Predictors of Mortality in Pseudomonas aeruginosa Bloodstream Infections: A Scoping Review
Abstract
1. Introduction
Rationale for Conducting the Study in the Post-Pandemic Period
2. Methods
2.1. Search Strategy and Data Sources
2.2. Study Selection
2.3. Data Extraction and Synthesis
3. Results
3.1. Characteristics of Included Studies
3.2. Geographic Distribution of Studies
3.3. Predictors of Mortality in PABSIs (2023–2025)
3.3.1. Severity-of-Illness Predictors
3.3.2. Microbiological and Antimicrobial Predictors
3.3.3. Host-Related Conditions and Biomarkers
3.3.4. Infection Source-Related Predictors
3.3.5. Other Clinical Predictors
3.4. Predictors of Acquiring PABSIs
3.5. Mortality Rates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PABSI | Pseudomonas aeruginosa bloodstream infection |
| ICU | intensive care unit |
| WHO | World Health Organization |
| CRPA | carbapenem-resistant P. aeruginosa |
| CSPA | carbapenem-susceptible P. aeruginosa |
| PRISMA-ScR | Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews |
| ECMO | extracorporeal membrane oxygenation |
| APACHE | Acute Physiology and Chronic Health Evaluation |
| SOFA | Sequential Organ Failure Assessment |
| MDR | multi-drug resistant |
| PTA | probability of target attainment |
| PCT | procalcitonin |
| CRP | C-reactive protein |
| ANC | absolute neutrophil count |
| TTP | time-to-positivity |
| DTRPA | Difficult-to-treat P. aeruginosa |
References
- Reynolds, D.; Kollef, M. The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs 2021, 81, 2117–2131. [Google Scholar] [CrossRef]
- Silby, M.W.; Winstanley, C.; Godfrey, S.A.C.; Levy, S.B.; Jackson, R.W. Pseudomonas genomes: Diverse and adaptable. FEMS Microbiol. Rev. 2011, 35, 652–680. [Google Scholar] [CrossRef]
- Thaden, J.T.; Park, L.P.; Maskarinec, S.A.; Ruffin, F.; Fowler, V.G.; van Duin, D. Results from a 13-Year Prospective Cohort Study Show Increased Mortality Associated with Bloodstream Infections Caused by Pseudomonas aeruginosa Compared to Other Bacteria. Antimicrob. Agents Chemother. 2017, 61, e02671-16. [Google Scholar] [CrossRef]
- Bongiovanni, M.; Barda, B. Pseudomonas aeruginosa Bloodstream Infections in SARS-CoV-2 Infected Patients: A Systematic Review. J. Clin. Med. 2023, 12, 2252. [Google Scholar] [CrossRef]
- Lingas, E.C. Empiric Antibiotics in COVID 19: A Narrative Review. Cureus 2022, 14, e25596. [Google Scholar] [CrossRef]
- Stoian, M.; Andone, A.; Bândilă, S.R.; Onișor, D.; Laszlo, S.Ș.; Lupu, G.; Danielescu, A.; Baba, D.-F.; Văsieșiu, A.M.; Manea, A.; et al. Mechanical Ventilator-Associated Pneumonia in the COVID-19 Pandemic Era: A Critical Challenge in the Intensive Care Units. Antibiotics 2025, 14, 28. [Google Scholar] [CrossRef]
- Bajire, S.K.; Shastry, R.P. Synergistic effects of COVID-19 and Pseudomonas aeruginosa in chronic obstructive pulmonary disease: A polymicrobial perspective. Mol. Cell. Biochem. 2023, 479, 591–601. [Google Scholar] [CrossRef]
- Sarker, R.; Roknuzzaman, A.S.M.; Nazmunnahar; Shahriar, M.; Hossain, J.; Islam, R. The WHO has declared the end of pandemic phase of COVID-19: Way to come back in the normal life. Health Sci. Rep. 2023, 6, e1544. [Google Scholar] [CrossRef] [PubMed]
- Montero, M.M.; López Montesinos, I.; Knobel, H.; Molas, E.; Sorlí, L.; Siverio-Parés, A.; Prim, N.; Segura, C.; Duran-Jordà, X.; Grau, S.; et al. Risk Factors for Mortality among Patients with Pseudomonas aeruginosa Bloodstream Infections: What Is the Influence of XDR Phenotype on Outcomes? J. Clin. Med. 2020, 9, 514. [Google Scholar] [CrossRef] [PubMed]
- Peña, C.; Suarez, C.; Gozalo, M.; Murillas, J.; Almirante, B.; Pomar, V.; Aguilar, M.; Granados, A.; Calbo, E.; Rodríguez-Baño, J.; et al. Prospective multicenter study of the impact of carbapenem resistance on mortality in Pseudomonas aeruginosa bloodstream infections. Antimicrob. Agents Chemother. 2012, 56, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Kim, S.; Kim, H.; Park, S.; Choe, Y.; Oh, M.; Kim, E.; Choe, K. Pseudomonas aeruginosa Bacteremia: Risk Factors for Mortality and Influence of Delayed Receipt of Effective Antimicrobial Therapy on Clinical Outcome. Clin. Infect. Dis. 2003, 37, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Ong, N.Y.; Lee, D.Y.X.; Yau, C.E.; Lim, Y.L.; Kwa, A.L.H.; Tan, B.H. Trends in Pseudomonas aeruginosa (P. aeruginosa) Bacteremia during the COVID-19 Pandemic: A Systematic Review. Antibiotics 2023, 12, 409. [Google Scholar] [CrossRef]
- Xiao, S.; Liang, X.; Han, L.; Zhao, S. Incidence, antimicrobial resistance and mortality of Pseudomonas aeruginosa bloodstream infections among hospitalized patients in China: A retrospective observational multicenter cohort study from 2017 to 2021. Front. Public Health 2024, 11, 1294141. [Google Scholar] [CrossRef] [PubMed]
- Atamna, A.; Margalit, I.; Ayada, G.; Babich, T.; Naucler, P.; Valik, J.K.; Giske, C.G.; Benito, N.; Cardona, R.; Rivera, A.; et al. Outcomes of octogenarians and nonagenarians with Pseudomonas aeruginosa bacteremia: A multicenter retrospective study. Infection 2023, 51, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Herrera, S.; Morata, L.; Sempere, A.; Verdejo, M.; Del Rio, A.; Martínez, J.A.; Cuervo, G.; Hernández-Meneses, M.; Chumbita, M.; Pitart, C.; et al. Pseudomonas aeruginosa Bloodstream Infection, Resistance, and Mortality: Do Solid Organ Transplant Recipients Do Better or Worse? Antibiotics 2023, 12, 380. [Google Scholar] [CrossRef]
- Sakaguchi, M.; Atsuta, Y.; Sekiya, N.; Najima, Y.; Fukushima, K.; Shingai, N.; Toya, T.; Kobayashi, T.; Ohashi, K.; Doki, N. Clinical impact and early prediction of carbapenem-resistant Pseudomonas aeruginosa bacteraemia in allogeneic hematopoietic stem cell transplantation recipients. J. Glob. Antimicrob. Resist. 2023, 32, 187–194. [Google Scholar] [CrossRef]
- Yuan, Q.; Guo, L.; Li, B.; Zhang, S.; Feng, H.; Zhang, Y.; Yu, M.; Hu, H.; Chen, H.; Yang, Q.; et al. Risk factors and outcomes of inpatients with carbapenem-resistant Pseudomonas aeruginosa bloodstream infections in China: A 9-year trend and multicenter cohort study. Front. Microbiol. 2023, 14, 1137811. [Google Scholar] [CrossRef]
- Çaydasi, O.; Arslan, E.; Cetin, A.S.; Karadağ, F.Y.; Dede, A.T.; Adiyeke, E.; Gundogus, N.; Engin, D.O. Risk Factors and Outcomes of Patients with Pseudomonas aeruginosa Bloodstream Infection in the Intensive Care Unit. Jundishapur J. Microbiol. 2024, 17, e150331. [Google Scholar] [CrossRef]
- Derin, O.; Şahin, M.; Dumlu, R.; Başgönül, S.; Bayrak, A.D.; Arduç, Ş.; Bayram, S.; Mikaliyova, N.; Kantürk, A.; Öncül, A.; et al. Registry-Based Retrospective Cohort Study of Mortality among Adults Admitted to Intensive Care Units in Istanbul with Hospital Acquired Pseudomonas aeruginosa Bloodstream-Infection between 2014–2021. Antibiotics 2024, 13, 90. [Google Scholar] [CrossRef]
- Hojat, L.S.; Wilson, B.M.; Satlin, M.J.; Perez, F.; Mojica, M.F.; Singer, M.E.; Bonomo, R.A.; Epstein, L.H. 14-Year Epidemiologic study of Pseudomonas aeruginosa bloodstream infection incidence and resistance in the Veterans Health Administration system, 2009–2022. JAC Antimicrob. Resist. 2024, 6, dlae031. [Google Scholar] [CrossRef]
- Nakashima, H.; Miyazaki, M.; Kuwamura, T.; Oda, K.; Haga, Y.; Imakyure, O. Rela-tionship between Target Time above Minimum Inhibitory Concentration Achievement Rate of Meropenem Using Monte Carlo Simulation and In-Hospital Survival in Patients with Pseudomonas aeruginosa Bacteremia. Antibiotics 2024, 13, 219. [Google Scholar] [CrossRef]
- Pallotto, C.; Tommasi, A.; Svizzeretto, E.; Genga, G.; Gamboni, G.; Gidari, A.; Francisci, D. Bloodstream Infections Due to Wild-Type Pseudomonas aeruginosa: Carbapenems and Ceftazidime/Avibactam Prescription Rate and Impact on Outcomes. Infect. Dis. Rep. 2024, 16, 828–835. [Google Scholar] [CrossRef]
- Royo-Cebrecos, C.; Laporte-Amargós, J.; Peña, M.; Ruiz-Camps, I.; Garcia-Vidal, C.; Abdala, E.; Oltolini, C.; Akova, M.; Montejo, M.; Mikulska, M.; et al. Pseudomonas aeruginosa Bloodstream Infections Presenting with Septic Shock in Neutropenic Cancer Patients: Impact of Empirical Antibiotic Therapy. Microorganisms 2024, 12, 705. [Google Scholar] [CrossRef]
- Valik, J.K.; Giske, C.G.; Hasan, B.; Gozalo-Margüello, M.; Martínez-Martínez, L.; Premru, M.M.; Martinčič, Ž.; Beović, B.; Maraki, S.; Zacharioudaki, M.; et al. Genomic virulence markers are associated with severe outcomes in patients with Pseudomonas aeruginosa bloodstream infection. Commun. Med. 2024, 4, 264. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Li, M.; Wang, X.; Fu, Y. Risk factors and mortality of carbapenem-resistant Pseudomonas aeruginosa bloodstream infection in haematology department: A 10-year retrospective study. J. Glob. Antimicrob. Resist. 2024, 37, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Corcione, S.; Pinna, S.M.; Vena, A.; Schenone, M.; Sanino, M.; Pascale, R.; Pivetta, E.; Giacobbe, D.R.; Giannella, M.; Shbaklo, N.; et al. Pseudomonas aeruginosa bloodstream infections in internal medicine wards: A large Italian multicenter retrospective study. PLoS ONE 2025, 20, e0317540. [Google Scholar] [CrossRef] [PubMed]
- Cadenas-Jiménez, I.; Badía-Tejero, A.M.; López-Causapé, C.; Morosini, M.-I.; Portillo-Calderón, I.; Machado, M.; Larrosa, N.; Dávila, P.M.; Palacios-Baena, Z.; Puig-Albasanz, A.; et al. Molecular epidemiology and antimicrobial resistance profiles of Pseudomonas aeruginosa causing bloodstream infections in neutropenic cancer pa-tients. Front. Microbiol. 2025, 16, 1681506. [Google Scholar] [CrossRef]
- Destache, C.; Witherspoon, K.; Yeates, C.; Quimby, D.; Ahmad, F.; Vivekanandan, R. Evaluating Cefepime Dosing Strategies in Pseudomonas aeruginosa Bacteremia: A Ret-rospective Cohort Analysis. Ann. Pharmacother. 2025, 60, 53–58. [Google Scholar] [CrossRef]
- Dong, L.; Huang, Y.; Zhang, S.; Xu, B.; Li, B.; Cao, Y. Risk Factors for Development and Mortality of Carbapenem-Resistant Pseudomonas aeruginosa Bloodstream Infection in a Chinese Teaching Hospital: A Seven-Year Retrospective Study. Infect. Drug Resist. 2025, 18, 979–991. [Google Scholar] [CrossRef]
- Geremia, N.; Giovagnorio, F.; Vena, A.; Corcione, S.; Giannella, M.; Pinna, S.M.; Giovannenze, F.; Pascale, R.; Bavaro, D.F.; Brusasco, B.; et al. Risk factors for 30-Day mortality and the role of empirical therapy in Pseudomonas aeruginosa bloodstream infections. Infection 2025, 53, 2243–2256. [Google Scholar] [CrossRef]
- Guo, Y.; Hao, Y.; Huang, M.; Sun, Y.; Tao, Z.; Liu, Y.; Huang, S.; Liu, P.; Wei, D. Whole-genome sequencing reveals resistance mechanisms and molecular epidemiology of carbapenem-resistant Pseudomonas aeruginosa bloodstream infections. BMC Microbiol. 2025, 25, 679. [Google Scholar] [CrossRef]
- Huang, X.; Ding, J.; Yang, X.; Tian, B.; Yu, R.; Lyu, M.; Liu, W.; Ding, Q. Clinical characteristics and prognosis analysis of Pseudomonas aeruginosa bloodstream infection in adults: A retrospective study. Clin. Exp. Med. 2025, 25, 5. [Google Scholar] [CrossRef]
- Kessel, J.; Bug, G.; Steffen, B.; Brunnberg, U.; Vehreschild, M.J.; Weber, S.; Scheich, S.; Lang, F.; Serve, H.; Herrmann, E.; et al. Risk factors and outcome of Pseudomonas aeruginosa bloodstream in-fections (PABSI) in hematological patients: A single center retrospective cohort study. Infection 2025, 53, 1383–1392. [Google Scholar] [CrossRef]
- Marco, D.N.; Brey, M.; Anguera, S.; Pitart, C.; Grafia, I.; Bodro, M.; Martínez, J.A.; del Río, A.; Garcia-Vidal, C.; Sempere, A.; et al. Time to positivity as a predictor of catheter-related bacteremia and mortality in adults with Pseudomonas aeruginosa bloodstream infection. Crit. Care 2025, 29, 63. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou-Olivgeris, M.; Senn, L.; Jacot, D.; Guery, B. Predictors of mortality of Pseudomonas aeruginosa bacteraemia and the role of infectious diseases consultation and source control; a retrospective cohort study. Infection 2025, 53, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Buehrle, D.J.; Shields, R.K.; Clarke, L.G.; Potoski, B.A.; Clancy, C.J.; Nguyen, M.H. Carbapenem-resistant Pseudomonas aeruginosa bacteremia: Risk factors for mortality and microbiologic treatment failure. Antimicrob. Agents Chemother. 2017, 61, e01243-16. [Google Scholar] [CrossRef]
- Lee, C.-H.; Su, T.-Y.; Ye, J.-J.; Hsu, P.-C.; Kuo, A.-J.; Chia, J.-H.; Lee, M.-H. Risk factors and clinical significance of bacteremia caused by Pseudomonas aeruginosa resistant only to carbapenems. J. Microbiol. Immunol. Infect. 2017, 50, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, X.-L.; Huang, A.-W.; Liu, S.-L.; Liu, W.-J.; Zhang, N.; Lu, X.-Z. Mortality attributable to carbapenem-resistant Pseudomonas aeruginosa bacteremia: A meta-analysis of cohort studies. Emerg. Microbes Infect. 2016, 5, 1–6. [Google Scholar] [CrossRef]
- Liu, Q.; Li, X.; Li, W.; Du, X.; He, J.-Q.; Tao, C.; Feng, Y. Influence of carbapenem resistance on mortality of patients with Pseudomonas aeruginosa infection: A meta-analysis. Sci. Rep. 2015, 5, 11715. [Google Scholar] [CrossRef] [PubMed]
- Balkhair, A.; Al-Muharrmi, Z.; Al’aDawi, B.; Al Busaidi, I.; Taher, H.; Al-Siyabi, T.; Al Amin, M.; Hassan, K. Prevalence and 30-day all-cause mortality of carbapenem-and colistin-resistant bacteraemia caused by Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae: Description of a decade-long trend. Int. J. Infect. Dis. 2019, 85, 10–15. [Google Scholar] [CrossRef]
- Rojas, A.; Palacios-Baena, Z.; López-Cortés, L.; Rodríguez-Baño, J. Rates, predictors and mortality of community-onset bloodstream infections due to Pseudomonas aeruginosa: Systematic review and meta-analysis. Clin. Microbiol. Infect. 2019, 25, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Teo, J.Q.; Toh, J.H.; Chang, H.Y.; Tan, S.H.; Ho, J.J.-Y.; Ong, Z.W.; Lee, W.; Tan, Y.E.; Wong, T.H.N.; Chung, S.J.; et al. Personalised bactericidal combination regimens against carbapenem-resistant Pseudomonas aeruginosa. Commun. Med. 2025, 5, 334. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, M.; Godekmerdan, E.; Tayfur, K.D.; Yazman, S.; Urkmez, M.; Ata, Y. The APACHE II score as a predictor of mortality after open heart surgery. Turk. J. Anaesthesiol. Reanim. 2019, 47, 41–47. [Google Scholar] [CrossRef]
- Jeong, S.J.; Yoon, S.S.; Bae, I.K.; Jeong, S.H.; Kim, J.M.; Lee, K. Risk factors for mortality in patients with bloodstream infections caused by carbapenem-resistant Pseudomonas aeruginosa: Clinical impact of bacterial virulence and strains on outcome. Diagn. Microbiol. Infect. Dis. 2014, 80, 130–135. [Google Scholar] [CrossRef]
- Shi, Q.; Huang, C.; Xiao, T.; Wu, Z.; Xiao, Y. A retrospective analysis of Pseudomonas aeruginosa bloodstream infections: Prevalence, risk factors, and outcome in carbapenem-susceptible and -non-susceptible infections. Antimicrob. Resist. Infect. Control. 2019, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Henderson, H.; Luterbach, C.L.; Cober, E.; Richter, S.S.; Salata, R.A.; Kalayjian, R.C.; Watkins, R.R.; Doi, Y.; Kaye, K.S.; Evans, S.; et al. The Pitt Bacteremia Score Predicts Mortality in Nonbacteremic Infections. Clin. Infect. Dis. 2020, 70, 1826–1833. [Google Scholar] [CrossRef]
- Marra, A.R.; Bearman, G.M.; Wenzel, R.P.; Edmond, M.B. Comparison of severity of illness scoring systems for patients with nosocomial bloodstream infection due to Pseudomonas aeruginosa. BMC Infect. Dis. 2006, 6, 132. [Google Scholar] [CrossRef]
- Oh, Y.; Roh, J.; Lee, J.; Chung, H.S.; Lee, K.; Lee, M.K. Sequential Organ Failure Assessment score as a predictor of mortality in ventilated patients with multidrug-resistant bacteremia. Acute Crit. Care 2020, 35, 169–178. [Google Scholar] [CrossRef]
- Scheetz, M.H.; Hoffman, M.; Bolon, M.K.; Schulert, G.; Estrellado, W.; Baraboutis, I.G.; Sriram, P.; Dinh, M.; Owens, L.K.; Hauser, A.R. Morbidity associated with Pseudomonas aeruginosa bloodstream infections. Diagn. Microbiol. Infect. Dis. 2009, 64, 311–319. [Google Scholar] [CrossRef]
- Nasa, P.; Juneja, D.; Singh, O. Severe sepsis and septic shock in the elderly: An overview. World J. Crit. Care Med. 2012, 1, 23–30. [Google Scholar] [CrossRef]
- Liu, D.; Huang, S.-Y.; Sun, J.-H.; Zhang, H.-C.; Cai, Q.-L.; Gao, C.; Li, L.; Cao, J.; Xu, F.; Zhou, Y.; et al. Sepsis-induced immunosuppression: Mechanisms, diagnosis and current treatment options. Mil. Med. Res. 2022, 9, 56. [Google Scholar] [CrossRef]
- Carcò, D.; Iachelli, V.; Markovic, U.; Chisari, G.; Galbo, F.; Sciacca, D.; Giaimi, L.; Castorina, P.; Martorana, E. Sepsis detection in hematologic and solid tumor malignancies using quantitative inflammatory biomarker differences in a prospective single center study. Sci. Rep. 2025, 15, 31701. [Google Scholar] [CrossRef]
- George, N.A.; Pan, D.; Silva, L.; Baggaley, R.F.; Irizar, P.; Divall, P.; Al-Oraibi, A.; Khan, D.P.; Martin, C.A.; Nazareth, J.; et al. The prevalence and risk of mortality associated with antimicrobial resistance within nosocomial settings—A global systematic review and meta-analysis of over 20,000 patients. EClinicalMedicine 2025, 87, 103384. [Google Scholar] [CrossRef]
- Ciapponi, A.; Bardach, A.; Sandoval, M.M.; Palermo, M.C.; Navarro, E.; Espinal, C.; Quirós, R. Systematic Review and Meta-analysis of Deaths Attributable to Antimicrobial Resistance, Latin America. Emerg. Infect. Dis. 2023, 29, 2335–2344. [Google Scholar] [CrossRef]
- McCarthy, K.; Wailan, A.; Jennison, A.; Kidd, T.; Paterson, D.P. aeruginosa blood stream infection isolates: A ‘full house’ of virulence genes in isolates associated with rapid patient death and patient survival. Microb. Pathog. 2018, 119, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Peña, C.; Cabot, G.; Gómez-Zorrilla, S.; Zamorano, L.; Ocampo-Sosa, A.; Murillas, J.; Almirante, B.; Pomar, V.; Aguilar, M.; Granados, A.; et al. Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin. Infect. Dis. 2015, 60, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Willmann, M.; Kuebart, I.; Marschal, M.; Schröppel, K.; Vogel, W.; Flesch, I.; Markert, U.; Autenrieth, I.B.; Hölzl, F.; Peter, S. Effect of metallo-β-lactamase production and multidrug resistance on clinical outcomes in patients with Pseudomonas aeruginosa bloodstream infection: A retrospective cohort study. BMC Infect. Dis. 2013, 13, 515. [Google Scholar] [CrossRef] [PubMed]


| Study | Country | Setting | Time Period | Number of Patients with Episodes | Mortality Rate | |
|---|---|---|---|---|---|---|
| 30-Day Mortality | 7-Day Mortality | |||||
| [14] | Multinational (Australia, Germany, Greece, France, Israel, Slovenia, Spain, Sweden, and the United Kingdom) | Multicenter (25 centers) | 1 January 2009–31 October 2015 | 464 patients ≥ 80 years studied for risk and mortality Total: 2394 patients | ≥80 years (n = 464): 30% 65–79 years (n = 894): 27% <65 years (n = 1036): 25% | - |
| [15] | Spain | Single center | January 1991–July 2019 | 2057 episodes | Overall: 20% Solid organ transplant (SOT) patients: 13% Non-SOT: 21% | - |
| [16] | Japan | Single center | January 2005–December 2020 | 48 patients | All-cause mortality 32.9% | - |
| [17] | China | Multicenter (3 centers) | January 2012–December 2020 | 274 patients | CRPA BSI: 39% DTRPA BSI: 50% | - |
| [18] | Türkiye | Single center | January 2020–December 2022 | 140 patients | Overall: 44.2% (n = 62) CRPA BSI: 45.5% DTRPA BSI: 45.4% | - |
| [19] | Türkiye | Multicenter (4 centers) | 1 January 2012–31 December 2021 | 157 patients | 44.60% | - |
| [20] | USA | Single center | 1 January 2009–31 December 2022 | 8039 patients | 23.30% | - |
| [21] | Japan | Single center | January 2009–December 2022 | 41 patients | 75.6% n = 31/41 | - |
| [22] | Italy | Single center | January 2020–June 2022 | 77 patients | 20.80% | - |
| [23] | Multinational (Colombia, Argentina, Italy, Chile, Slovakia, Türkiye, Spain, Brazil, Lebanon, Germany, Switzerland, and the UK) | Multicenter (34 centers) | 1 January 2016–31 May 2018 | 1177 patients | 40.30% | 27.70% |
| [24] | Multinational (Spain, Greece, Slovenia, Sweden, and Australia) | Multicenter (6 centers) | 2009–2015 | 836 patients | 23.5% (182/773) | 15.5% (120/773) |
| [25] | China | Single center | 2013–2022 | 503 patients | 28-day mortality Overall 16.1% CRPA BSI: 38.2% CSPA BSI: 12.2% | - |
| [26] | Italy | Multicenter (14 centers) | 2021 and 2022 | 285 patients | 22.50% | - |
| [27] | Spain | Multicenter (5 centers) | 2006–2018 | 94 patients | Overall: 32.3% Non-MDR: 37.3% MDR non-XDR: 20% XDR: 17.6% | Overall: 21.5% Non-MDR: 23.9% MDR non-XDR: 10% XDR: 17.6% |
| [28] | USA | Single center | 1 January 2020–30 July 2022 | 111 patients | n = 37/111 | - |
| [29] | China | Single center | January 2017–December 2023 | 224 patients | CRPA: n = 57/112 (50.9%) CSPA: 21.4% | - |
| [30] | Italy | Multicenter (14 centers) | January 2021–December 2022 | 511 patients | Overall: n = 108/511 (21.1%) | - |
| [31] | China | Single center | 2021–2023 | 61 patients | 44.2% CSPA 50% CRPA | CSPA: 37.2% CRPA: 38.9% |
| [32] | China | Single center | January 2022–February 2024 | 118 patients | n = 46/118 (38.98%) | - |
| [33] | Germany | Single center | January 2013–July 2023 | 50 patients | 22% n = 11 | - |
| [34] | Spain | Single center | 1991–2019 | 1177 patients | 19.8%, n = 225 | - |
| [35] | Switzerland | Single center | 2015–2021 | 261 patients and 278 episodes | 22% (60 episodes) | 14-day mortality: 15% (42 episodes) |
| Region and Country | Number of Publications |
|---|---|
| Americas | |
| Argentina | 1 |
| Brazil | 1 |
| Chile | 1 |
| Colombia | 1 |
| USA | 2 |
| Eastern Mediterranean | |
| Lebanon | 1 |
| Europe | |
| Germany | 2 |
| Greece | 2 |
| France | 1 |
| Israel | 1 |
| Italy | 4 |
| Slovakia | 1 |
| Slovenia | 2 |
| Spain | 5 |
| Sweden | 2 |
| Switzerland | 2 |
| Türkiye | 3 |
| United Kingdom | 2 |
| Western Pacific | |
| Australia | 2 |
| China | 5 |
| Japan | 2 |
| Southeast Asia | - |
| Africa | - |
| Risk Factor | Number of Studies |
|---|---|
| Severity of Illness: | |
| - Sepsis/septic shock/shock at onset | 7 |
| - Mechanical ventilation | 5 |
| - ECMO | 1 |
| - APACHE II score | 3 |
| - Pitt score/qPitt | 3 |
| - SOFA score | 1 |
| - Multiple organ failure | 2 |
| - Inotropic support | 1 |
| Microbiological or Antimicrobial Predictors | |
| - MDR/CRPA | 3 |
| - Carbapenem exposure | 3 |
| - Use of colistin prior to infection | 1 |
| - Cefepime dosing (4 g/day vs. 6 g/day) | 1 |
| - PTA > 65% | 1 |
| - Incorrect empiric antibiotic therapy | 1 |
| - Inadequate empirical antibiotic therapy (EIAT) | 1 |
| - High-risk genotypes (ST175, ST235) | 1 |
| Host-related Condition and Biomarkers | |
| - Older age | 4 |
| - High comorbidity burden (Charlson Comorbidity Index) | 3 |
| - Hematological disease/malignancy | 3 |
| - Corticosteroid therapy | 3 |
| - Elevated inflammatory markers (PCT/CRP/D-dimer) | 2 # |
| - Thrombocytopenia/low platelet count | 2 |
| - Dementia | 1 |
| - Acute kidney injury | 1 |
| - G-CSF use | 1 |
| - Low hemoglobin | 1 |
| - Coronary artery disease | 1 |
| Infection Source-related Factors | |
| - Hospital-acquired or -onset | 3 |
| - High-risk infection | 2 |
| - Urinary tract infection | 2 # |
| - Internal organ infection (pneumonia or cIAI) | 1 |
| - Primary bloodstream infection | 1 |
| - Lower respiratory tract infection | 1 |
| - Persistent bloodstream infection | 1 |
| - Urinary catheter | 1 |
| Other Risk Factors | |
| - Source control | 2 |
| - Delayed Catheter Removal (>48 h) | 1 |
| - COVID-19 pandemic period | 1 |
| - Facility complexity (1b vs. 1a) | 1 |
| Predictors of BSI | Number of Studies |
|---|---|
| Carbapenem-related exposure (prior therapy/exposure within 90 days) | 5 |
| Severe neutropenia (ANC < 100/mm3) | 2 |
| History of allo-HSCT | 1 |
| Older age | 1 |
| Receipt of antifungal prophylaxis | 1 |
| Active antibiotics during bacteremia | 1 |
| Catheter duration > 7 days | 1 |
| Differential TTP < 2 h | 1 |
| Phlebitis (catheter-related BSI) | 1 |
| Positive cultures in both vials | 1 |
| Septic shock at BSI onset (catheter-related) | 1 |
| Short time-to-positivity (TTP < 13 h) | 1 |
| Hematologic malignancy | 1 |
| Immunosuppressive therapy | 1 |
| Prior ICU hospitalization | 1 |
| Chronic lung disease | 1 |
| Multiple organ failure | 1 |
| Prior CRPA infection/colonization | 1 |
| Transplantation | 1 |
| Elevated C-reactive protein | 1 |
| Central venous catheterization | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Abdul Jabar, K.; Romli, N.I.A.; Vellasamy, K.M.; Pallath, V.; Al-Maleki, A.R. Predictors of Mortality in Pseudomonas aeruginosa Bloodstream Infections: A Scoping Review. Pathogens 2026, 15, 61. https://doi.org/10.3390/pathogens15010061
Abdul Jabar K, Romli NIA, Vellasamy KM, Pallath V, Al-Maleki AR. Predictors of Mortality in Pseudomonas aeruginosa Bloodstream Infections: A Scoping Review. Pathogens. 2026; 15(1):61. https://doi.org/10.3390/pathogens15010061
Chicago/Turabian StyleAbdul Jabar, Kartini, Nur Izzatul Auni Romli, Kumutha Malar Vellasamy, Vinod Pallath, and Anis Rageh Al-Maleki. 2026. "Predictors of Mortality in Pseudomonas aeruginosa Bloodstream Infections: A Scoping Review" Pathogens 15, no. 1: 61. https://doi.org/10.3390/pathogens15010061
APA StyleAbdul Jabar, K., Romli, N. I. A., Vellasamy, K. M., Pallath, V., & Al-Maleki, A. R. (2026). Predictors of Mortality in Pseudomonas aeruginosa Bloodstream Infections: A Scoping Review. Pathogens, 15(1), 61. https://doi.org/10.3390/pathogens15010061

