Temporal and Geographical Patterns of Pacific Arboviral Vectors on Ebeye, Republic of the Marshall Islands: Insights from a Longitudinal Entomological Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Population
2.2. Study Design
2.3. Mosquito/Egg Sampling and Processing
2.4. Meteorologic Data
2.5. Data Analysis
2.6. Ethical Considerations
3. Results
3.1. Abundance and Species Composition Across the Study Area
3.2. Environmental Drivers of Mosquito Abundance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| A. | Aedes (used for species such as A. aegypti, A. albopictus, A. marshallensis) |
| Ae. | Aedes |
| BGS | BG-Sentinel trap(s) |
| CDC | U.S. Centers for Disease Control and Prevention |
| C. | Culex (used for species such as C. quinquefasciatus, C. annulirostris) |
| MOHHS | Ministry of Health and Human Services, Republic of the Marshall Islands |
| RMI | Republic of the Marshall Islands |
References
- World Health Organization. Global Vector Control Response 2017–2030; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Ryan, S.J.; Carlson, C.J.; Mordecai, E.A.; Johnson, L.R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Neglected Trop. Dis. 2019, 13, e0007213. [Google Scholar] [CrossRef]
- Delrieu, M.; Martinet, J.P.; O’Connor, O.; Viennet, E.; Menkes, C.; Burtet-Sarramegna, V.; Frentiu, F.D.; Dupont-Rouzeyrol, M. Temperature and transmission of chikungunya, dengue, and Zika viruses: A systematic review of experimental studies on Aedes aegypti and Aedes albopictus. Curr. Res. Parasitol. Vector Borne Dis. 2023, 4, 100139. [Google Scholar] [CrossRef]
- Thomson, M.C.; Stanberry, L.R. Climate Change and Vectorborne Diseases. N. Engl. J. Med. 2022, 387, 1969–1978. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Ghani, R.; Mahdy, M.A.K.; Al-Eryani, S.M.A.; Fouque, F.; Lenhart, A.E.; Alkwri, A.; Al-Mikhlafi, A.M.; Wilke, A.B.B.; Thabet, A.A.Q.; Beier, J.C. Impact of population displacement and forced movements on the transmission and outbreaks of Aedes-borne viral diseases: Dengue as a model. Acta Trop. 2019, 197, 105066. [Google Scholar] [CrossRef] [PubMed]
- Matthews, R.J.; Kaluthotage, I.; Russell, T.L.; Knox, T.B.; Horwood, P.F.; Craig, A.T. Arboviral Disease Outbreaks in the Pacific Islands Countries and Areas, 2014 to 2020: A Systematic Literature and Document Review. Pathogens 2022, 11, 74. [Google Scholar] [CrossRef]
- Pacific Community (SPC). Republic of the Marshall Islands 2021 Census on Population and Housing: Analytical Report; Pacific Community: Noumea, New Caledonia, 2024; Volume 2024. [Google Scholar]
- Economic Policy Planning and Statistics Office. Poverty, Food Consumption, Labour, and Household Income and Expenditure in the Marshall Islands: A Compendium of Analyses of the 2019/20 Household Income and Expenditure Survey; Pacific Community, Ed.; Pacific Community: Noumea, New Caledonia, 2022. [Google Scholar]
- Republic of the Marshall Islands Ministry of Health and Human Services. RMI Dengue Situation Report (3-21-2021). Available online: https://reliefweb.int/report/marshall-islands/dengue-3-outbreak-republic-marshall-islands-june-25-2019-march-21-2021 (accessed on 30 August 2025).
- World Health Organization. Global Arbovirus Initiative: Preparing for the Next Pandemic by Tackling Mosquito-Borne Viruses with Epidemic and Pandemic Potential; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Chan, M.; Johansson, M.A. The incubation periods of Dengue viruses. PLoS ONE 2012, 7, e50972. [Google Scholar] [CrossRef]
- Delatte, H.; Desvars, A.; Bouetard, A.; Bord, S.; Gimonneau, G.; Vourc’h, G.; Fontenille, D. Blood-feeding behavior of Aedes albopictus, a vector of Chikungunya on La Reunion. Vector Borne Zoonotic Dis. 2010, 10, 249–258. [Google Scholar] [CrossRef]
- Scott, T.W.; Amerasinghe, P.H.; Morrison, A.C.; Lorenz, L.H.; Clark, G.G.; Strickman, D.; Kittayapong, P.; Edman, J.D. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: Blood feeding frequency. J. Med. Entomol. 2000, 37, 89–101. [Google Scholar] [CrossRef]
- Colton, Y.M.; Chadee, D.D.; Severson, D.W. Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Med. Vet. Entomol. 2003, 17, 195–204. [Google Scholar] [CrossRef]
- Reinbold-Wasson, D.D.; Reiskind, M.H. Comparative Skip-Oviposition Behavior Among Container Breeding Aedes spp. Mosquitoes (Diptera: Culicidae). J. Med. Entomol. 2021, 58, 2091–2100. [Google Scholar] [CrossRef]
- Bonizzoni, M.; Gasperi, G.; Chen, X.; James, A.A. The invasive mosquito species Aedes albopictus: Current knowledge and future perspectives. Trends Parasitol. 2013, 29, 460–468. [Google Scholar] [CrossRef]
- Foster, W.A.; Walker, E.D. Mosquitoes (Culicidae). In Medical and Veterinary Entomology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 261–325. [Google Scholar]
- Goindin, D.; Delannay, C.; Ramdini, C.; Gustave, J.; Fouque, F. Parity and longevity of Aedes aegypti according to temperatures in controlled conditions and consequences on dengue transmission risks. PLoS ONE 2015, 10, e0135489. [Google Scholar] [CrossRef]
- Masters, S.W.; Knapek, K.J.; Kendall, L.V. Rearing Aedes aegypti Mosquitoes in a laboratory setting. Lab. Anim. Sci. Prof. 2020, 55, 42–45. [Google Scholar]
- Delatte, H.; Gimonneau, G.; Triboire, A.; Fontenille, D. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J. Med. Entomol. 2009, 46, 33–41. [Google Scholar] [CrossRef]
- Crovello, T.J.; Hacker, C.S. Evolutionary Strategies in Life Table Characteristics among Feral and Urban Strains of Aedes aegypti (L.). Evolution 1972, 26, 185–196. [Google Scholar] [CrossRef]
- Cui, G.; Zhong, S.; Zheng, T.; Li, Z.; Zhang, X.; Li, C.; Hemming-Schroeder, E.; Zhou, G.; Li, Y. Aedes albopictus life table: Environment, food, and age dependence survivorship and reproduction in a tropical area. Parasit. Vectors 2021, 14, 568. [Google Scholar] [CrossRef]
- Bohart, R.M.; Ingram, R.L. Mosquitoes of Okinawa and Islands in the Central Pacific; Navy Department, Bureau of Medicine and Surgery: Falls Church, VA, USA, 1946. [Google Scholar]
- Fisher, J.; Vorsino, A.E.; Plentovich, S. Kwajalein Atoll Mosquito Inventory and Trip Report, 6–20 July 2015; Defense Advanced Research Projects Agency: Arlington, VA, USA, 2016. [Google Scholar]
- Marie, J.; Perera, D.; Garstang, H.; Bossin, H.C.; Bourtzis, K. Exploring Mosquito Fauna of Majuro Atoll (Republic of Marshall Islands) in the Context of Zika Outbreak. J. Med. Entomol. 2018, 55, 1299–1306. [Google Scholar] [CrossRef]
- Smithsonian Institution Archives. Walter Reed Biosystematics Unit: Mosquito Identification Resources. Available online: https://siarchives.si.edu/collections/siris_arc_404579 (accessed on 6 January 2025).
- Hersbach, H.; Comyn-Platt, E.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; et al. ERA5 Post-Processed Daily-Statistics on Pressure Levels from 1940 to Present; European Union: Brussels, Belgium, 2023. [Google Scholar] [CrossRef]
- CDC. Guidelines for West Nile Virus Surveillance and Control; Centers for Disease Control and Prevention: Atlanta, Georgia, 2024.
- Reinhold, J.M.; Lazzari, C.R.; Lahondere, C. Effects of the Environmental Temperature on Aedes aegypti and Aedes albopictus Mosquitoes: A Review. Insects 2018, 9, 158. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, 4.4.3; R Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- Kellner, K. jagsUI: A Wrapper Around ‘rjags’ to Streamline ‘JAGS’ Analyses, R package version 1.6.2; R Foundation for Statistical Computing: Vienna, Austria, 2024.
- Plummer, M. JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003), Vienna, Austria, 20–22 March 2003; pp. 1–10. [Google Scholar]
- Plummer, M.; Best, N.; Cowles, K.; Vines, K. CODA: Convergence Diagnosis and Output Analysis for MCMC. R News 2006, 6, 7–11. [Google Scholar]
- Nunn, P.V.; Reeves, W.K.; Utter, C.M. New records for Micronesian mosquitoes. J. Am. Mosq. Control Assoc. 2011, 27, 300–302. [Google Scholar] [CrossRef]
- Sharp, T.M.; Mackay, A.J.; Santiago, G.A.; Hunsperger, E.; Nilles, E.J.; Perez-Padilla, J.; Tikomaidraubuta, K.S.; Colon, C.; Amador, M.; Chen, T.H.; et al. Characteristics of a dengue outbreak in a remote pacific island chain—Republic of The Marshall Islands, 2011–2012. PLoS ONE 2014, 9, e108445. [Google Scholar] [CrossRef] [PubMed]
- Noda, S.; Yamamoto, S.; Toma, T.; Taulung, L. Distribution of mosquito larvae on kosrae island, kosrae state, the federated States of micronesia. Trop. Med. Health 2013, 41, 157–161. [Google Scholar] [CrossRef]
- Russell, T.L.; Burkot, T.R. A Guide to Mosquitoes in the Pacific; Pacific Community (SPC): Noumea, New Caledonia, 2023. [Google Scholar]
- Harrington, L.C.; Ponlawat, A.; Edman, J.D.; Scott, T.W.; Vermeylen, F. Influence of container size, location, and time of day on oviposition patterns of the dengue vector, Aedes aegypti, in Thailand. Vector Borne Zoonotic Dis. 2008, 8, 415–423. [Google Scholar] [CrossRef]
- Burkot, T.R.; Handzel, T.; Schmaedick, M.A.; Tufa, J.; Roberts, J.M.; Graves, P.M. Productivity of natural and artificial containers for Aedes polynesiensis and Aedes aegypti in four American Samoan villages. Med. Vet. Entomol. 2007, 21, 22–29. [Google Scholar] [CrossRef]
- Carrieri, M.; Bacchi, M.; Bellini, R.; Maini, S. On the Competition Occurring Between Aedes albopictus and Culex pipiens (Diptera: Culicidae) in Italy. Environ. Entomol. 2003, 32, 1313–1321. [Google Scholar] [CrossRef]
- Reiskind, M.H.; Zarrabi, A.A. Water Surface Area and Depth Determine Oviposition Choice in Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 2012, 49, 71–76. [Google Scholar] [CrossRef]
- Soares, A.P.M.; Rosario, I.N.G.; Silva, I.M. Distribution and preference for oviposition sites of Aedes albopictus (Skuse) in the metropolitan area of Belem, in the Brazilian Amazon. J. Vector Ecol. 2020, 45, 312–320. [Google Scholar] [CrossRef]
- Allan, S.A.; Kline, D.L. Larval rearing water and preexisting eggs influence oviposition by Aedes aegypti and Ae. albopictus (Diptera: Culicidae). J. Med. Entomol. 1998, 35, 943–947. [Google Scholar] [CrossRef] [PubMed]
- Apostol, B.L.; Black, W.C.t.; Reiter, P.; Miller, B.R. Use of randomly amplified polymorphic DNA amplified by polymerase chain reaction markers to estimate the number of Aedes aegypti families at oviposition sites in San Juan, Puerto Rico. Am. J. Trop. Med. Hyg. 1994, 51, 89–97. [Google Scholar] [CrossRef]
- Morin, C.W.; Comrie, A.C.; Ernst, K. Climate and dengue transmission: Evidence and implications. Environ. Health Perspect. 2013, 121, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Gage, K.L.; Burkot, T.R.; Eisen, R.J.; Hayes, E.B. Climate and vectorborne diseases. Am. J. Prev. Med. 2008, 35, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Kolivras, K.N. Changes in dengue risk potential in Hawaii, USA, due to climate variability and change. Clim. Res. 2010, 42, 1–11. [Google Scholar] [CrossRef]
- Barrera, R.; Amador, M.; MacKay, A.J. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLoS Neglected Trop. Dis. 2011, 5, e1378. [Google Scholar] [CrossRef]
- Stewart Ibarra, A.M.; Ryan, S.J.; Beltran, E.; Mejia, R.; Silva, M.; Munoz, A. Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in Ecuador: Implications for targeted control. PLoS ONE 2013, 8, e78263. [Google Scholar] [CrossRef]
- Lambdin, B.H.; Schmaedick, M.A.; McClintock, S.; Roberts, J.; Gurr, N.E.; Marcos, K.; Waller, L.; Burkot, T.R. Dry season production of filariasis and dengue vectors in American Samoa and comparison with wet season production. Am. J. Trop. Med. Hyg. 2009, 81, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Bailey, B.J.; Cook, S.J.; Mahul, O. The Marshall Islands: Country Note; The World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Ebi, K.L.; Lewis, N.D.; Corvalan, C. Climate variability and change and their potential health effects in small island states: Information for adaptation planning in the health sector. Environ. Health Perspect. 2006, 114, 1957–1963. [Google Scholar] [CrossRef] [PubMed]




| All Sites | Ebeye | Northern Islets | ||||||
|---|---|---|---|---|---|---|---|---|
| n | % | n | % 2 | Mean 3 [CrI]; dispersion | n | % 2 | Mean 3 [CrI]; dispersion | |
| BGS collections, all | 3883 | 2780 | 1103 | |||||
| BGS collections > 0 (+) | 3145 | 81 | 1975 | 71 | 949 | 86 | ||
| Total number females 1 | 25,804 | 100 | 17,841 | 100 | 7963 | 100 | ||
| A. aegypti * | 15,079 | 58 | 12,588 | 71 | 4.7 [4.4, 4.9]; 0.64 | 2491 | 31 | 2.3 [2.0, 2.5]; 0.33 |
| A. albopictus * | 5256 | 20 | 1817 | 10 | 0.7 [0.6, 0.7]; 0.12 | 3439 | 43 | 3.2 [2.9, 3.4]; 0.46 |
| A. marshallensis * | 120 | 0.5 | 35 | 0 | 0.01 [0.003, 0.02]; 0.003 | 85 | 1 | 0.1 [0.03, 0.1]; 0.01 |
| C. annulirostris | 427 | 2 | 305 | 2 | 0.2 [0.1, 0.3]; 0.03 | 112 | 1 | 0.2 [0.1, 0.3]; 0.05 |
| C. quinquefasciatus | 4946 | 19 | 3101 | 17 | 1.2 [1.1, 1.2]; 0.28 | 1845 | 23 | 1.7 [1.5, 1.9]; 0.24 |
| Unidentified | 18 | >0.01 | 7 | >0.01 | NA | 11 | >0.01 | NA |
| Ovitrap collections, all | 1243 | 756 | 100 | 445 | 100 | |||
| Ovitrap collections > 0 | 684 | 55 | 370 | 49 | 316 | 71 | ||
| Total number eggs | 13,708 | 6540 | 48 | 9.1 [7.5, 10.6] 4; 0.19 | 7257 | 53 | 17.2 [14.5, 19.9] 4; 0.39 | |
| Species/Parameter | Estimate (Log Scale) | B. Trans. Estimate 1 | 95% CrI of B. Trans. Estimate | Interpretation |
|---|---|---|---|---|
| Aedes aegypti | ||||
| Intercept | −0.9 | 0.4 | 0.2–0.8 | When all covariates were zero abundance was 0.4 |
| β1 (log(Rain)) * | 0.4 | 1.3 | 1.2–1.4 | Doubling of rain increases the abundance by ≈30% |
| β2 (Wind) | 0.0 | 1.0 | 0.95–1.1 | No effect |
| β3 (Ebeye) | 1.1 | 3.0 | 1.6–4.6 | Ebeye increased the abundance by ≈200% |
| Variance Components | ||||
| 0.7 | 2.0 | 1.7–2.4 | Positive effect | |
| 0.3 | 1.4 | 1.3–1.5 | Positive effect | |
| 0.7 | 2.0 | 1.7–2.4 | Positive effect | |
| Aedes albopictus | ||||
| Intercept | 0.02 | 1.2 | 0.2–2.9 | |
| β1 (log(Rain)) * | 0.4 | 1.3 | 1.1–1.6 | Doubling increases the abundance by ≈33% |
| β2 (Wind) | −0.1 | 0.9 | 0.8–1.0 | |
| β3 (Ebeye) | −2.5 | 0.09 | 0.04–0.14 | Ebeye decreased the abundance by ≈91%% |
| Variance Components | ||||
| 0.9 | 2.5 | 2.0–3.1 | Positive effect | |
| 0.7 | 2.0 | 1.8–2.3 | Positive effect | |
| 0.9 | 2.5 | 2.0–3.1 | Positive effect | |
| Culex quinquefasciatus | ||||
| Intercept | −1.3 | 0.3 | 0.1–0.6 | |
| β1 (log(Rain)) * | 0.5 | 1.4 | 1.2–1.5 | Doubling increases the abundance by ≈35% |
| β2 (Wind) | 0 | 1.0 | 0.9–1.1 | No effect |
| β3 (Ebeye) | −0.7 | 0.5 | 0.2–0.9 | Ebeye decreased the abundance by ≈50% |
| Variance Components | ||||
| 0.8 | 2.3 | 1.9–2.8 | Positive effect | |
| 0.4 | 1.6 | 1.4–1.7 | Positive effect | |
| 0.8 | 2.3 | 1.9–2.8 | Positive effect |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Drexler, A.A.; Buhagiar, T.S.; Lozano, S.; Chutaro, E.; Juda, C.; Morelik, R.; McAllister, J.; Hapairai, L.K. Temporal and Geographical Patterns of Pacific Arboviral Vectors on Ebeye, Republic of the Marshall Islands: Insights from a Longitudinal Entomological Study. Pathogens 2026, 15, 60. https://doi.org/10.3390/pathogens15010060
Drexler AA, Buhagiar TS, Lozano S, Chutaro E, Juda C, Morelik R, McAllister J, Hapairai LK. Temporal and Geographical Patterns of Pacific Arboviral Vectors on Ebeye, Republic of the Marshall Islands: Insights from a Longitudinal Entomological Study. Pathogens. 2026; 15(1):60. https://doi.org/10.3390/pathogens15010060
Chicago/Turabian StyleDrexler, Anna A., Tamara S. Buhagiar, Saul Lozano, Earlynta Chutaro, Calvin Juda, Roston Morelik, Janet McAllister, and Limb K. Hapairai. 2026. "Temporal and Geographical Patterns of Pacific Arboviral Vectors on Ebeye, Republic of the Marshall Islands: Insights from a Longitudinal Entomological Study" Pathogens 15, no. 1: 60. https://doi.org/10.3390/pathogens15010060
APA StyleDrexler, A. A., Buhagiar, T. S., Lozano, S., Chutaro, E., Juda, C., Morelik, R., McAllister, J., & Hapairai, L. K. (2026). Temporal and Geographical Patterns of Pacific Arboviral Vectors on Ebeye, Republic of the Marshall Islands: Insights from a Longitudinal Entomological Study. Pathogens, 15(1), 60. https://doi.org/10.3390/pathogens15010060

