MinION Adapted tNGS Panel for Carnivore Pathogens Including SARS-CoV-2
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Samples
Targeted NGS Primer Pools for Pathogen Detection
2.2. Ruggedness Testing
2.2.1. Extraction Method Comparison
2.2.2. Reverse Transcription PCR
2.2.3. PCR Optimization and Polymerase Comparisons
2.3. Library Preparation and Sequencing
2.3.1. ONT Method
2.3.2. Ion Torrent Method
2.4. Inclusivity
2.5. Limit of Detection/Analytical Sensitivity
2.6. Analytical Specificity
2.7. Diagnostic Sensitivity and Specificity
2.8. Wildlife Surveillance
2.9. Statistical Analysis
3. Results
3.1. Ruggedness Testing Results
3.2. Limit of Detection/Analytical Sensitivity, Specificity, and Inclusivity
3.3. Diagnostic Sensitivity and Specificity
3.4. Wildlife Surveillance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef]
- Owusu, H.; Sanad, Y.M. Comprehensive Insights into Highly Pathogenic Avian Influenza H5N1 in Dairy Cattle: Transmission Dynamics, Milk-Borne Risks, Public Health Implications, Biosecurity Recommendations, and One Health Strategies for Outbreak Control. Pathogens 2025, 14, 278. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, M.; Köster, D.; Bossuyt, P.M.; Gerke, O.; Jurke, A.; Kretzschmar, M.E.; Lütgehetmann, M.; Mikolajczyk, R.; Reitsma, J.B.; Schneiderhan-Marra, N.; et al. A unified framework for diagnostic test development and evaluation during outbreaks of emerging infections. Commun. Med. 2024, 4, 263. [Google Scholar] [CrossRef]
- Oude Munnink, B.B.; Sikkema, R.S.; Nieuwenhuijse, D.F.; Molenaar, R.J.; Munger, E.; Molenkamp, R.; van der Spek, A.; Tolsma, P.; Rietveld, A.; Brouwer, M.; et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 2021, 371, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Fan, K.; Liang, X.; Gong, W.; Chen, W.; He, B.; Chen, X.; Wang, H.; Wang, X.; Zhang, P.; et al. Virus diversity, wildlife-domestic animal circulation and potential zoonotic viruses of small mammals, pangolins and zoo animals. Nat. Commun. 2023, 14, 2488. [Google Scholar] [CrossRef]
- Lanciotti, R.S.; Roehrig, J.T.; Deubel, V.; Smith, J.; Parker, M.; Steele, K.; Crise, B.; Volpe, K.E.; Crabtree, M.B.; Scherret, J.H.; et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 1999, 286, 2333–2337. [Google Scholar] [CrossRef]
- Stallknecht, D.E. Impediments to Wildlife Disease Surveillance, Research, and Diagnostics. In Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission; Childs, J.E., Mackenzie, J.S., Richt, J.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 445–461. [Google Scholar] [CrossRef]
- Chung, H.-Y.; Jian, M.-J.; Chang, C.-K.; Lin, J.-C.; Yeh, K.-M.; Chen, C.-W.; Hsieh, S.-S.; Hung, K.-S.; Tang, S.-H.; Perng, C.-L.; et al. Emergency SARS-CoV-2 Variants of Concern: Novel Multiplex Real-Time RT-PCR Assay for Rapid Detection and Surveillance. Microbiol. Spectr. 2022, 10, e0251321. [Google Scholar] [CrossRef]
- Goldberg, A.R.; Langwig, K.E.; Brown, K.L.; Marano, J.M.; Rai, P.; King, K.M.; Sharp, A.K.; Ceci, A.; Kailing, C.D.; Kailing, M.J.; et al. Widespread exposure to SARS-CoV-2 in wildlife communities. Nat. Commun. 2024, 15, 6210. [Google Scholar] [CrossRef]
- Gardy, J.L.; Loman, N.J. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet. 2018, 19, 9–20. [Google Scholar] [CrossRef] [PubMed]
- de Jesus, J.G.; Giovanetti, M.; Rodrigues Faria, N.; Alcantara, L.C.J. Acute Vector-Borne Viral Infection: Zika and MinION Surveillance. Microbiol. Spectr. 2019, 7, 10–128. [Google Scholar] [CrossRef]
- Goldstein, S.; Beka, L.; Graf, J.; Klassen, J.L. Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing. BMC Genom. 2019, 20, 23. [Google Scholar] [CrossRef]
- Van Deynze, K.; Mumm, C.; Maltby, C.J.; Switzenberg, J.A.; Todd, P.K.; Boyle, A.P. Enhanced detection and genotyping of disease-associated tandem repeats using HMMSTR and targeted long-read sequencing. Nucleic Acids Res. 2025, 53, gkae1202. [Google Scholar] [CrossRef]
- Brancaccio, R.N.; Robitaille, A.; Dutta, S.; Rollison, D.E.; Tommasino, M.; Gheit, T. MinION nanopore sequencing and assembly of a complete human papillomavirus genome. J. Virol. Methods 2021, 294, 114180. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Noh, J.; Kim, K.; Kim, J.; Cho, H.-K.; Kim, S.-G.; Yang, E.; Kim, W.-K.; Song, J.-W. A Development of Rapid Whole-Genome Sequencing of Seoul orthohantavirus Using a Portable One-Step Amplicon-Based High Accuracy Nanopore System. Viruses 2023, 15, 1542. [Google Scholar] [CrossRef]
- Shaw, A.E.; Lebani, K.; Gordon, L.G.; Ihearahu, U.E.; Wadsworth, J.; Hicks, H.M.; Polo, N.; Freimanis, G.; Muhanguzi, D.; Tennakoon, C.; et al. Universal amplification and sequencing of foot-and-mouth disease virus complete genomes using nanopore technology. BMC Genom. 2025, 26, 770. [Google Scholar] [CrossRef]
- Tombácz, D.; Moldován, N.; Balázs, Z.; Gulyás, G.; Csabai, Z.; Boldogkői, M.; Snyder, M.; Boldogkői, Z. Multiple Long-Read Sequencing Survey of Herpes Simplex Virus Dynamic Transcriptome. Front. Genet. 2019, 10, 834. [Google Scholar] [CrossRef] [PubMed]
- Astbury, S.; Soares, M.M.D.C.N.; Peprah, E.; King, B.J.; Jardim, A.C.G.; Shimizu, J.F.; Jalal, P.J.; Saeed, C.H.; Sabeer, F.T.; Irving, W.L.; et al. Extraction-free direct PCR from dried serum spots permits HBV genotyping and RAS identification by Sanger and minION sequencing. bioRxiv 2019, 129, 104483. [Google Scholar] [CrossRef]
- Chan-Herur, V.; Catoe, D.; Duong, D.; Wu, Y.C.; Boehm, A.B.; White, B.J.; Wolfe, M.K. SARS-CoV-2 Whole Genome Amplicon Sequencing from Wastewater Solids or Liquid Wastewater. protocols.io 2023. [Google Scholar] [CrossRef]
- Kattoor, J.J.; Mlalazi-Oyinloye, M.; Nemser, S.M.; Wilkes, R.P. Development of a Targeted NGS Assay for the Detection of Respiratory Pathogens including SARS-CoV-2 in Felines. Pathogens 2024, 13, 335. [Google Scholar] [CrossRef]
- Kattoor, J.J.; Nikolai, E.; Qurollo, B.; Wilkes, R.P. Targeted Next-Generation Sequencing for Comprehensive Testing for Selected Vector-Borne Pathogens in Canines. Pathogens 2022, 11, 964. [Google Scholar] [CrossRef]
- Kattoor, J.J.; Anis, E.; Elshafie, N.O.; Wilkes, R.P. A multiplex targeted NGS panel for identifying pathogens in canine neurological and reproductive diseases. Front. Cell. Infect. Microbiol. 2025, 15, 1591145. [Google Scholar] [CrossRef]
- Elshafie, N. Oxford Nanopore Targeted Sequencing Assay for Flongle Flow Cells. 2025. Available online: https://www.protocols.io/view/oxford-nanopore-targeted-sequencing-assay-for-flon-g4fmbytk7 (accessed on 29 August 2025).
- Reichard, M.V.; Sanders, T.L.; Weerarathne, P.; Meinkoth, J.H.; Miller, C.A.; Scimeca, R.C.; Almazán, C. Cytauxzoonosis in North America. Pathogens 2021, 10, 1170. [Google Scholar] [CrossRef] [PubMed]
- Zieman, E.A.; Nielsen, C.K.; Jiménez, F.A. Chronic Cytauxzoon felis infections in wild-caught bobcats (Lynx rufus). Vet. Parasitol. 2018, 252, 67–69. [Google Scholar] [CrossRef]
- Hornok, S.; Boldogh, S.A.; Takács, N.; Kontschán, J.; Szekeres, S.; Sós, E.; Sándor, A.D.; Wang, Y.; Tuska-Szalay, B. Molecular epidemiological study on ticks and tick-borne protozoan parasites (Apicomplexa: Cytauxzoon and Hepatozoon spp.) from wild cats (Felis silvestris), Mustelidae and red squirrels (Sciurus vulgaris) in central Europe, Hungary. Parasites Vectors 2022, 15, 1174. [Google Scholar] [CrossRef]
- Meli, M.L.; Meili, T.; Pineroli, B.; Bönzli, E.; Eichenberger, R.M.; Willi, B.; Hofmann-Lehmann, R. First detection of Cytauxzoon spp. DNA in questing Ixodes ricinus nymphs. bioRxiv 2025, 2025.08.04.667914. [Google Scholar] [CrossRef]
- Yabsley, M.J.; Murphy, S.M.; Cunningham, M.W. Molecular Detection and Characterization of Cytauxzoon felis and a Babesia Species in Cougars from Florida. J. Wildl. Dis. 2006, 42, 366–374. [Google Scholar] [CrossRef]
- Baggio-Souza, V.; Berger, L.; Mongruel, A.C.B.; Mallmahn-Bohn, R.; Reis, A.O.; Fagundes-Moreira, R.; Girotto-Soares, A.; da Silva, B.Z.; Peters, F.B.; Wagner, P.G.C.; et al. First report of ‘Candidatus mycoplasma spp.’ in mustelids from two different Brazilian regions with description of three putative novel species. Microb. Pathog. 2025, 205, 107682. [Google Scholar] [CrossRef]
- Portik, D.M.; Brown, C.T.; Pierce-Ward, N.T. Evaluation of taxonomic classification and profiling methods for long-read shotgun metagenomic sequencing datasets. BMC Bioinform. 2022, 23, 541. [Google Scholar] [CrossRef] [PubMed]
| Sample | Clade | Lineage | Original Ct Value |
|---|---|---|---|
| C23001609 | BA.5.1 | BA.5.1 | 16.3 |
| C23002860 | XBB.1.5 | XBB.1.5.7 | 21.5 |
| C23002864 | BA.2.75.3.1.1.1.1 | XBX | 16.9 |
| C23006521 | XBB.1.5 | XBB.1 | 16.3 |
| C23015807 | BA.5.3.1.1.1.1.1 | BQ.1 | 20.6 |
| C23015808 | XBB.1.5 | XBB.1.5 | 27.3 |
| C23046902 | XBB.1.9.1 | FL.1.5.1 | 22.5 |
| C23047107 | XBB.1.9.1 | XBB.1.16 | 16.2 |
| C23048464 | XBB.1.9.1 | EG.5.1.1 | 15.8 |
| C23054397 | XBB.1 | XBB.1.16.6 | 17.4 |
| C23063232 | XBB.1 | HK.3 | 16.2 |
| C23065345 | B.1.1.529 | BA.2 | 15.7 |
| Kit | Reads Generated (M) | Passed Reads (M) | Failed Reads (M) | Estimated Bases (Mb) | Passed Bases (Mb) | Failed Bases (Mb) | N50 (bp) | Run Duration (hrs) | % Passed Reads | % Passed Bases |
|---|---|---|---|---|---|---|---|---|---|---|
| DNeasy | 2.1 | 1.84 | 0.305 | 936.99 | 717.67 | 126.3 | 395 | 24 | 87.6 | 76.6 |
| MagMAX CORE | 2.04 | 1.71 | 0.363 | 936.18 | 715.47 | 164.42 | 398 | 24 | 83.8 | 76.4 |
| IndiMag Pathogen | 1.35 | 1.19 | 0.187 | 719.34 | 538.24 | 94.4 | 407 | 24 | 88.1 | 74.8 |
| MagMAX Pathogen | 1.36 | 1.25 | 0.121 | 644.8 | 569.9 | 59.2 | 406 | 24 | 91.9 | 88.4 |
| Samples | Dneasy Blood&Tissue Kit (Column) | MagMaxTM CORE Nucleic Acid extraction Kit | IndiMag Pathogen Kit | MagMax Pathogen RNA/DNA Kit |
|---|---|---|---|---|
| Raccoon A | CPV: 89 reads Hemotropic Mycoplasma sp.: 10 reads | CPV: 53 reads Hemotropic Mycoplasma sp.: 14 reads | CPV: 947 reads Hemotropic Mycoplasma sp.: 75 reads | CPV: 27 reads Hemotropic Mycoplasma sp.: 29 reads |
| Raccoon B | CPV: 78 reads Babesia sp.: 13 reads | CPV: 88 reads Babesia sp.: 100 reads E. coli eae: 4 reads | CPV: 450 reads Babesia sp.: 100 reads E. coli eae: 35 reads | CPV: 72 reads Babesia sp.: 200 reads E. coli eae: 4 reads |
| Bobcat A | CPV: 208 reads | CPV: 9521 reads Clostridium perfringens: 16 reads | CPV: 10,732 reads Clostridium perfringens: 11 reads | CPV: 222 reads Clostridium perfringens: 5 reads |
| Bobcat B | CPV: 25,596 reads E. coli eae: 16 reads Clostridium perfringens: 19 reads | CPV: 40,217 reads | CPV: 182,531 reads | CPV: 31,146 reads |
| Otter A | CPV: 108 reads | CPV: 135 reads | CPV: 984 reads | CPV: 31 reads |
| Skunk A | CPV: 91 reads | CPV: 101 reads | CPV: 24,711 reads | CPV: 74 reads |
| Kits Compared | DNeasy | IndiMag | MagMax CORE | Pathogen |
|---|---|---|---|---|
| DNeasy | - | 1 | 0.49 | 1 |
| IndiMag | 1 | - | 0.88 | 1 |
| MagMax CORE | 0.49 | 0.88 | - | 1 |
| Pathogen | 1 | 1 | 1 | - |
| Ion Torrent Method | ||
|---|---|---|
| ONT Method | Positive | Negative |
| Positive | 29 | 0 |
| Negative | 1 | 30 |
| Sample Name | Spiked SARS-CoV-2 Lineage | Ion Torrent | MinION | |
|---|---|---|---|---|
| 1 | A25-8520-1 (Raccoon feces) Animal Rescue in WA, recovered from CDV | BA.5.1 Ct 28.46 | E. coli cnf1, C. perfringens alpha, SARS-CoV-2, no eae o and no C. jejuni | E. coli cnf1, eae, C. perfringens alpha, C. jejuni, SARS-CoV-2 |
| 2 | A25-8520-2 (Raccoon feces) Animal Rescue in WA, recovered from CDV | BA.5.1 Ct 28.46 | C. perfringens alpha, E. coli cnf, SARS-CoV-2, Listeria monocytogenes, no eae and no C. jejuni | C. perfringens alpha, E. coli cnf, eae, SARS-CoV-2, Listeria monocytogenes monocytogenes, C. jejuni |
| 3 | A25-8520-3 (Raccoon feces) Animal Rescue in WA, recovered from CDV | BA.5.1 Ct. 28.46 | C. perfringens alpha, SARS-CoV-2, E. coli cnf, eae, Listeria monocytogenes, C. jejuni, Lawsonia intracellularis, no C. jejuni | C. perfringens alpha, E. coli cnf1, eae, Listeria monocytogenes, C. jejuni, SARS-CoV-2, Lawsonia intracellularis |
| 4 | A25-8520-4 (Raccoon feces) Animal Rescue in WA, recovered from CDV | XBB.1 Ct 24.52 | E. coli cnf, eae, C. perfringens alpha, SARS-CoV-2, Listeria monocytogenes, C. jejuni | C. perfringens alpha, E. coli cnf1,2, eae, SARS-CoV-2, C. jejuni |
| 5 | A25-8520-5 (Raccoon feces) Animal Rescue in WA, recovered from CDV | XBB.1 Ct 24.52 | C. perfringens alpha, cpe (85 reads) epsilon (13 reads), E. coli cnf1, eae, SARS-CoV-2, Listeria monocytogenes, C. jejuni | C. perfringens alpha, cpe (2 reads)-neg, epsilon (3 reads)-neg, E. coli cnf1, eae, C. jejuni, SARS-CoV-2, Listeria monocytogenes |
| 6 | A25-8520-6 (Raccoon feces) Animal Rescue in WA, recovered from CDV | XBB.1.16 Ct 18 | SARS-CoV-2, C. perfringens alpha, E. coli cnf, eae, C. jejuni, Chlamydia sp. | SARS-CoV-2, C. perfringens alpha, E. coli cnf1, eae, C. jejuni, Chlamydia sp. |
| 7 | Bobcat 2 Tissue pool | XBB.1.16 Ct 22.21 | Cytauxzoon felis, C. perfringens alpha, cpe, CPV 2a or panleukopenia Salmonella sp., E. coli stx2, SARS-CoV-2, no C. jejuni | Cytauxzoon felis, C. perfringens alpha, cpe, SARS-CoV-2, CPV 2a/panleukopenia, C. jejuni, Salmonella sp., E. coli stx2 |
| 8 | Otter 739 Tissue pool | XBB.1.16 Ct 22.21 | CPV, SARS-CoV-2, C. perfringens alpha | CPV, SARS-CoV-2, C. perfringens alpha |
| 9 | Otter 744 Tissue pool | EG.5.1.1 Ct 27 | CPV, C. perfringens alpha, netE, E. coli eae, cnf1, haemotropic Mycoplasma sp.; SARS-CoV-2 | SARS-CoV-2, E. coli eae, cnf1, C. perfringens alpha, net E, CPV, haemotropic Mycoplasma sp. |
| 10 | Bobcat 3 Tissue pool | EG.5.1.1 Ct 27 | C. perfringens alpha, beta 2, net E, cpe, CPV, Toxoplasma gondii, E. coli cnf1, SARS-CoV-2 | CPV, C. perfringens alpha, cpe, beta 2, net E, SARS-CoV-2, E. coli cnf1, Toxoplasma gondii |
| 11 | Raccoon 7-Swab-rectal and oropharynx | 48464-2EG.5.1.1 Ct 27 | CPV, C. perfringens alpha, beta 2, cpe, net E, cpe, E. coli cnf1, SARS-CoV-2, no C. jejuni and E. coli eae | C. jejuni, SARS-CoV-2, CPV, C. perfringens alpha, eae, net E, beta2, cpe, E. coli cnf1 |
| 12 | Bobcat 6 small intestine and colon | FL.1.5.1 Ct 31.31 | C. perfringens alpha, beta2, cpe, net E, CPV, SARS-CoV-2-, E. coli cnf1, eae | C. perfringens alpha, cpe, beta2, net E, CPV, SARS-CoV-2, E. coli cnf1, eae |
| 13 | Bobcat 10 Tissue pool | XBX Ct 25.5 | C. perfringens alpha, netE, beta2, CPV, SARS-CoV-2, Giardia intestinalis, E. coli hly | C. perfringens alpha only (repeat with only 3 samples-C. perfringens alpha, cpe, netE, beta2, CPV, SARS-CoV-2, Giardia intestinalis, E. coli hly, eae, cnf1) |
| 14 | Bobcat 7 Tissue pool | XBX Ct 25.5 | SARS-CoV-2, E. coli cnf1, C. perfringens alpha | No pathogens detected (repeat with only 3 samples-SARS-CoV-2, E. coli cnf1, C. perfringens alpha) |
| 15 | Bobcat 9 Tissue pool | XBX Ct 25.5 | CPV, SARS-CoV-2 | CPV only (repeat with only 3 samples-CPV, SARS-CoV-2) |
| 16 | Raccoon 6 Swab- rectal and oropharynx | XBB.1.16 Ct 22.21 | SARS-CoV-2, E. coli cnf1, eae, C. perfringens alpha, C. jejuni | SARS-CoV-2, E. coli eae, cnf1 (repeat with only 3 samples-SARS-CoV-2, E. coli cnf1, eae, C. perfringens alpha, C. jejuni) |
| 17 | Raccoon 3- Swab- rectal and oropharynx | XBB.1.16 Ct 22.21 | SARS-CoV-2, E. coli cnf1, C. perfringens alpha, CPV | SARS-CoV-2 only (repeat only 3 samples-SARS-CoV-2, E. coli cnf1, C. perfringens alpha, CPV) |
| 18 | Raccoon 1- Swab- rectal and oropharynx | XBB.1.9.1 Ct 22.21 | SARS-CoV-2, E. coli cnf1, CPV, C. perfringens alpha | SARS-CoV-2, E. coli cnf1 (repeat only 3 samples SARS-CoV-2, E. coli cnf1, C. perfringens alpha, cpe, CPV) |
| 19 | Racoon 5- Swab- rectal and oropharynx | FL.1.5.1 Ct 28.42 | SARS-CoV-2, C. perfringens alpha, haemotropic Mycoplasma sp., E. coli cnf1, CPV | C. perfringens alpha, SARS-CoV-2, CPV, E. coli cnf1, haemotropic Mycoplasma sp. |
| 20 | Bobcat 4 small intestines and colon | FL.1.5.1 Ct 28.42 | C. perfringens alpha, net E, SARS-CoV-2, E. coli cnf1 no C perfringens epsilon or E. coli eae | C. perfringens alpha, Net E, epsilon, SARS-CoV-2, E. coli eae, cnf1 |
| 21 | otter 711 Tissue pool | FL.1.5.1 Ct 28.42 | C. perfringens alpha, SARS-CoV-2, E. coli cnf1, stx2 | C. perfringens alpha, SARS-CoV-2, E. coli cnf1, stx2 |
| 22 | Raccoon 3- Swab- rectal and oropharynx | FL.1.5.1 Ct 28.42 | E. coli cnf1,2, eae, C. perfringens alpha, cpe, SARS-CoV-2, Rickettsia sp., Listeria monocytogenes | C. perfringens alpha, cpe, SARS-CoV-2, E. coli crnf2, cnf1, eae, Rickettsia sp., Listeria monocytogenes |
| 23 | A25-9371 Sm. intestine/mesenteric lymph node pool (Raccoon-mass mortality event Jasper Co, Dx CPV) | XBX Ct 37.41 | CPV 2a, E. coli cnf1 and 2, Campy jejuni, C. perfringens alpha, cpe, Babesia sp., no Salmonella sp., no SARS-CoV-2 | Salmonella sp. (16 reads), CPV 2a, E. coli cnf1, cnf2, C. perfringens alpha, cpe, no SARS-CoV-2, C. jejuni, Babesia sp. |
| 24 | A25-9371 lung (Raccoon mass mortality event Jasper Co., Dx CPV) | HK.3 Ct 33.18 | Bordetella sp., SARS-CoV-2, Chlamydia sp., CPV, E. coli cnf1 | Bordetella sp., SARS-CoV-2, Chlamydia sp., CPV, E. coli cnf1 |
| 25 | Bobcat 2022 Small intestine and colon | XBB.1.5.7 Ct 29.76 | CPV 2a, SARS-CoV-2, C. perfringens alpha | CPV 2a, SARS-CoV-2, C. perfringens alpha |
| 26 | Bobcat 2022 lung | XBX Ct 36.2 | CPV 2a, SARS-CoV-2 | CPV 2a, no SARS-CoV-2 |
| 27 | S23-646 spleen Gray fox, Perry Co.—aggressive, tick infestation, CDV PCR negative | BA.5.1 Ct 28.46 | SARS-CoV-2, Staphylococcus aureus, Babesia vulpes, Hepatozoon canis | SARS-CoV-2, Staphylococcus aureus, Babesia vulpes, Hepatozoon canis |
| 28 | A24-7980 lung (Raccoon, Neuro signs, Delaware Co, CDV Ct 17) | XBB.1 Ct 24.52 | SARS-CoV-2, CDV- AM-5 | SARS-CoV-2, CDV AM-5 |
| 29 | Bobcat 4 lung | XBX Ct 37.41 | no SARS-CoV-2, Cytauxzoon felis, no Hepatozoon sp. | C felis, Hepatozoon sp. no SARS-CoV-2 |
| 30 | Bobcat 8 lung | BA.5.1 Ct 28.46 | SARS-CoV-2, Haemotropic-Mycoplasma sp., E. coli cnf1, Staphyloccus aureus, C. perfringens alpha | E. coli cnf1, Staphyloccus aureus, C. perfringens alpha, SARS-CoV-2, Haemotrophic Mycoplama sp. |
| Number | Sample Name | Ion Torrent | MinION |
|---|---|---|---|
| 1 | Otters135 | Actinomyces spp., C. perfringens alpha, E. coli | Actinomyces spp., C. perfringens alpha, E. coli |
| 2 | Otters136 | E. coli, Actinomyces spp., C. perfringens alpha | E. coli, Actinomyces spp., C. perfringens alpha |
| 3 | Otters137 | Actinomyces spp., E. coli | Actinomyces spp., E. coli |
| 4 | Otters138 | Actinomyces spp., C. perfringens alpha, E. coli | Actinomyces spp., C. perfringens alpha, E. coli |
| 5 | Otters139 | CPV, Bordetella bronchiseptica, Actinomyces spp. | CPV, Bordetella bronchiseptica, Actinomyces spp. |
| 6 | Otters140 | Actinomyces spp. | Actinomyces spp. |
| 7 | Otters141 | Actinomyces spp., Candidatus Mycoplasma sp., CPV, C. perfringens alpha | Actinomyces spp., Candidatus Mycoplasma sp., CPV, C. perfringens alpha |
| 8 | Otters142 | Actinomyces sp., CPV, C. perfringens alpha | Actinomyces spp., CPV, C. perfringens alpha |
| 9 | Otters 144 | Streptococcus canis, Actinomyces spp. | Streptococcus canis, Actinomyces spp. |
| 10 | Otters 145 | Actinomyces, Chlamydia sp., CDV | Actinomyces, Chlamydia sp., CDV |
| 11 | Otters 146 | Mycoplasma sp., CPV, Actinomyces sp. | Mycoplasma sp., CPV, Actinomyces sp. |
| 12 | Otters 147 | CDV, CPV, Actinomyces, E. coli, C. perfringens alpha | CDV, CPV, Actinomyces, E. coli, C. perfringens alpha |
| 13 | Otters 148 | Actinomyces spp. | Actinomyces spp. |
| 14 | Otters 149 | Actinomyces sp., E. coli | Actinomyces sp., E. coli |
| 15 | Otters 150 | Actinomyces sp., C. perfringens alpha, E. coli | Actinomyces sp., C. perfringens alpha, E. coli |
| 16 | Otters 151 | Actinomyces sp., Mycoplasma sp. | Actinomyces spp., Mycoplasma sp. |
| 17 | Otters 152 | Actinomyces sp. | Actinomyces spp. |
| 18 | Otters 153 | Actinomyces sp., Candidatus Mycoplasma sp., Chlamydia sp., CPV, C. perfringens alpha, E. coli | Actinomyces sp., Candidatus Mycoplasma sp., Chlamydia sp., CPV, C. perfringens alpha, E. coli |
| 19 | Otters 154 | C. perfringens alpha, Actinomyces sp., E. coli, CPV, Streptococcus canis, Bordetella sp. | C. perfringens alpha, Actinomyces sp., E. coli, CPV, Streptococcus canis, Bordetella sp. |
| 20 | Otters 155 | Mycoplasma sp., CPV, Helicobacter spp., Actinomyces spp. | Mycoplasma sp., CPV, Helicobacter spp., Actinomyces spp. |
| 21 | Otters 156 | Actinomyces spp., CPV, Mycoplasma sp., Chlamydia, Helicobacter spp. | Actinomyces spp., CPV, Mycoplasma sp., Chlamydia, Helicobacter spp. |
| 22 | Otters 157 | Actinomyces, Helicobacter spp., Chlamydia | Actinomyces, Helicobacter spp., Chlamydia |
| 23 | Otters 158 | Actinomyces spp., CPV, Mycoplasma sp., Chlamydia, C. perfringens alpha, Helicobacter spp. | Actinomyces spp., CPV, Mycoplasma sp., Chlamydia, C. perfringens alpha, Helicobacter spp. |
| 24 | Otters 159 | Actinomyces spp., Chlamydia, C. perfringens alpha | Actinomyces spp., Chlamydia, C. perfringens alpha |
| 25 | Otters 160 | Actinomyces spp., Chlamydia sp. | Actinomyces spp., Chlamydia sp. |
| 26 | Otters 161 | Actinomyces spp., Chlamydia, Parvovirus, C. perfringens alpha | Actinomyces spp., Chlamydia, Parvovirus, C. perfringens alpha |
| 27 | Otters 162 | Actinomyces spp., Chlamydia sp., CPV | Actinomyces spp., Chlamydia sp., CPV |
| 28 | Otters 163 | Actinomyces spp. | Actinomyces spp. |
| 29 | Otters 164 | Actinomyces spp. | Actinomyces spp. |
| 30 | Otters 165 | Actinomyces spp. | Actinomyces spp. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Elshafie, N.O.; Kattoor, J.J.; Kelly, J.; Wilkes, R.P. MinION Adapted tNGS Panel for Carnivore Pathogens Including SARS-CoV-2. Pathogens 2026, 15, 23. https://doi.org/10.3390/pathogens15010023
Elshafie NO, Kattoor JJ, Kelly J, Wilkes RP. MinION Adapted tNGS Panel for Carnivore Pathogens Including SARS-CoV-2. Pathogens. 2026; 15(1):23. https://doi.org/10.3390/pathogens15010023
Chicago/Turabian StyleElshafie, Nelly O., Jobin J. Kattoor, Janetta Kelly, and Rebecca P. Wilkes. 2026. "MinION Adapted tNGS Panel for Carnivore Pathogens Including SARS-CoV-2" Pathogens 15, no. 1: 23. https://doi.org/10.3390/pathogens15010023
APA StyleElshafie, N. O., Kattoor, J. J., Kelly, J., & Wilkes, R. P. (2026). MinION Adapted tNGS Panel for Carnivore Pathogens Including SARS-CoV-2. Pathogens, 15(1), 23. https://doi.org/10.3390/pathogens15010023

