New Strategies for Preventing Perinatal Group B Streptococcus (GBS) Infections
Abstract
1. Introduction
2. Diseases Caused by GBS in Neonates and Associated Risk Factors
3. Epidemiology of GBS: Serotype Distribution and MLST Sequence Types
4. Virulence Factors That Promote GBS Vaginal Colonization and Infection
5. Perinatal GBS Prophylaxis
6. Antibiotic Resistances of GBS
7. New Prevention Strategies, GBS Vaccine and Probiotic Strategies Development
7.1. Vaccination of Pregnant Women Against GBS
7.2. Probiotics in the Reduction of GBS Colonization
7.3. Antimicrobial Photodynamic Therapy
8. Summary
9. Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raabe, V.N.; Shane, A.L. Group B Streptococcus (Streptococcus agalactiae). Microbiol. Spectr. 2019, 7, 10–1128. [Google Scholar] [CrossRef]
- Armistead, B.; Oler, E.; Adams Waldorf, K.; Rajagopal, L. The Double Life of Group B Streptococcus: Asymptomatic Colonizer and Potent Pathogen. J. Mol. Biol. 2019, 431, 2914–2931. [Google Scholar] [CrossRef]
- Verani, J.R.; McGee, L.; Schrag, S.J.; Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases; Centers for Disease Control and Prevention (CDC). Prevention of perinatal group B streptococcal disease—Revised guidelines from CDC, 2010. MMWR Recomm. Rep. 2010, 59, 1–36. [Google Scholar]
- Naat, G.; Encourage, P. Prevention of Group B Streptococcal Early-Onset Disease in Newborns: ACOG Committee Opinion, Number 797. Obstet. Gynecol. 2020, 135, e51–e72. [Google Scholar]
- Rosini, R.; Margarit, I. Biofilm formation by Streptococcus agalactiae: Influence of environmental conditions and implicated virulence factors. Front. Cell. Infect. Microbiol. 2015, 5, 6. [Google Scholar] [CrossRef]
- Puopolo, K.M.; Lynfield, R.; Cummings, J.J.; Committee on Fetus and Newborn; Committee on Infectious Diseases; Hand, I.; Adams-Chapman, I.; Poindexter, B.; Stewart, D.L.; Aucott, S.W.; et al. Management of Infants at Risk for Group B Streptococcal Disease. Pediatrics 2019, 144, e20191881. [Google Scholar] [CrossRef]
- Le Doare, K.; Heath, P.T. An overview of global GBS epidemiology. Vaccine 2013, 31, D7–D12. [Google Scholar] [CrossRef]
- Miselli, F.; Frabboni, I.; Di Martino, M.; Zinani, I.; Buttera, M.; Insalaco, A.; Stefanelli, F.; Lugli, L.; Berardi, A. Transmission of Group B Streptococcus in late-onset neonatal disease: A narrative review of current evidence. Ther. Adv. Infect. Dis. 2022, 9, 20499361221142732. [Google Scholar] [CrossRef] [PubMed]
- Burcham, L.R.; Spencer, B.L.; Keeler, L.R.; Runft, D.L.; Patras, K.A.; Neely, M.N.; Doran, K.S. Determinants of Group B streptococcal virulence potential amongst vaginal clinical isolates from pregnant women. PLoS ONE 2019, 14, e0226699. [Google Scholar] [CrossRef]
- Bartlett, A.W.; Smith, B.; George, C.R.R.; McMullan, B.; Kesson, A.; Lahra, M.M.; Palasanthiran, P. Epidemiology of Late and Very Late Onset Group B Streptococcal Disease: Fifteen-Year Experience From Two Australian Tertiary Pediatric Facilities. Pediatr. Infect. Dis. J. 2017, 36, 20–24. [Google Scholar] [PubMed]
- Guilbert, J.; Levy, C.; Cohen, R.; Bacterial Meningitis Group; Delacourt, C.; Renolleau, S.; Flamant, C. Late and ultra late onset Streptococcus B meningitis: Clinical and bacteriological data over 6 years in France. Acta Paediatr. 2010, 99, 47–51. [Google Scholar] [CrossRef]
- Burianová, I.; Paulová, M.; Čermák, P.; Janota, J. Group B Streptococcus Colonization of Breast Milk of Group B Streptococcus Positive Mothers. J. Hum. Lact. 2013, 29, 586–590. [Google Scholar] [CrossRef]
- Freudenhammer, M.; Karampatsas, K.; Le Doare, K.; Lander, F.; Armann, J.; Acero Moreno, D.; Boyle, M.; Buxmann, H.; Campbell, R.; Chalker, V.; et al. Invasive Group B Streptococcus Disease with Recurrence and in Multiples: Towards a Better Understanding of GBS Late-Onset Sepsis. Front. Immunol. 2021, 12, 617925. [Google Scholar] [CrossRef]
- Shabayek, S.; Spellerberg, B. Group B Streptococcal Colonization, Molecular Characteristics, and Epidemiology. Front. Microbiol. 2018, 9, 437. [Google Scholar] [CrossRef]
- Slotved, H.-C.; Kong, F.; Lambertsen, L.; Sauer, S.; Gilbert, G.L. Serotype IX, a Proposed New Streptococcus agalactiae Serotype. J. Clin. Microbiol. 2007, 45, 2929–2936. [Google Scholar] [CrossRef]
- Ippolito, D.L.; James, W.A.; Tinnemore, D.; Huang, R.R.; Dehart, M.J.; Williams, J.; Wingerd, M.A.; Demons, S.T. Group B streptococcusserotype prevalence in reproductive-age women at a tertiary care military medical center relative to global serotype distribution. BMC Infect. Dis. 2010, 10, 336. [Google Scholar] [CrossRef]
- Lamagni, T.L.; Keshishian, C.; Efstratiou, A.; Guy, R.; Henderson, K.L.; Broughton, K.; Sheridan, E. Emerging Trends in the Epidemiology of Invasive Group B Streptococcal Disease in England and Wales, 1991–2010. Clin. Infect. Dis. 2013, 57, 682–688. [Google Scholar] [CrossRef]
- Florindo, C.; Damião, V.; Silvestre, I.; Farinha, C.; Rodrigues, F.; Nogueira, F.; Martins-Pereira, F.; Castro, R.; Borrego, M.J.; Santos-Sanches, I.; et al. Epidemiological surveillance of colonising group B Streptococcus epidemiology in the Lisbon and Tagus Valley regions, Portugal (2005 to 2012): Emergence of a new epidemic type IV/clonal complex 17 clone. Eurosurveillance 2014, 19, 20825. [Google Scholar] [CrossRef]
- Russell, N.J.; Seale, A.C.; O’Driscoll, M.; O’Sullivan, C.; Bianchi-Jassir, F.; Gonzalez-Guarin, J.; Lawn, J.E.; Baker, C.J.; Bartlett, L.; Cutland, C.; et al. Maternal Colonization with Group B Streptococcus and Serotype Distribution Worldwide: Systematic Review and Meta-analyses. Clin. Infect. Dis. 2017, 65, S100–S111. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Liu, J.; Ji, T.; Gao, Y.; Yang, D.; Zhao, M.; Zhai, Y.; Cao, Z. Serotype distribution, antimicrobial resistance, and molecular characterization of group B Streptococcus isolates from Chinese pregnant woman. J. Matern. Fetal Neonatal Med. 2024, 37, 2295805. [Google Scholar] [CrossRef]
- Shabayek, S.; Abdalla, S.; Abouzeid, A.M. Serotype and surface protein gene distribution of colonizing group B streptococcus in women in Egypt. Epidemiol. Infect. 2014, 142, 208–210. [Google Scholar] [CrossRef]
- Madrid, L.; Seale, A.C.; Kohli-Lynch, M.; Edmond, K.M.; Lawn, J.E.; Heath, P.T.; Madhi, S.A.; Baker, C.J.; Bartlett, L.; Cutland, C.; et al. Infant Group B Streptococcal Disease Incidence and Serotypes Worldwide: Systematic Review and Meta-analyses. Clin. Infect. Dis. 2017, 65, S160–S172. [Google Scholar] [CrossRef]
- Weisner, A.M.; Johnson, A.P.; Lamagni, T.L.; Arnold, E.; Warner, M.; Heath, P.T.; Efstratiou, A. Characterization of Group B Streptococci Recovered from Infants with Invasive Disease in England and Wales. Clin. Infect. Dis. 2004, 38, 1203–1208. [Google Scholar] [CrossRef]
- Salloum, M.; Van Der Mee-Marquet, N.; Valentin-Domelier, A.-S.; Quentin, R. Diversity of Prophage DNA Regions of Streptococcus agalactiae Clonal Lineages from Adults and Neonates with Invasive Infectious Disease. PLoS ONE 2011, 6, e20256. [Google Scholar] [CrossRef]
- Perme, T.; Golparian, D.; Bombek Ihan, M.; Rojnik, A.; Lučovnik, M.; Kornhauser Cerar, L.; Fister, P.; Lozar Krivec, J.; Grosek, Š.; Ihan, A.; et al. Genomic and phenotypic characterisation of invasive neonatal and colonising group B Streptococcus isolates from Slovenia, 2001–2018. BMC Infect. Dis. 2020, 20, 958. [Google Scholar] [CrossRef]
- Creti, R.; Imperi, M.; Berardi, A.; Lindh, E.; Alfarone, G.; Pataracchia, M.; Recchia, S. The Italian Network on Neonatal and Infant GBS Infections Invasive Group B Streptococcal Disease in Neonates and Infants, Italy, Years 2015–2019. Microorganisms 2021, 9, 2579. [Google Scholar] [CrossRef]
- Brzychczy-Włoch, M.; Gosiewski, T.; Pawlik, D.; Szumała-Kakol, A.; Samead, A.; Heczko, P.B. Occurrence of the hypervirulent ST-17 clone of Streptococcus agalactiae in pregnant women and newborns. Przegl. Epidemiol. 2012, 66, 395–401. [Google Scholar]
- Kamińska, D.; Ratajczak, M.; Nowak-Malczewska, D.M.; Karolak, J.A.; Kwaśniewski, M.; Szumala-Kakol, A.; Dlugaszewska, J.; Gajecka, M. Macrolide and lincosamide resistance of Streptococcus agalactiae in pregnant women in Poland. Sci. Rep. 2024, 14, 3877. [Google Scholar] [CrossRef]
- Jiang, S.; Wessels, M.R. BsaB, a Novel Adherence Factor of Group B Streptococcus. Infect. Immun. 2014, 82, 1007–1016. [Google Scholar] [CrossRef]
- Six, A.; Bellais, S.; Bouaboud, A.; Fouet, A.; Gabriel, C.; Tazi, A.; Dramsi, S.; Trieu-Cuot, P.; Poyart, C. Srr2, a multifaceted adhesin expressed by ST-17 hypervirulent Group B Streptococcus involved in binding to both fibrinogen and plasminogen. Mol. Microbiol. 2015, 97, 1209–1222. [Google Scholar] [CrossRef]
- Al Safadi, R.; Amor, S.; Hery-Arnaud, G.; Spellerberg, B.; Lanotte, P.; Mereghetti, L.; Gannier, F.; Quentin, R.; Rosenau, A. Enhanced Expression of lmb Gene Encoding Laminin-Binding Protein in Streptococcus agalactiae Strains Harboring IS1548 in scpB-lmb Intergenic Region. PLoS ONE 2010, 5, e10794. [Google Scholar] [CrossRef]
- Santi, I.; Maione, D.; Galeotti, C.L.; Grandi, G.; Telford, J.L.; Soriani, M. BibA Induces Opsonizing Antibodies Conferring In Vivo Protection against Group B Streptococcus. J. Infect. Dis. 2009, 200, 564–570. [Google Scholar] [CrossRef]
- Tazi, A.; Disson, O.; Bellais, S.; Bouaboud, A.; Dmytruk, N.; Dramsi, S.; Mistou, M.-Y.; Khun, H.; Mechler, C.; Tardieux, I.; et al. The surface protein HvgA mediates group B streptococcus hypervirulence and meningeal tropism in neonates. J. Exp. Med. 2010, 207, 2313–2322. [Google Scholar] [CrossRef]
- Plainvert, C.; Hays, C.; Touak, G.; Joubrel-Guyot, C.; Dmytruk, N.; Frigo, A.; Poyart, C.; Tazi, A. Multidrug-Resistant Hypervirulent Group B Streptococcus in Neonatal Invasive Infections, France, 2007–2019. Emerg. Infect. Dis. 2020, 26, 2721–2724. [Google Scholar] [CrossRef]
- Martins, E.R.; Pedroso-Roussado, C.; Melo-Cristino, J.; Ramirez, M.; The Portuguese Group for the Study of Streptococcal Infections. Streptococcus agalactiae Causing Neonatal Infections in Portugal (2005–2015): Diversification and Emergence of a CC17/PI-2b Multidrug Resistant Sublineage. Front. Microbiol. 2017, 8, 499. [Google Scholar] [CrossRef]
- Nobbs, A.H.; Rosini, R.; Rinaudo, C.D.; Maione, D.; Grandi, G.; Telford, J.L. Sortase A Utilizes an Ancillary Protein Anchor for Efficient Cell Wall Anchoring of Pili in Streptococcus agalactiae. Infect. Immun. 2008, 76, 3550–3560. [Google Scholar] [CrossRef]
- Margarit, I.; Rinaudo, C.D.; Galeotti, C.L.; Maione, D.; Ghezzo, C.; Buttazzoni, E.; Rosini, R.; Runci, Y.; Mora, M.; Buccato, S.; et al. Preventing Bacterial Infections with Pilus-Based Vaccines: The Group B Streptococcus Paradigm. J. Infect. Dis. 2009, 199, 108–115. [Google Scholar] [CrossRef]
- Springman, A.C.; Lacher, D.W.; Waymire, E.A.; Wengert, S.L.; Singh, P.; Zadoks, R.N.; Davies, H.D.; Manning, S.D. Pilus distribution among lineages of group b streptococcus: An evolutionary and clinical perspective. BMC Microbiol. 2014, 14, 159. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Li, N.; Wang, B. Immunization with Multiple Virulence Factors Provides Maternal and Neonatal Protection against Group B Streptococcus Serotypes. Vaccines 2023, 11, 1459. [Google Scholar] [CrossRef]
- Rajagopal, L. Understanding the Regulation of Group B Streptococcal Virulence Factors. Future Microbiol. 2009, 4, 201–221. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J. Group B Streptococcus: Virulence Factors and Pathogenic Mechanism. Microorganisms 2022, 10, 2483. [Google Scholar] [CrossRef]
- Megli, C.J.; Carlin, S.M.; Giacobe, E.J.; Hillebrand, G.H.; Hooven, T.A. Virulence and pathogenicity of group B Streptococcus: Virulence factors and their roles in perinatal infection. Virulence 2025, 16, 2451173. [Google Scholar] [CrossRef]
- Buscetta, M.; Papasergi, S.; Firon, A.; Pietrocola, G.; Biondo, C.; Mancuso, G.; Midiri, A.; Romeo, L.; Teti, G.; Speziale, P.; et al. FbsC, a Novel Fibrinogen-binding Protein, Promotes Streptococcus agalactiae-Host Cell Interactions. J. Biol. Chem. 2014, 289, 21003–21015. [Google Scholar] [CrossRef]
- Buscetta, M.; Firon, A.; Pietrocola, G.; Biondo, C.; Mancuso, G.; Midiri, A.; Romeo, L.; Galbo, R.; Venza, M.; Venza, I.; et al. PbsP, a cell wall-anchored protein that binds plasminogen to promote hematogenous dissemination of group B Streptococcus. Mol. Microbiol. 2016, 101, 27–41. [Google Scholar] [CrossRef]
- Hull, J.R.; Tamura, G.S.; Castner, D.G. Interactions of the streptococcal C5a peptidase with human fibronectin. Acta Biomater. 2008, 4, 504–513. [Google Scholar] [CrossRef]
- Baron, M.J.; Filman, D.J.; Prophete, G.A.; Hogle, J.M.; Madoff, L.C. Identification of a Glycosaminoglycan Binding Region of the Alpha C Protein That Mediates Entry of Group B Streptococci into Host Cells. J. Biol. Chem. 2007, 282, 10526–10536. [Google Scholar] [CrossRef] [PubMed]
- Whidbey, C.; Harrell, M.I.; Burnside, K.; Ngo, L.; Becraft, A.K.; Iyer, L.M.; Aravind, L.; Hitti, J.; Adams Waldorf, K.M.; Rajagopal, L. A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta. J. Exp. Med. 2013, 210, 1265–1281. [Google Scholar] [CrossRef]
- Abranches, J.; Zeng, L.; Kajfasz, J.K.; Palmer, S.R.; Chakraborty, B.; Wen, Z.T.; Richards, V.P.; Brady, L.J.; Lemos, J.A. Biology of Oral Streptococci. Microbiol. Spectr. 2018, 6, 10–1128. [Google Scholar] [CrossRef]
- Rinaudo, C.D.; Rosini, R.; Galeotti, C.L.; Berti, F.; Necchi, F.; Reguzzi, V.; Ghezzo, C.; Telford, J.L.; Grandi, G.; Maione, D. Specific Involvement of Pilus Type 2a in Biofilm Formation in Group B Streptococcus. PLoS ONE 2010, 5, e9216. [Google Scholar] [CrossRef]
- Konto-Ghiorghi, Y.; Mairey, E.; Mallet, A.; Duménil, G.; Caliot, E.; Trieu-Cuot, P.; Dramsi, S. Dual Role for Pilus in Adherence to Epithelial Cells and Biofilm Formation in Streptococcus agalactiae. PLoS Pathog. 2009, 5, e1000422. [Google Scholar] [CrossRef]
- Nie, S.; Lu, X.; Hu, Y.-W.; Zheng, L.; Wang, Q. Influence of environmental and genotypic factors on biofilm formation by clinical isolates of group B streptococci. Microb. Pathog. 2018, 121, 45–50. [Google Scholar] [CrossRef]
- D’Urzo, N.; Martinelli, M.; Pezzicoli, A.; De Cesare, V.; Pinto, V.; Margarit, I.; Telford, J.L.; Maione, D. Acidic pH Strongly Enhances In Vitro Biofilm Formation by a Subset of Hypervirulent ST-17 Streptococcus agalactiae Strains. Appl. Environ. Microbiol. 2014, 80, 2176–2185. [Google Scholar] [CrossRef]
- Sabroske, E.M.; Iglesias, M.A.S.; Rench, M.; Moore, T.; Harvey, H.; Edwards, M.; Baker, C.J.; Flores, A.R. Evolving antibiotic resistance in Group B Streptococci causing invasive infant disease: 1970–2021. Pediatr. Res. 2023, 93, 2067–2071. [Google Scholar]
- Emaneini, M.; Mirsalehian, A.; Beigvierdi, R.; Fooladi, A.A.I.; Asadi, F.; Jabalameli, F.; Taherikalani, M. High Incidence of Macrolide and Tetracycline Resistance Among Streptococcus agalactiae Strains Isolated from Clinical Samples in Tehran, Iran. Maedica 2014, 9, 157–161. [Google Scholar]
- Berbel, D.; González-Díaz, A.; De Egea, G.L.; Càmara, J.; Ardanuy, C. An Overview of Macrolide Resistance in Streptococci: Prevalence, Mobile Elements and Dynamics. Microorganisms 2022, 10, 2316. [Google Scholar] [CrossRef]
- Alzayer, M.; Alkhulaifi, M.M.; Alyami, A.; Aldosary, M.; Alageel, A.; Garaween, G.; Shibl, A.; Al-Hamad, A.M.; Doumith, M. Molecular typing and antimicrobial resistance of group B Streptococcus clinical isolates in Saudi Arabia. J. Glob. Antimicrob. Resist. 2023, 35, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Genovese, C.; D’Angeli, F.; Di Salvatore, V.; Tempera, G.; Nicolosi, D. Streptococcus agalactiae in pregnant women: Serotype and antimicrobial susceptibility patterns over five years in Eastern Sicily (Italy). Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 2387–2396. [Google Scholar] [CrossRef] [PubMed]
- Bolukaoto, J.Y.; Monyama, C.M.; Chukwu, M.O.; Lekala, S.M.; Nchabeleng, M.; Maloba, M.R.B.; Mavenyengwa, R.T.; Lebelo, S.L.; Monokoane, S.T.; Tshepuwane, C.; et al. Antibiotic resistance of Streptococcus agalactiae isolated from pregnant women in Garankuwa, South Africa. BMC Res. Notes 2015, 8, 364. [Google Scholar] [CrossRef]
- Cox, L.M.; Yamanishi, S.; Sohn, J.; Alekseyenko, A.V.; Leung, J.M.; Cho, I.; Kim, S.G.; Li, H.; Gao, Z.; Mahana, D.; et al. Altering the Intestinal Microbiota during a Critical Developmental Window Has Lasting Metabolic Consequences. Cell 2014, 158, 705–721. [Google Scholar] [CrossRef] [PubMed]
- Gajecka, M.; Gutaj, P.; Jaskiewicz, K.; Rydzanicz, M.; Szczapa, T.; Kaminska, D.; Kosewski, G.; Przyslawski, J.; Ploski, R.; Wender-Ozegowska, E. Effects of maternal type 1 diabetes and confounding factors on neonatal microbiomes. Diabetologia 2024, 67, 312–326. [Google Scholar]
- Dierikx, T.H.; Visser, D.H.; Benninga, M.A.; Van Kaam, A.H.L.C.; De Boer, N.K.H.; De Vries, R.; Van Limbergen, J.; De Meij, T.G.J. The influence of prenatal and intrapartum antibiotics on intestinal microbiota colonisation in infants: A systematic review. J. Infect. 2020, 81, 190–204. [Google Scholar] [CrossRef]
- Prescott, S.; Dreisbach, C.; Baumgartel, K.; Koerner, R.; Gyamfi, A.; Canellas, M.; St. Fleur, A.; Henderson, W.A.; Trinchieri, G. Impact of Intrapartum Antibiotic Prophylaxis on Offspring Microbiota. Front. Pediatr. 2021, 9, 754013. [Google Scholar] [CrossRef]
- Diamond, L.; Wine, R.; Morris, S.K. Impact of intrapartum antibiotics on the infant gastrointestinal microbiome: A narrative review. Arch. Dis. Child. 2022, 107, 627–634. [Google Scholar] [CrossRef]
- Corvaglia, L.; Tonti, G.; Martini, S.; Aceti, A.; Mazzola, G.; Aloisio, I.; Di Gioia, D.; Faldella, G. Influence of Intrapartum Antibiotic Prophylaxis for Group B Streptococcus on Gut Microbiota in the First Month of Life. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 304–308. [Google Scholar] [CrossRef]
- Carreras-Abad, C.; Ramkhelawon, L.; Heath, P.T.; Le Doare, K. A Vaccine Against Group B Streptococcus: Recent Advances. Infect. Drug Resist. 2020, 13, 1263–1272. [Google Scholar] [CrossRef] [PubMed]
- Pena, J.M.S.; Lannes-Costa, P.S.; Nagao, P.E. Vaccines for Streptococcus agalactiae: Current status and future perspectives. Front. Immunol. 2024, 15, 1430901. [Google Scholar] [CrossRef]
- Procter, S.R.; Gonçalves, B.P.; Paul, P.; Chandna, J.; Seedat, F.; Koukounari, A.; Hutubessy, R.; Trotter, C.; Lawn, J.E.; Jit, M. Maternal immunisation against Group B Streptococcus: A global analysis of health impact and cost-effectiveness. PLoS Med. 2023, 20, e1004068. [Google Scholar] [CrossRef]
- Paul, P.; Gonçalves, B.P.; Le Doare, K.; Lawn, J.E. 20 million pregnant women with group B streptococcus carriage: Consequences, challenges, and opportunities for prevention. Curr. Opin. Pediatr. 2023, 35, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Madhi, S.A.; Anderson, A.S.; Absalon, J.; Radley, D.; Simon, R.; Jongihlati, B.; Strehlau, R.; Van Niekerk, A.M.; Izu, A.; Naidoo, N.; et al. Potential for Maternally Administered Vaccine for Infant Group B Streptococcus. N. Engl. J. Med. 2023, 389, 215–227. [Google Scholar] [CrossRef]
- Furfaro, L.L.; Chang, B.J.; Payne, M.S. Perinatal Streptococcus agalactiae Epidemiology and Surveillance Targets. Clin. Microbiol. Rev. 2018, 31, e00049-18. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Nguyen, C.; Russell, L.B.; Tomczyk, S.; Abdul-Hakeem, F.; Schrag, S.J.; Verani, J.R.; Sinha, A. Cost-effectiveness of a potential group B streptococcal vaccine for pregnant women in the United States. Vaccine 2017, 35, 6238–6247. [Google Scholar] [CrossRef]
- Baker, C.J.; Kasper, D.L. Correlation of Maternal Antibody Deficiency with Susceptibility to Neonatal Group B Streptococcal Infection. N. Engl. J. Med. 1976, 294, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Sebghati, M.; Khalil, A. Uptake of vaccination in pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2021, 76, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Gupalova, T.; Leontieva, G.; Kramskaya, T.; Grabovskaya, K.; Bormotova, E.; Korjevski, D.; Suvorov, A. Development of experimental GBS vaccine for mucosal immunization. PLoS ONE 2018, 13, e0196564. [Google Scholar] [CrossRef]
- Bedeley, E.; Gori, A.; Yeboah-Manu, D.; Diallo, K. Control of Streptococcal Infections: Is a Common Vaccine Target Achievable Against Streptococcus agalactiae and Streptococcus pneumoniae. Front. Microbiol. 2021, 12, 658824. [Google Scholar] [CrossRef]
- Smith, W.B.; Seger, W.; Chawana, R.; Skogeby, Z.; Silmon De Monerri, N.C.; Feng, Y.; Gaylord, M.; Jongihlati, B.; Beeslaar, J.; Skinner, J.M.; et al. A Phase 2b Trial Evaluating the Safety, Tolerability, and Immunogenicity of a 6-Valent Group B Streptococcus Vaccine Administered Concomitantly with Tetanus, Diphtheria, and Acellular Pertussis Vaccine in Healthy Nonpregnant Female Individuals. J. Infect. Dis. 2025, 231, e1065–e1074. [Google Scholar] [CrossRef]
- Pell, M.E.; McCutcheon, C.R.; Gaddy, J.A.; Aronoff, D.M.; Petroff, M.G.; Manning, S.D. Impact of antibiotics on membrane vesicle production in Group B Streptococcus. Microbiol. Spectr. 2025, 13, e03223-24. [Google Scholar] [CrossRef] [PubMed]
- Pfizer. A Phase 1/2, Randomized, Placebo-Controlled, Observer-Blinded Trial to Evaluate the Safety, Tolerability, and Immunogenicity of a Multivalent Group B Streptococcus Vaccine in Healthy Nonpregnant Women and Pregnant Women 18 to 40 Years of Age and Their Infants. Clinicaltrials.Gov; Report No.: NCT03765073. 2024. Available online: https://clinicaltrials.gov/study/NCT03765073 (accessed on 16 November 2024).
- Lin, S.-M.; Jang, A.-Y.; Zhi, Y.; Gao, S.; Lim, S.; Lim, J.H.; Song, J.Y.; Sullam, P.M.; Rhee, J.H.; Seo, H.S. Vaccination with a Latch Peptide Provides Serotype-Independent Protection Against Group B Streptococcus Infection in Mice. J. Infect. Dis. 2018, 217, 93–102. [Google Scholar] [CrossRef]
- Trotter, C.L.; Alderson, M.; Dangor, Z.; Ip, M.; Le Doare, K.; Nakabembe, E.; Procter, S.R.; Sekikubo, M.; Lambach, P. Vaccine value profile for Group B streptococcus. Vaccine 2023, 41, S41–S52. [Google Scholar] [CrossRef]
- Sharp, M.E.; Sproch, J.; Haldeman, S.; Tettelin, H.; Ratner, A.J. Expansion of the Group B Streptococcus serotype repertoire via gene acquisition from other streptococcal species. Microbiol. Spectr. 2025, 13, e01227-25. [Google Scholar] [CrossRef]
- Projekt JUNO. Available online: https://www.gbsgen.net/ (accessed on 17 November 2024).
- Zhou, X.; Hansmann, M.A.; Davis, C.C.; Suzuki, H.; Brown, C.J.; Schütte, U.; Pierson, J.D.; Forney, L.J. The vaginal bacterial communities of Japanese women resemble those of women in other racial groups. FEMS Immunol. Med. Microbiol. 2010, 58, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.K.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 2011, 108, 4680–4687. [Google Scholar] [CrossRef]
- Benschop, C.C.G.; Quaak, F.C.A.; Boon, M.E.; Sijen, T.; Kuiper, I. Vaginal microbial flora analysis by next generation sequencing and microarrays; can microbes indicate vaginal origin in a forensic context? Int. J. Leg. Med. 2012, 126, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Kamińska, D.; Gajecka, M. Is the role of human female reproductive tract microbiota underestimated? Benef. Microbes 2017, 8, 327–344. [Google Scholar]
- Tachedjian, G.; Aldunate, M.; Bradshaw, C.S.; Cone, R.A. The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res. Microbiol. 2017, 168, 782–792. [Google Scholar] [CrossRef]
- Petrova, M.I.; Lievens, E.; Verhoeven, T.L.A.; Macklaim, J.M.; Gloor, G.; Schols, D.; Vanderleyden, J.; Reid, G.; Lebeer, S. The lectin-like protein 1 in Lactobacillus rhamnosus GR-1 mediates tissue-specific adherence to vaginal epithelium and inhibits urogenital pathogens. Sci. Rep. 2016, 6, 37437. [Google Scholar] [CrossRef]
- Allonsius, C.N.; Van Den Broek, M.F.L.; De Boeck, I.; Kiekens, S.; Oerlemans, E.F.M.; Kiekens, F.; Foubert, K.; Vandenheuvel, D.; Cos, P.; Delputte, P.; et al. Interplay between Lactobacillus rhamnosus GG and Candida and the involvement of exopolysaccharides. Microb. Biotechnol. 2017, 10, 1753–1763. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Lu, Y.; Li, R.; Chen, X. Use of probiotic lactobacilli in the treatment of vaginal infections: In Vitro and in vivo investigations. Front. Cell. Infect. Microbiol. 2023, 13, 1153894. [Google Scholar] [CrossRef]
- Avitabile, E.; Menotti, L.; Croatti, V.; Giordani, B.; Parolin, C.; Vitali, B. Protective Mechanisms of Vaginal Lactobacilli against Sexually Transmitted Viral Infections. Int. J. Mol. Sci. 2024, 25, 9168. [Google Scholar] [CrossRef]
- Wasfi, R.; Abd El-Rahman, O.A.; Zafer, M.M.; Ashour, H.M. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J. Cell. Mol. Med. 2018, 22, 1972–1983. [Google Scholar] [CrossRef]
- Shiroda, M.; Aronoff, D.M.; Gaddy, J.A.; Manning, S.D. The impact of Lactobacillus on group B streptococcal interactions with cells of the extraplacental membranes. Microb. Pathog. 2020, 148, 104463. [Google Scholar] [CrossRef]
- Giordani, B.; Naldi, M.; Croatti, V.; Parolin, C.; Erdoğan, Ü.; Bartolini, M.; Vitali, B. Exopolysaccharides from vaginal lactobacilli modulate microbial biofilms. Microb. Cell Factories 2023, 22, 45. [Google Scholar] [CrossRef]
- Kalia, N.; Singh, J.; Kaur, M. Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: A critical review. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 5. [Google Scholar] [CrossRef]
- Marziali, G.; Foschi, C.; Parolin, C.; Vitali, B.; Marangoni, A. In-vitro effect of vaginal lactobacilli against group B Streptococcus. Microb. Pathog. 2019, 136, 103692. [Google Scholar] [CrossRef]
- Zarate, G.; Nader-Macias, M.E. Influence of probiotic vaginal lactobacilli on in vitro adhesion of urogenital pathogens to vaginal epithelial cells. Lett. Appl. Microbiol. 2006, 43, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, L.; Ruiz, F.; Pascual, L.; Barberis, L. Effect of Two Probiotic Strains of Lactobacillus on In Vitro Adherence of Listeria monocytogenes, Streptococcus agalactiae, and Staphylococcus aureus to Vaginal Epithelial Cells. Curr. Microbiol. 2014, 68, 679–684. [Google Scholar] [CrossRef]
- Leccese Terraf, M.C.; Mendoza, L.M.; Juárez Tomás, M.S.; Silva, C.; Nader-Macías, M.E.F. Phenotypic surface properties (aggregation, adhesion and biofilm formation) and presence of related genes in beneficial vaginal lactobacilli. J. Appl. Microbiol. 2014, 117, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- Ventolini, G. Vaginal Lactobacillus: Biofilm formation in vivo—Clinical implications. Int. J. Womens Health 2015, 7, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Ephraim, E.; Schultz, R.; Duster-Matz, M.; Warrack, S.; Spiegel, C.; Safdar, N. In-Vitro evaluation of the antagonistic effects of the probiotics Lactobacillus rhamnosus HN001 and Florajen 3 against group B Streptococci. Int. J. Probiotics Prebiotics 2012, 7, 113–120. [Google Scholar]
- Patras, K.A.; Wescombe, P.A.; Rösler, B.; Hale, J.D.; Tagg, J.R.; Doran, K.S. Streptococcus salivarius K12 Limits Group B Streptococcus Vaginal Colonization. Infect. Immun. 2015, 83, 3438–3444. [Google Scholar] [CrossRef]
- De Gregorio, P.R.; Juárez Tomás, M.S.; Leccese Terraf, M.C.; Nader-Macías, M.E.F. Preventive effect of Lactobacillus reuteri CRL1324 on Group B Streptococcus vaginal colonization in an experimental mouse model. J. Appl. Microbiol. 2015, 118, 1034–1047. [Google Scholar] [CrossRef]
- De Gregorio, P.R.; Juárez Tomás, M.S.; Nader-Macías, M.E.F. Immunomodulation of Lactobacillus reuteri CRL1324 on Group B Streptococcus Vaginal Colonization in a Murine Experimental Model. Am. J. Reprod. Immunol. 2016, 75, 23–35. [Google Scholar] [CrossRef]
- Patras, K.A.; Doran, K.S. A Murine Model of Group B Streptococcus Vaginal Colonization. J. Vis. Exp. 2016, 117, 54708. [Google Scholar]
- Rosen, G.H.; Randis, T.M.; Desai, P.V.; Sapra, K.J.; Ma, B.; Gajer, P.; Humphrys, M.S.; Ravel, J.; Gelber, S.E.; Ratner, A.J. Group B Streptococcus and the Vaginal Microbiota. J. Infect. Dis. 2017, 216, 744–751. [Google Scholar] [CrossRef]
- Whitney, C.; Daly, S.; Limpongsanurak, S.; Festin, M.; Thinn, K.; Chipato, T.; Lumbiganon, P.; Sauvarin, J.; Andrews, W.; Tolosa, J.; et al. The International Infections in Pregnancy Study: Group B streptococcal colonization in pregnant women. J. Matern. Fetal Neonatal Med. 2004, 15, 267–274. [Google Scholar] [CrossRef]
- Ho, M.; Chang, Y.-Y.; Chang, W.-C.; Lin, H.-C.; Wang, M.-H.; Lin, W.-C.; Chiu, T.-H. Oral Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 to reduce Group B Streptococcus colonization in pregnant women: A randomized controlled trial. Taiwan. J. Obstet. Gynecol. 2016, 55, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Hanson, L.; VandeVusse, L.; Forgie, M.; Malloy, E.; Singh, M.; Scherer, M.; Kleber, D.; Dixon, J.; Hryckowian, A.J.; Safdar, N. A randomized controlled trial of an oral probiotic to reduce antepartum group B Streptococcus colonization and gastrointestinal symptoms. Am. J. Obstet. Gynecol. MFM 2023, 5, 100748. [Google Scholar] [CrossRef] [PubMed]
- Martín, V.; Cárdenas, N.; Ocaña, S.; Marín, M.; Arroyo, R.; Beltrán, D.; Badiola, C.; Fernández, L.; Rodríguez, J.M. Rectal and Vaginal Eradication of Streptococcus agalactiae (GBS) in Pregnant Women by Using Lactobacillus salivarius CECT 9145, A Target-specific Probiotic Strain. Nutrients 2019, 11, 810. [Google Scholar] [CrossRef]
- Farr, A.; Sustr, V.; Kiss, H.; Rosicky, I.; Graf, A.; Makristathis, A.; Foessleitner, P.; Petricevic, L. Oral probiotics to reduce vaginal group B streptococcal colonization in late pregnancy. Sci. Rep. 2020, 10, 19745. [Google Scholar] [CrossRef]
- Sharpe, M.; Shah, V.; Freire-Lizama, T.; Cates, E.C.; McGrath, K.; David, I.; Cowan, S.; Letkeman, J.; Stewart-Wilson, E. Effectiveness of oral intake of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 on Group B Streptococcus colonization during pregnancy: A midwifery-led double-blind randomized controlled pilot trial. J. Matern. Fetal Neonatal Med. 2021, 34, 1814–1821. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Wang, H.; Wang, M.; Cao, J.; Gao, F.; Ke, X.; Liu, Z.; Liu, Y.; Lu, M. Efficient Inhibition of Streptococcus agalactiae by AIEgen-Based Fluorescent Nanomaterials. Front. Chem. 2021, 9, 715565. [Google Scholar] [CrossRef] [PubMed]
- Sellera, F.P.; Sabino, C.P.; Ribeiro, M.S.; Gargano, R.G.; Benites, N.R.; Melville, P.A.; Pogliani, F.C. In Vitro photoinactivation of bovine mastitis related pathogens. Photodiagnosis Photodyn. Ther. 2016, 13, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Pieranski, M.; Sitkiewicz, I.; Grinholc, M. Increased photoinactivation stress tolerance of Streptococcus agalactiae upon consecutive sublethal phototreatments. Free Radic. Biol. Med. 2020, 160, 657–669. [Google Scholar] [CrossRef] [PubMed]
- Pieranski, M.K.; Rychlowski, M.; Grinholc, M. Optimization of Streptococcus agalactiae Biofilm Culture in a Continuous Flow System for Photoinactivation Studies. Pathogens 2021, 10, 1212. [Google Scholar] [CrossRef]
- Pierański, M.K.; Kosiński, J.G.; Szymczak, K.; Sadowski, P.; Grinholc, M. Antimicrobial Photodynamic Inactivation: An Alternative for Group B Streptococcus Vaginal Colonization in a Murine Experimental Model. Antioxidants 2023, 12, 847. [Google Scholar] [CrossRef]

| Most Prevalent Serotype * | Region | References |
|---|---|---|
| III, Ia, Ib, V, II, IV and other serotypes ** | Europe | [16,17,18,19] |
| Ia and Ib, V, III, IV | North America | [19] |
| Ia and Ib, II, III | Central America | [19] |
| Ia and Ib, III, II, V and other serotypes | South America | [19] |
| Ia and Ib, III, V, II, IV and other serotypes, IV and Ia | Western Asia (United Arab Emirates) | [19] |
| Ia and Ib, III, II, V, other serotypes and IV Ia and Ib, III | Southern Asia (China) | [19,20] |
| V, Ia and Ib, other serotypes, III and IV | Southeastern Asia | [19] |
| Ia and Ib, III, V, other serotypes and II | Estern Asia | [19] |
| Ia and Ib, V, III and II | Middle Africa | [19] |
| V, Ia and Ib, III and II V | Western Africa (Egypt) | [19,21] |
| III, V, Ia and Ib, II and IV | Eastern Africa | [19] |
| Ia and Ib, III, V, II and IV | Southern Africa | [19] |
| Ia and Ib, III, V, II, IV and other serotypes | Australia and New Zealand | [19] |
| Virulence Factor | Specific Target | Function/Characteristics | References |
|---|---|---|---|
| Fibrinogen binding protein A (FbsA) | Fibrinogen | Adhesion to endothelial and epithelial cells; Anti-phagocytic activity; Aggregation of platelets | [29,43] |
| Fibrinogen binding protein B (FbsB) | Fibrinogen | Invasion | [29,43] |
| Fibrinogen binding protein C (FbsC) | Fibrinogen | Attachment to and invasion of epithelial and endothelial barriers; Biofilm formation | [29,43] |
| Laminin binding protein (Lmb) | Laminin | Colonize and invade host epithelium; Neurotropism | [28,31] |
| Plasminogen binding surface protein (PbsP) | Plasminogen | Extracellular proteolytic activity; Transmigration across brain endothelial cells | [44] |
| Serine-rich repeat protein 1 and 2 (Srr1 and Srr2) | Fibrinogen | Adherence to vaginal and cervical epithelial cells | [2,30] |
| GBS immunogenic bacterial adhesin (BibA) | C4-binding protein | Disruption of complement component C4 binding; Antiphagocytic activity | [32] |
| GBS surface adhesin (BsaB) | Fibronectin, laminin | Attachment to epithelial cells; Biofilm formation | [29] |
| C5a peptidase (ScpB) | C5a fibronectin | Cleavage of C5a and inhibition of neutrophil recruitment to the infection site; Adherence/invasion to epithelial cells | [45] |
| Hypervirulent GBS adhesin (HvgA) | Unknown | Attachment to endothelial and epithelial cells; Meningeal tropism; Specific for St-17 clone | [33] |
| Pili | Collagen I | Evasion of innate immunity; Macrophage intracellular survival; Penetration of blood–brain barrier; Biofilm formation | [36,37,38] |
| Alpha C protein (ACP) | Glycosaminoglycans | Invasion of cervical epithelial cells | [46] |
| GBS hyaluronidase (HylB) | Hyaluronic acid | Inhibition of ROS production; Resistance of neutrophils | [2,9] |
| Hemolytic pigment | Neutrophils, mast cells, and macrophages | Resistance to mast cells, macrophages, and neutrophils; Penetration of the placenta; Invasion of the amniotic cavity; Kills platelets | [47] |
| Capsular polysaccharides (CPS) | Siglecs | Defense from host deposition; Inhibition of the activation of neutrophils and macrophages; Resistance to platelets | [2,14] |
| Type of Prevention | Advantages | Disadvantages |
|---|---|---|
| Vaccination |
|
|
| Probiotics |
|
|
| aPDT |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kaminska, D.; Ratajczak, M.; Nowicka, W.; Dlugaszewska, J.; Gajecka, M. New Strategies for Preventing Perinatal Group B Streptococcus (GBS) Infections. Pathogens 2026, 15, 22. https://doi.org/10.3390/pathogens15010022
Kaminska D, Ratajczak M, Nowicka W, Dlugaszewska J, Gajecka M. New Strategies for Preventing Perinatal Group B Streptococcus (GBS) Infections. Pathogens. 2026; 15(1):22. https://doi.org/10.3390/pathogens15010022
Chicago/Turabian StyleKaminska, Dorota, Magdalena Ratajczak, Wiktoria Nowicka, Jolanta Dlugaszewska, and Marzena Gajecka. 2026. "New Strategies for Preventing Perinatal Group B Streptococcus (GBS) Infections" Pathogens 15, no. 1: 22. https://doi.org/10.3390/pathogens15010022
APA StyleKaminska, D., Ratajczak, M., Nowicka, W., Dlugaszewska, J., & Gajecka, M. (2026). New Strategies for Preventing Perinatal Group B Streptococcus (GBS) Infections. Pathogens, 15(1), 22. https://doi.org/10.3390/pathogens15010022

