Ghana. Ghana Med. J. 2022, 56, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Chotsiri, P.; White, N.J.; Tarning, J. Pharmacokinetic considerations in seasonal malaria chemoprevention. Trends Parasitol. 2022, 38, 673–682. [Google Scholar] [CrossRef]
- Cairns, M.; Ceesay, S.J.; Sagara, I.; Zongo, I.; Kessely, H.; Gamougam, K.; Diallo, A.; Ogboi, J.S.; Moroso, D.; Van Hulle, S.; et al. Effectiveness of seasonal malaria chemoprevention (SMC) treatments when SMC is implemented at scale: Case–control studies in 5 countries. PLoS Med. 2021, 18, e1003727. [Google Scholar] [CrossRef] [PubMed]
- Thwing, J.; Williamson, J.; Cavros, I.; Gutman, J.R. Systematic Review and Meta-Analysis of Seasonal Malaria Chemoprevention. Am. J. Trop. Med. Hyg. 2024, 110, 20–31. [Google Scholar] [CrossRef]
- Nuwa, A.; Baker, K.; Kajubi, R.; Nnaji, C.A.; Theiss-Nyland, K.; Odongo, M.; Kyagulanyi, T.; Nabakooza, J.; Salandini, D.; Asua, V.; et al. Effectiveness of sulfadoxine–pyrimethamine plus amodiaquine and dihydroartemisinin–piperaquine for seasonal malaria chemoprevention in Uganda: A three-arm, open-label, non-inferiority and superiority, cluster-randomised, controlled trial. Lancet Infect. Dis. 2025, 25, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Nikiema, S.; Soulama, I.; Sombié, S.; Tchouatieu, A.M.; Sermé, S.S.; Henry, N.B.; Ouedraogo, N.; Ouaré, N.; Ily, R.; Ouédraogo, O.; et al. Seasonal Malaria Chemoprevention Implementation: Effect on Malaria Incidence and Immunity in a Context of Expansion of P. falciparum Resistant Genotypes with Potential Reduction of the Effectiveness in Sub-Saharan Africa. Infect. Drug Resist. 2022, 15, 4517–4527. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines for Malaria. Available online: https://iris.who.int/server/api/core/bitstreams/26a6af2d-060c-4449-8207-1f25e63c6cc3/content (accessed on 28 December 2025).
- Cohee, L.M.; Opondo, C.; Clarke, S.E.; Halliday, K.E.; Cano, J.; Shipper, A.G.; Barger-Kamate, B.; Djimde, A.; Diarra, S.; Dokras, A.; et al. Preventive malaria treatment among school-aged children in sub-Saharan Africa: A systematic review and meta-analyses. Lancet Glob. Health 2020, 8, e1499–e1511. [Google Scholar] [CrossRef] [PubMed]
- Phiri, K.S.; Khairallah, C.; Kwambai, T.K.; Bojang, K.; Dhabangi, A.; Opoka, R.; Idro, R.; Stepniewska, K.; Van Hensbroek, M.B.; John, C.C.; et al. Post-discharge malaria chemoprevention in children admitted with severe anaemia in malaria-endemic settings in Africa: A systematic review and individual patient data meta-analysis of randomised controlled trials. Lancet Glob. Health 2024, 12, e33–e44. [Google Scholar] [CrossRef]
- Cairns, M.; Carneiro, I.; Milligan, P.; Owusu-Agyei, S.; Awine, T.; Gosling, R.; Greenwood, B.; Chandramohan, D. Duration of Protection against Malaria and Anaemia Provided by Intermittent Preventive Treatment in Infants in Navrongo, Ghana. PLoS ONE 2008, 3, e2227. [Google Scholar] [CrossRef] [PubMed]
- Cairns, M.; Gosling, R.; Carneiro, I.; Gesase, S.; Mosha, J.F.; Hashim, R.; Kaur, H.; Lemnge, M.; Mosha, F.W.; Greenwood, B.; et al. Duration of Protection Against Clinical Malaria Provided by Three Regimens of Intermittent Preventive Treatment in Tanzanian Infants. PLoS ONE 2010, 5, e9467. [Google Scholar] [CrossRef] [PubMed]
- Bestgen, B. Study to Assess the Safety, Tolerability and Pharmacokinetics of MMV371-LAI(QSC300760). Available online: https://www.hra.nhs.uk/planning-and-improving-research/application-summaries/research-summaries/study-to-assess-the-safety-tolerability-and-pharmacokinetics-of-mmv371-laiqsc300760/ (accessed on 28 December 2025).
- Schneider, Z.D.; Shah, M.P.; Boily, M.C.; Busbee, A.L.; Hwang, J.; Lindblade, K.A.; Gutman, J.R. Mass Drug Administration to Reduce Malaria Transmission: A Systematic Review and Meta-Analysis. Am. J. Trop. Med. Hyg. 2024, 110, 17–29. [Google Scholar] [CrossRef]
- Chaccour, C.; Maia, M.; Kariuki, M.; Ruiz-Castillo, P.; Wanjiku, C.; Kasiwa, L.; Brazeal, A.; Casellas, A.; Ngama, M.; Onyango, T.; et al. Ivermectin to Control Malaria—A Cluster-Randomized Trial. N. Engl. J. Med. 2025, 393, 362–375. [Google Scholar] [CrossRef]
- Baker, K.; Pulido Tarquino, I.A.; Aide, P.; Bonnington, C.; Rassi, C.; Richardson, S.; Nnaji, C.; Roca-Feltrer, A.; Rodrigues, M.; Sitoe, M.; et al. Phase one of a hybrid effectiveness-implementation study to assess the feasibility, acceptability and effectiveness of implementing seasonal malaria chemoprevention in Nampula Province, Mozambique. Malar. J. 2025, 24, 56. [Google Scholar] [CrossRef]
- Bohissou, F.E.T.; Sondo, P.; Inoue, J.; Rouamba, T.; Kaboré, B.; Nassa, G.J.W.; Kambou, A.E.S.; Traoré, T.E.; Asua, V.; Borrmann, S.; et al. Evolution of Pfdhps and Pfdhfr mutations before and after adopting seasonal malaria chemoprevention in Nanoro, Burkina Faso. Sci. Rep. 2024, 14, 24224. [Google Scholar] [CrossRef]
- Pernaute-Lau, L.; Recker, M.; Tékété, M.; De Sousa, T.N.; Traore, A.; Fofana, B.; Sanogo, K.; Morris, U.; Inoue, J.; Ferreira, P.E.; et al. Decreased dihydroartemisinin-piperaquine protection against recurrent malaria associated with Plasmodium falciparum plasmepsin 3 copy number variation in Africa. Nat. Commun. 2025, 16, 2680. [Google Scholar] [CrossRef]
- Greenwood, B.; Schellenberg, D. Chemoprevention for the Populations of Malaria Endemic Africa. Diseases 2022, 10, 101. [Google Scholar] [CrossRef]
- Canana, N.; Tarquino, I.A.P.; Enosse, S.; Baker, K.; Rodrigues, M.; Rassi, C.; Chauhan, A.S.; Nnaji, C.; Candrinho, B.; Maffioli, E.M. Seasonal malaria chemoprevention in northern Mozambique: A cost-effectiveness analysis. Malar. J. 2025, 24, 159. [Google Scholar] [CrossRef]
- Senn, N.; Rarau, P.; Stanisic, D.I.; Robinson, L.; Barnadas, C.; Manong, D.; Salib, M.; Iga, J.; Tarongka, N.; Ley, S.; et al. Intermittent Preventive Treatment for Malaria in Papua New Guinean Infants Exposed to Plasmodium falciparum and P. vivax: A Randomized Controlled Trial. PLoS Med. 2012, 9, e1001195. [Google Scholar] [CrossRef]
- Kim, H.O.; Ko, T.C.; Kim, S.S.; Im, S.G.; Kim, Y.N. Control of Plasmodium vivax malaria by mass chemoprevention with primaquine. Parasitol. Open 2018, 4, e18. [Google Scholar] [CrossRef]
- Shah, M.P.; Westercamp, N.; Lindblade, K.A.; Hwang, J. Mass Relapse Prevention to Reduce Transmission of Plasmodium vivax— A Systematic Review. Am. J. Trop. Med. Hyg. 2024, 110, 38–43. [Google Scholar] [CrossRef]
- World Health Organization. Malaria Vaccines (RTS,S and R21). Available online: https://www.who.int/news-room/questions-and-answers/item/q-a-on-rts-s-malaria-vaccine (accessed on 28 December 2025).
- Lampejo, T. Monoclonal antibodies for the prevention of Plasmodium falciparum malaria: A multi-target approach? Infect. Dis. 2024, 56, 73–77. [Google Scholar] [CrossRef] [PubMed]
- RTS,S Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: Final results of a phase 3, individually randomised, controlled trial. Lancet 2015, 386, 31–45. [Google Scholar] [CrossRef]
- Björkman, A.; Benn, C.S.; Aaby, P.; Schapira, A. RTS,S/AS01 malaria vaccine-proven safe and effective? Lancet Infect. Dis. 2023, 23, e318–e322. [Google Scholar] [CrossRef]
- Zoa, J.A.; Njemguie Linjouom, R.M.; Nyangono Ndongo, M.; Nkeck, J.R. Safety of RTS,S/AS01E vaccine for malaria in African children aged 5 to 17 months: A systematic review and meta-analysis of randomized controlled trials. PLoS Glob. Public Health 2025, 5, e0004387. [Google Scholar] [CrossRef]
- Datoo, M.S.; Natama, H.M.; Somé, A.; Bellamy, D.; Traoré, O.; Rouamba, T.; Tahita, M.C.; Ido, N.F.A.; Yameogo, P.; Valia, D.; et al. Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years’ follow-up in children in Burkina Faso: A phase 1/2b randomised controlled trial. Lancet Infect. Dis. 2022, 22, 1728–1736. [Google Scholar] [CrossRef] [PubMed]
- Tajudeen, Y.A.; Oladipo, H.J.; Yusuff, S.I.; Abimbola, S.O.; Abdulkadir, M.; Oladunjoye, I.O.; Omotosho, A.O.; Egbewande, O.M.; Shittu, H.D.; Yusuf, R.O.; et al. A landscape review of malaria vaccine candidates in the pipeline. Trop. Dis. Travel Med. Vaccines 2024, 10, 19. [Google Scholar] [CrossRef]
- UNICEF. Gavi and UNICEF Announce Equitable Pricing Deal for Malaria Vaccine to Protect 7 Million More Children by End of Decade. Available online: https://www.unicef.org/press-releases/gavi-and-unicef-announce-equitable-pricing-deal-malaria-vaccine-protect-7-million#:~:text=As%20of%20November%202025%2C%20over,thus%20far%20introduced%20in%202025 (accessed on 28 December 2025).
- European Commission. Optimising a Deployable High Efficacy Multi-Stage Vaccine for Plasmodium falciparum Malaria: 2nd Generation Malaria Vaccine Consortium. Available online: https://cordis.europa.eu/project/id/101190695 (accessed on 28 December 2025).
- Hafalla, J.C.R.; Borrmann, S.; Matuschewski, K. Genetically attenuated parasites show promise as a next-generation malaria vaccine. Trends Parasitol. 2025, 41, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Lamers, O.A.C.; Franke-Fayard, B.M.D.; Koopman, J.P.R.; Roozen, G.V.T.; Janse, J.J.; Chevalley-Maurel, S.C.; Geurten, F.J.A.; de Bes-Roeleveld, H.M.; Iliopoulou, E.; Colstrup, E.; et al. Safety and Efficacy of Immunization with a Late-Liver-Stage Attenuated Malaria Parasite. N. Engl. J. Med. 2024, 391, 1913–1923. [Google Scholar] [CrossRef] [PubMed]
- Roozen, G.V.T.; Van Schuijlenburg, R.; Hensen, A.D.O.; Koopman, J.P.R.; Lamers, O.A.C.; Geurten, F.J.A.; Sijtsma, J.C.; Baalbergen, E.; Janse, J.J.; Chevalley-Maurel, S.; et al. Single immunization with genetically attenuated Pf∆mei2 (GA2) parasites by mosquito bite in controlled human malaria infection: A placebo-controlled randomized trial. Nat. Med. 2025, 31, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, B.; Cairns, M.; Chaponda, M.; Chico, R.M.; Dicko, A.; Ouedraogo, J.-B.; Phiri, K.S.; Ter Kuile, F.O.; Chandramohan, D. Combining malaria vaccination with chemoprevention: A promising new approach to malaria control. Malar. J. 2021, 20, 361. [Google Scholar] [CrossRef]
- Natama, H.M.; Salkeld, J.; Somé, A.; Soremekun, S.; Diallo, S.; Traoré, O.; Rouamba, T.; Ouédraogo, F.; Ouédraogo, E.; Daboné, K.C.S.; et al. Safety and efficacy of the blood-stage malaria vaccine RH5.1/Matrix-M in Burkina Faso: Interim results of a double-blind, randomised, controlled, phase 2b trial in children. Lancet Infect. Dis. 2025, 25, 495–506. [Google Scholar] [CrossRef]
- Lampejo, T. Is low-dose tafenoquine combined with dihydroartemisinin-piperaquine a potential risk factor for Plasmodium vivax resistance to 8-aminoquinolines? Lancet Microbe 2022, 3, e477. [Google Scholar] [CrossRef]
- Veiga, G.T.S.D.; Moriggi, M.R.; Vettorazzi, J.F.; Müller-Santos, M.; Albrecht, L. Plasmodium vivax vaccine: What is the best way to go? Front. Immunol. 2023, 13, 910236. [Google Scholar] [CrossRef]
- Bennett, J.W.; Yadava, A.; Tosh, D.; Sattabongkot, J.; Komisar, J.; Ware, L.A.; McCarthy, W.F.; Cowden, J.J.; Regules, J.; Spring, M.D.; et al. Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy. PLoS Negl. Trop. Dis. 2016, 10, e0004423. [Google Scholar] [CrossRef]
- Palacios, R.; Chen-Mok, M.; Herrera, S.; Arévalo-Herrera, M.; Cárdenas, W.; Ramírez, O.; Fernández, O.L.; Corradin, G.; Vera, O. Phase I Safety and Immunogenicity Trial of Plasmodium vivax CS Derived Long Synthetic Peptides Adjuvanted with Montanide ISA 720 or Montanide ISA 51. Am. J. Trop. Med. Hyg. 2011, 84, 12–20. [Google Scholar] [CrossRef]
- Arévalo-Herrera, M.; Gaitán, X.; Larmat-Delgado, M.; Caicedo, M.A.; Herrera, S.M.; Henao-Giraldo, J.; Castellanos, A.; Devaud, J.-C.; Pannatier, A.; Oñate, J.; et al. Randomized clinical trial to assess the protective efficacy of a Plasmodium vivax CS synthetic vaccine. Nat. Commun. 2022, 13, 1603. [Google Scholar] [CrossRef]
- Payne, R.O.; Silk, S.E.; Elias, S.C.; Milne, K.H.; Rawlinson, T.A.; Llewellyn, D.; Shakri, A.R.; Jin, J.; Labbé, G.M.; Edwards, N.J.; et al. Human vaccination against Plasmodium vivax Duffy-binding protein induces strain-transcending antibodies. JCI Insight 2017, 2, e93683. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Mukherjee, P.; Shakri, A.R.; Singh, A.; Pandey, G.; Bakshi, M.; Uppal, G.; Jena, R.; Rawat, A.; Kumar, P.; et al. Malaria vaccine candidate based on Duffy-binding protein elicits strain transcending functional antibodies in a Phase I trial. npj Vaccines 2018, 3, 48. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ellis, R.D.; Shaffer, D.; Fontes, E.; Malkin, E.M.; Mahanty, S.; Fay, M.P.; Narum, D.; Rausch, K.; Miles, A.P.; et al. Phase 1 Trial of Malaria Transmission Blocking Vaccine Candidates Pfs25 and Pvs25 Formulated with Montanide ISA 51. PLoS ONE 2008, 3, e2636. [Google Scholar] [CrossRef] [PubMed]
- Noviyanti, R.; Coutrier, F.; Utami, R.A.S.; Trimarsanto, H.; Tirta, Y.K.; Trianty, L.; Kusuma, A.; Sutanto, I.; Kosasih, A.; Kusriastuti, R.; et al. Contrasting Transmission Dynamics of Co-endemic Plasmodium vivax and P. falciparum: Implications for Malaria Control and Elimination. PLoS Negl. Trop. Dis. 2015, 9, e0003739. [Google Scholar] [CrossRef]
- Lo, E.; Hemming-Schroeder, E.; Yewhalaw, D.; Nguyen, J.; Kebede, E.; Zemene, E.; Getachew, S.; Tushune, K.; Zhong, D.; Zhou, G.; et al. Transmission dynamics of co-endemic Plasmodium vivax and P. falciparum in Ethiopia and prevalence of antimalarial resistant genotypes. PLoS Negl. Trop. Dis. 2017, 11, e0005806. [Google Scholar] [CrossRef]
- Thriemer, K.; Degaga, T.S.; Christian, M.; Alam, M.S.; Rajasekhar, M.; Ley, B.; Hossain, M.S.; Kibria, M.G.; Tego, T.T.; Abate, D.T.; et al. Primaquine radical cure in patients with Plasmodium falciparum malaria in areas co-endemic for P falciparum and Plasmodium vivax (PRIMA): A multicentre, open-label, superiority randomised controlled trial. Lancet 2023, 402, 2101–2110. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Katayama, T.; Fabbri, C.; Niwa, S.; Okuhara, D.; Iyori, M.; Hasyim, A.A.; Mizukami, H.; Shida, H.; Lopes, S.; et al. Malaria bivalent viral vectored vaccine protects against Plasmodium falciparum and vivax and blocks parasite transmission. npj Vaccines 2025, 10, 171. [Google Scholar] [CrossRef]
- Adegnika, A.A. Pan-Malaria Transmission-Blocking Vaccine AnAPN1 (PamTBVac). Available online: https://clinicaltrials.gov/study/NCT05905432 (accessed on 28 December 2025).
- Tachibana, M.; Takashima, E.; Morita, M.; Sattabongkot, J.; Ishino, T.; Culleton, R.; Torii, M.; Tsuboi, T. Plasmodium vivax transmission-blocking vaccines: Progress, challenges and innovation. Parasitol. Int. 2022, 87, 102525. [Google Scholar] [CrossRef]
- Ott, A.C.; Loll, P.J.; Burns, J.M. An mRNA Vaccine Expressing Blood-Stage Malaria Antigens Induces Complete Protection Against Lethal Plasmodium yoelii. Vaccines 2025, 13, 702. [Google Scholar] [CrossRef]
- Chandramohan, D.; Zongo, I.; Sagara, I.; Cairns, M.; Yerbanga, R.-S.; Diarra, M.; Nikièma, F.; Tapily, A.; Sompougdou, F.; Issiaka, D.; et al. Seasonal Malaria Vaccination with or without Seasonal Malaria Chemoprevention. N. Engl. J. Med. 2021, 385, 1005–1017. [Google Scholar] [CrossRef]
- Chutiyami, M.; Saravanakumar, P.; Bello, U.M.; Salihu, D.; Adeleye, K.; Kolo, M.A.; Dawa, K.K.; Hamina, D.; Bhandari, P.; Sulaiman, S.K.; et al. Malaria vaccine efficacy, safety, and community perception in Africa: A scoping review of recent empirical studies. Infection 2024, 52, 2007–2028. [Google Scholar] [CrossRef]
- Sulaiman, S.K.; Musa, M.S.; Tsiga-Ahmed, F.I.; Dayyab, F.M.; Sulaiman, A.K.; Bako, A.T. A systematic review and meta-analysis of the prevalence of caregiver acceptance of malaria vaccine for under-five children in low-income and middle-income countries (LMICs). PLoS ONE 2022, 17, e0278224. [Google Scholar] [CrossRef]
- Kigongo, E.; Puleh, S.S.; Kabunga, A.; Akech, S.I.; Ocen, F.; Opollo, M.S.; Ebong, M. Community readiness and acceptance for the implementation of the malaria vaccine among caretakers of at-risk children in sub-Saharan Africa: A systematic review and meta-analysis. Malar. J. 2025, 24, 259. [Google Scholar] [CrossRef]
- Bushi, G.; Khatib, M.N.; S, R.J.; Kaur, I.; Sharma, A.; Iqbal, S.; Kumar, M.R.; Chauhan, A.S.; Vishwakarma, T.; Malik, P.; et al. Determinants of Malaria Vaccine Acceptance: A Systematic Review and Meta-Analysis of Awareness, Acceptance, Hesitancy, and Willingness to Pay. Immun. Inflamm. Dis. 2025, 13, e70205. [Google Scholar] [CrossRef]
- Ramamurthy, D.; Nundalall, T.; Cingo, S.; Mungra, N.; Karaan, M.; Naran, K.; Barth, S. Recent advances in immunotherapies against infectious diseases. Immunother. Adv. 2021, 1, ltaa007. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; McGregor, I.A.; Carrington, S. Gamma-Globulin and Acquired Immunity to Human Malaria. Nature 1961, 192, 733–737. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Monoclonal Antibodies for Malaria Prevention. Available online: https://www.who.int/publications/i/item/9789240070981 (accessed on 28 December 2025).
- Miura, K.; Flores-Garcia, Y.; Long, C.A.; Zavala, F. Vaccines and monoclonal antibodies: New tools for malaria control. Clin. Microbiol. Rev. 2024, 37, e0007123. [Google Scholar] [CrossRef]
- Gaudinski, M.R.; Berkowitz, N.M.; Idris, A.H.; Coates, E.E.; Holman, L.A.; Mendoza, F.; Gordon, I.J.; Plummer, S.H.; Trofymenko, O.; Hu, Z.; et al. A Monoclonal Antibody for Malaria Prevention. N. Engl. J. Med. 2021, 385, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Lyke, K.E.; Berry, A.A.; Mason, K.; Idris, A.H.; O’Callahan, M.; Happe, M.; Strom, L.; Berkowitz, N.M.; Guech, M.; Hu, Z.; et al. Low-dose intravenous and subcutaneous CIS43LS monoclonal antibody for protection against malaria (VRC 612 Part C): A phase 1, adaptive trial. Lancet Infect. Dis. 2023, 23, 578–588. [Google Scholar] [CrossRef]
- Kayentao, K.; Ongoiba, A.; Preston, A.C.; Healy, S.A.; Doumbo, S.; Doumtabe, D.; Traore, A.; Traore, H.; Djiguiba, A.; Li, S.; et al. Safety and Efficacy of a Monoclonal Antibody against Malaria in Mali. N. Engl. J. Med. 2022, 387, 1833–1842. [Google Scholar] [CrossRef]
- Skinner, J.; Kayentao, K.; Ongoiba, A.; Healy, S.A.; Hu, Z.; Preston, A.C.; Niangaly, A.; Schwabl, P.; Cisse, H.; Doumbo, S.; et al. Anti-sporozoite monoclonal antibody for malaria prevention: Secondary efficacy outcome of a phase 2 randomized trial. Nat. Med. 2025, 31, 2682–2690. [Google Scholar] [CrossRef]
- Wu, R.L.; Idris, A.H.; Berkowitz, N.M.; Happe, M.; Gaudinski, M.R.; Buettner, C.; Strom, L.; Awan, S.F.; Holman, L.A.; Mendoza, F.; et al. Low-Dose Subcutaneous or Intravenous Monoclonal Antibody to Prevent Malaria. N. Engl. J. Med. 2022, 387, 397–407. [Google Scholar] [CrossRef]
- Kayentao, K.; Ongoiba, A.; Preston, A.C.; Healy, S.A.; Hu, Z.; Skinner, J.; Doumbo, S.; Wang, J.; Cisse, H.; Doumtabe, D.; et al. Subcutaneous Administration of a Monoclonal Antibody to Prevent Malaria. N. Engl. J. Med. 2024, 390, 1549–1559. [Google Scholar] [CrossRef]
- National Institute of Allergy and Infectious Diseases. Anti-Malaria MAb in Kenyan Children. Available online: https://clinicaltrials.gov/study/NCT05400655 (accessed on 28 December 2025).
- Williams, K.L.; Guerrero, S.; Flores-Garcia, Y.; Kim, D.; Williamson, K.S.; Siska, C.; Smidt, P.; Jepson, S.Z.; Li, K.; Dennison, S.M.; et al. A candidate antibody drug for prevention of malaria. Nat. Med. 2024, 30, 117–129. [Google Scholar] [CrossRef]
- Lyke, K.E.; Berry, A.A.; Laurens, M.B.; Winkler, J.; Joshi, S.; Koudjra, A.R.; Butler, L.; Billingsley, P.F.; Pascini, T.; Patil, A.; et al. Human monoclonal antibody MAM01 for protection against malaria in adults in the USA: A first-in-human, phase 1, dose-escalation, double-blind, placebo-controlled, adaptive trial. Lancet Infect. Dis. 2025. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Van Der Boor, S.C.; Smit, M.J.; Van Beek, S.W.; Ramjith, J.; Teelen, K.; Van De Vegte-Bolmer, M.; Van Gemert, G.-J.; Pickkers, P.; Wu, Y.; Locke, E.; et al. Safety, tolerability, and Plasmodium falciparum transmission-reducing activity of monoclonal antibody TB31F: A single-centre, open-label, first-in-human, dose-escalation, phase 1 trial in healthy malaria-naive adults. Lancet Infect. Dis. 2022, 22, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Challenger, J.D.; Van Beek, S.W.; Ter Heine, R.; Van Der Boor, S.C.; Charles, G.D.; Smit, M.J.; Ockenhouse, C.; Aponte, J.J.; McCall, M.B.B.; Jore, M.M.; et al. Modeling the Impact of a Highly Potent Plasmodium falciparum Transmission-Blocking Monoclonal Antibody in Areas of Seasonal Malaria Transmission. J. Infect. Dis. 2023, 228, 212–223. [Google Scholar] [CrossRef]
- Patel, P.N.; Diouf, A.; Dickey, T.H.; Tang, W.K.; Hopp, C.S.; Traore, B.; Long, C.A.; Miura, K.; Crompton, P.D.; Tolia, N.H. A strain-transcending anti-AMA1 human monoclonal antibody neutralizes malaria parasites independent of direct RON2L receptor blockade. Cell Rep. 2025, 6, 101985. [Google Scholar] [CrossRef]
- Winnicki, A.C.; Dietrich, M.H.; Yeoh, L.M.; Carias, L.L.; Roobsoong, W.; Drago, C.L.; Malachin, A.N.; Redinger, K.R.; Feufack-Donfack, L.B.; Baldor, L.; et al. Potent AMA1-specific human monoclonal antibody against Plasmodium vivax Pre-erythrocytic and Blood Stages. Nat. Commun. 2024, 15, 10556. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.T.; Pereira, L.S.; Kiyuka, P.K.; Schön, A.; Kisalu, N.K.; Vistein, R.; Dillon, M.; Bonilla, B.G.; Molina-Cruz, A.; Barillas-Mury, C.; et al. Protective effects of combining monoclonal antibodies and vaccines against the Plasmodium falciparum circumsporozoite protein. PLoS Pathog. 2021, 17, e1010133. [Google Scholar] [CrossRef]
- Farquharson, L.; Noble, L.M.; Behrens, R.H. Travel clinic communication and non-adherence to malaria chemoprophylaxis. Travel Med. Infect. Dis. 2011, 9, 278–283. [Google Scholar] [CrossRef] [PubMed]
- See, K.C. Vaccination for the Prevention of Infection among Immunocompromised Patients: A Concise Review of Recent Systematic Reviews. Vaccines 2022, 10, 800. [Google Scholar] [CrossRef]
- Bloland, P.B.; Williams , H.A. Malaria Control During Mass Population Movements and Natural Disasters; National Academies Press: Washington, DC, USA, 2002. Available online: https://www.ncbi.nlm.nih.gov/books/NBK221155/ (accessed on 28 December 2025).
- Awasthi, K.R.; Jancey, J.; Clements, A.C.A.; Rai, R.; Leavy, J.E. Community engagement approaches for malaria prevention, control and elimination: A scoping review. BMJ Open 2024, 14, e081982. [Google Scholar] [CrossRef] [PubMed]
- Agu, A.P.; Umeokonkwo, C.D.; Eze, N.C.; Akpa, C.O.; Nnabu, R.C.; Akamike, I.C.; Okedo-Alex, I.N.; Alo, C.; Uneke, J.C. Knowledge of malaria control and attitudes towards community involvement among female community volunteers: Effect of capacity building in a rural community, southeast Nigeria. Pan Afr. Med. J. 2021, 39, 151. [Google Scholar] [CrossRef]
- Malaria Consortium. Community Engagement for Vector Borne Disease Control in Asia Pacific. Available online: https://www.apmen.org/sites/default/files/all_resources/Community%20Engagement%20for%20VBDC%20in%20Asia%20Pacific_Tools%2C%20Approaches%2C%20and%20Lessons_APMEN%20case%20study.pdf (accessed on 28 December 2025).
- Baltzell, K.; Harvard, K.; Hanley, M.; Gosling, R.; Chen, I. What is community engagement and how can it drive malaria elimination? Case studies and stakeholder interviews. Malar. J. 2019, 18, 245. [Google Scholar] [CrossRef] [PubMed]
- Shirima, G.; Masserey, T.; Gervas, H.; Chitnis, N.; Kiware, S.; Mirau, S. Assessing the role of community involvement and capacity building in larviciding applications for malaria control in Africa: A scoping review. Curr. Res. Parasitol. Vector-Borne Dis. 2025, 8, 100307. [Google Scholar] [CrossRef]
- Jimeno-Maroto, I.; Galindo, M.S.; Miller, J.B.; Lambert, Y.; Carboni, C.; Bardon, T.; Plessis, L.; Vreden, S.; Suarez-Mutis, M.; Douine, M.; et al. Community engagement in mobile and hard-to-reach populations: A community-based intervention for malaria elimination in a tri-national region of the Guiana Shield. Front. Public Health 2024, 12, 1377966. [Google Scholar] [CrossRef]
- Dereje, N.; Fallah, M.P.; Ndembi, N.; Duga, A.; Shaweno, T.; Aragaw, M.; Abdulaziz, M.; Ngongo, N.; Raji, T.; Kaseya, J. A community engagement framework to accelerate the uptake of malaria vaccines in Africa. Nat. Med. 2024, 30, 2706–2707. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Charavanamuttu, Y.; Agyeman Wamba, A.; Taylor-Robinson, A.W.; Lampejo, T. The Evolving Landscape of Malaria Prevention Strategies: A Review of Recent Developments. Pathogens 2026, 15, 137. https://doi.org/10.3390/pathogens15020137
Charavanamuttu Y, Agyeman Wamba A, Taylor-Robinson AW, Lampejo T. The Evolving Landscape of Malaria Prevention Strategies: A Review of Recent Developments. Pathogens. 2026; 15(2):137. https://doi.org/10.3390/pathogens15020137
Chicago/Turabian StyleCharavanamuttu, Yathavi, Akosua Agyeman Wamba, Andrew W. Taylor-Robinson, and Temi Lampejo. 2026. "The Evolving Landscape of Malaria Prevention Strategies: A Review of Recent Developments" Pathogens 15, no. 2: 137. https://doi.org/10.3390/pathogens15020137
APA StyleCharavanamuttu, Y., Agyeman Wamba, A., Taylor-Robinson, A. W., & Lampejo, T. (2026). The Evolving Landscape of Malaria Prevention Strategies: A Review of Recent Developments. Pathogens, 15(2), 137. https://doi.org/10.3390/pathogens15020137

