Genetic Determinants Linked to MDR/XDR in Pseudomonas aeruginosa Strains from a Mexican Tertiary Hospital
Abstract
1. Introduction
2. Materials and Methods
2.1. Pseudomonas Aeruginosa Strains and Biochemical Identification
2.2. Genetic Confirmation of Pseudomonas aeruginosa by 16S rRNA Sequencing
2.3. Antimicrobial Resistance Profiles
2.4. Confirmation of Carbapenemase Production
2.5. β-Lactam Resistance Gene Screening
2.6. Detection of Mutations in the oprD Gene in Pseudomonas aeruginosa
2.7. Statistical Analysis
3. Results
3.1. Origin of Pseudomonas aeruginosa Isolates
3.2. Phenotypic Antimicrobial Resistance Profiles of Pseudomonas aeruginosa Strains
3.3. Detection of β-Lactam Resistance Genes
3.4. Statistical Analysis
3.5. Mutations in the oprD Gene and Their Relationship with Imipenem Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howroyd, F.; Chacko, C.; MacDuff, A.; Gautam, N.; Pouchet, B.; Tunnicliffe, B.; Weblin, J.; Gao-Smith, F.; Ahmed, Z.; Duggal, N.A.; et al. Ventilator-associated pneumonia: Pathobiological heterogeneity and diagnostic challenges. Nat. Commun. 2024, 15, 6447. [Google Scholar] [CrossRef]
- Sandu, A.M.; Chifiriuc, M.C.; Vrancianu, C.O.; Cristian, R.E.; Alistar, C.F.; Constantin, M.; Paun, M.; Alistar, A.; Popa, L.G.; Popa, M.I.; et al. Healthcare-Associated Infections: The Role of Microbial and Environmental Factors in Infection Control-A Narrative Review. Infect. Dis. Ther. 2025, 14, 933–971. [Google Scholar] [CrossRef]
- World Health Organization. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; Ginebra OMS: Geneva, Switzerland, 2024; Recuperado de; ISBN 978-92-4-009346-1. Available online: https://iris.who.int/server/api/core/bitstreams/1a41ef7e-dd24-4ce6-a9a6-1573562e7f37/content (accessed on 10 September 2025).
- Itani, R.; Khojah, H.M.J.; Shuhaiber, P.; Raychouni, H.; Dib, C.; Hassan, M.; Mukattash, T.L.; El-Lakany, A. Incidence and risk factors of resistant Pseudomonas aeruginosa infections: A multicenter study in Lebanese tertiary hospitals. BMC Infect. Dis. 2025, 25, 1048. [Google Scholar] [CrossRef]
- Meletis, G.; Karastergiou, E. Resistance mechanisms and therapeutic strategies for Pseudomonas aeruginosa infections. Ther. Adv. Infect. Dis. 2025, 12, 20499361251388382. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cureño-Díaz, M.A.; Durán-Manuel, E.M.; Cruz-Cruz, C.; Ibáñez-Cervantes, G.; Rojo-Gutiérrez, M.I.; Moncayo-Coello, C.V.; Loyola-Cruz, M.Á.; Castro-Escarpulli, G.; Hernández, D.M.R.; Bello-López, J.M. Impact of the modification of a cleaning and disinfection method of mechanical ventilators of COVID-19 patients and ventilator-associated pneumonia: One year of experience. Am. J. Infect. Control. 2021, 49, 1474–1480. [Google Scholar] [CrossRef]
- Elfadadny, A.; Ragab, R.F.; AlHarbi, M.; Badshah, F.; Ibáñez-Arancibia, E.; Farag, A.; Hendawy, A.O.; De Los Ríos-Escalante, P.R.; Aboubakr, M.; Zakai, S.A.; et al. Antimicrobial resistance of Pseudomonas aeruginosa: Navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Front. Microbiol. 2024, 15, 1374466. [Google Scholar] [CrossRef] [PubMed]
- Carbajal-Ocaña, S.; Franco-Gómez, K.X.; Atehortúa-Benítez, V.; Mendoza-Lozano, D.; Prado-Cervantes, L.V.; Melgoza-Ramírez, L.J.; Delgado-Rodríguez, M.; Elizondo-García, M.E.; Membrillo-Hernández, J. In Vitro Biofilm Formation Kinetics of Pseudomonas aeruginosa and Escherichia coli on Medical-Grade Polyether Ether Ketone (PEEK) and Polyamide 12 (PA12) Polymers. Hygiene 2025, 5, 32. [Google Scholar] [CrossRef]
- Yin, L.; Lu, L.; He, L.; Yan, G.; Lu, G.; Zhai, X.; Wang, C. Non-carbapenem-producing carbapenem-resistant Pseudomonas aeruginosa in children: Risk factors, molecular epidemiology, and resistance mechanism. J. Infect. Public Health 2025, 18, 102634. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, R.; Pan, J.; Liu, Z.; Huang, X.; Lin, Y.; Li, N.; Chen, K.; Sun, W.; Deng, Y.; et al. Correlation Analysis Between Multi-Drug Resistance Phenotype and Virulence Factor Expression of Clinical Pseudomonas aeruginosa. Curr. Issues Mol. Biol. 2025, 47, 50. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Bao, Z.; He, L.; Lu, L.; Lu, G.; Zhai, X.; Wang, C. Virulence factors, molecular characteristics, and resistance mechanisms of carbapenem-resistant Pseudomonas aeruginosa isolated from pediatric patients in Shanghai, China. BMC Microbiol. 2025, 25, 130. [Google Scholar] [CrossRef]
- Loyola-Cruz, M.Á.; Durán-Manuel, E.M.; Cruz-Cruz, C.; Márquez-Valdelamar, L.M.; Bravata-Alcántara, J.C.; Cortés-Ortíz, I.A.; Cureño-Díaz, M.A.; Ibáñez-Cervantes, G.; Fernández-Sánchez, V.; Castro-Escarpulli, G.; et al. ESKAPE bacteria characterization reveals the presence of Acinetobacter baumannii and Pseudomonas aeruginosa outbreaks in COVID-19/VAP patients. Am. J. Infect. Control. 2023, 51, 729–737. [Google Scholar] [CrossRef]
- Vijayakumar, K.; Ganesan, V.; Kannan, S. Antibacterial and antibiofilm efficacy of quercetin against Pseudomonas aeruginosa and methicillin resistant Staphylococcus aureus associated with ICU infections. Biofouling 2025, 41, 211–224. [Google Scholar] [CrossRef]
- Olaniyan, T.O.; Martínez-Vázquez, A.V.; Escobedo-Bonilla, C.M.; López-Rodríguez, C.; Huerta-Luévano, P.; Castrejón-Sánchez, O.; de la Cruz-Flores, W.L.; Cedeño-Castillo, M.J.; de Luna-Santillana Ed, J.; Cruz-Hernández, M.A.; et al. The Prevalence of ESKAPE Pathogens and Their Drug Resistance Profiles in Aquatic Environments Around the World. Microbiol. Res. 2025, 16, 201. [Google Scholar] [CrossRef]
- Masoud, S.S.; Kovacevich, A.; Gangji, R.; Nyawale, H.; Nyange, M.; Ntukula, A. Extent and Resistance Patterns of ESKAPE Pathogens Isolated in Pus Swabs from Hospitalized Patients. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 3511306. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bazira, J.; Nalumaga, P.P.; Quraishi, B.; Walekhwa, A.W.; Lawrence, M.; Iramiot, J.S. Trends of Antibiotic Resistance in ESKAPE Pathogens in Mbarara Regional Referral Hospital (2015–2022), South Western, Uganda. Can. J. Infect. Dis. Med. Microbiol. 2025, 2025, 7034931. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horna, G.; Ruiz, J. Type 3 secretion system of Pseudomonas aeruginosa. Microbiol. Res. 2021, 246, 126719. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, R.; Rekha, N.D.; Gopal, S. Pseudomonas aeruginosa biofilm: Treatment strategies to combat infection. Arch. Microbiol. 2025, 207, 141. [Google Scholar] [CrossRef]
- Abaza, A.F.; El Shazly, S.A.; Selim, H.S.A.; Aly, G.S.A. Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa in a Healthcare Setting in Alexandria, Egypt. Pol. J. Microbiol. 2017, 66, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Chadha, J.; Harjai, K.; Chhibber, S. Repurposing phytochemicals as anti-virulent agents to attenuate quorum sensing-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Microb. Biotechnol. 2022, 15, 1695–1718. [Google Scholar] [CrossRef] [PubMed]
- Findlay, J.; Raro, O.H.F.; Poirel, L.; Nordmann, P.; NARA Network. Molecular analysis of metallo-beta-lactamase-producing Pseudomonas aeruginosa in Switzerland 2022–2023. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 551–557. [Google Scholar] [CrossRef]
- Fang, Z.L.; Zhang, L.Y.; Huang, Y.M.; Qing, Y.; Cao, K.Y.; Tian, G.B.; Huang, X. OprD mutations and inactivation in imipenem-resistant Pseudomonas aeruginosa isolates from China. Infect. Genet. Evol. 2014, 21, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Kang, H.Y.; Kim, B.R.; Jeon, H.; Lee, Y.C.; Lee, S.H.; Lee, J.C. Mutational inactivation of OprD in carbapenem-resistant Pseudomonas aeruginosa isolates from Korean hospitals. J. Microbiol. 2016, 54, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Kiani, M.; Astani, A.; Eslami, G.; Khaledi, M.; Afkhami, H.; Rostami, S.; Zarei, M.; Khozanim, N.R.; Zandi, H. Upstream region of OprD mutations in imipenem-resistant and imipenem-sensitive Pseudomonas isolates. AMB Expr. 2021, 11, 82. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- López-Causapé, C.; Cabot, G.; Del Barrio-Tofiño, E.; Oliver, A. The Versatile Mutational Resistome of Pseudomonas aeruginosa. Front. Microbiol. 2018, 9, 685. [Google Scholar] [CrossRef]
- Kang, Y.; Cui, J. The Role of blaOXA-101 and blaOXA-573 in Extensively Drug-Resistant/ Pan Drug-Resistant (XDR/PDR) Pseudomonas aeruginosa Resistance to Ceftazidime-Avibactam. Infect. Drug Resist. 2025, 18, 2547–2555. [Google Scholar] [CrossRef]
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-line Agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef]
- Meschiari, M.; Volpi, S.; Faltoni, M.; Dolci, G.; Orlando, G.; Franceschini, E.; Menozzi, M.; Sarti, M.; Del Fabro, G.; Fumarola, B.; et al. Real-life experience with compassionate use of cefiderocol for difficult-to-treat resistant Pseudomonas aeruginosa (DTR-P) infections. JAC-Antimicrob. Resist. 2021, 3, dlab188. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2022, 75, 187–212. [Google Scholar] [CrossRef]
- Cureño-Díaz, M.A.; Plascencia-Nieto, E.S.; Loyola-Cruz, M.Á.; Cruz-Cruz, C.; Nolasco-Rojas, A.E.; Durán-Manuel, E.M.; Ibáñez-Cervantes, G.; Gómez-Zamora, E.; Tamayo-Ordóñez, M.C.; Tamayo-Ordóñez, Y.J.; et al. Gram-Negative ESKAPE Bacteria Surveillance in COVID-19 Pandemic Exposes High-Risk Sequence Types of Acinetobacter baumannii MDR in a Tertiary Care Hospital. Pathogens 2024, 13, 50. [Google Scholar] [CrossRef]
- Kirkegaard-Biosca, C.; del Barrio-Tofiño, E.; Villamarín, M.; Larrosa, N.; Campany, D.; González-López, J.J.; Ferrer, R.; Viñado, B.; Doménech, L.; Sellarès-Nadal, J.; et al. Cefiderocol for the Treatment of Infections by VIM-Type-Producing Gram-Negative Bacteria. Antibiotics 2024, 13, 874. [Google Scholar] [CrossRef]
- DeSantis, T.Z.; Brodie, E.L.; Moberg, J.P.; Zubieta, I.X.; Piceno, Y.M.; Andersen, G.L. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb. Ecol. 2007, 53, 371–383. [Google Scholar] [CrossRef]
- Janda, J.M.; Abbott, S.L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. J. Clin. Microbiol. 2007, 45, 2761–2764. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; CLSI Suppl. M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024. [Google Scholar]
- Jiménez Pearson, M.A.; Galas, M.; Corso, A.; Hormazábal, J.C.; Duarte Valderrama, C.; Salgado Marcano, N.; Ramón-Pardo, P.; Melano, R.G. Consenso latinoamericano para definir, categorizar y notificar patógenos multirresistentes, con resistencia extendida o panresistentes [Latin American consensus to define, categorize, and report multidrug-resistant, extensively drug-resistant, or pandrug-resistant pathogens Consenso latino-americano para definição, categorização e notificação de patógenos multirresistentes, com resistência ampliada ou panresistentes]. Rev. Panam. Salud Publica 2019, 43, e65. [Google Scholar] [CrossRef]
- Pierce, V.M.; Simner, P.J.; Lonsway, D.R.; Roe-Carpenter, D.E.; Johnson, J.K.; Brasso, W.B.; Bobenchik, A.M.; Lockett, Z.C.; Charnot-Katsikas, A.; Ferraro, M.J.; et al. Modified Carbapenem Inactivation Method for Phenotypic Detection of Carbapenemase Production among Enterobacteriaceae. J. Clin. Microbiol. 2017, 55, 2321–2333. [Google Scholar] [CrossRef]
- Cortés-Ortíz, I.A.; Juárez-Gómez, J.C.; Cu-Quijano, C.; Flores-Paz, R.; Durán-Manuel, E.M.; Cruz-Cruz, C.; Gutiérrez-Muñoz, V.H.; Sosa-Hernández, O.; Escobar-Escamilla, N.; Bravata-Alcántara, J.C.; et al. Klebsiella pneumoniae blaNDM-1 carrying a class 1 integron causing a hospital outbreak in a Mexican attention center. J. Infect. Dev. Ctries. 2021, 15, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Poirel, L.; Carrër, A.; Toleman, M.A.; Walsh, T.R. How to detect NDM-1 producers. J. Clin. 2011, 49, 718–721. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, O.; Juan, C.; Cercenado, E.; Navarro, F.; Bouza, E.; Coll, P.; Pérez, J.L.; Oliver, A. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob. Agents Chemother. 2007, 51, 4329–4335. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018, 7, 212527. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.W.; Khan, A.U. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov. Today 2019, 24, 350–359. [Google Scholar] [CrossRef]
- Gobierno de México. Boletín de Infecciones Asociadas a la Atención en Salud (IAAS): Cierre 2023. 2024. Available online: https://www.gob.mx/cms/uploads/attachment/file/926669/BoletinIAAScierre2023.pdf (accessed on 10 September 2025).
- Alnimr, A. Antimicrobial Resistance in Ventilator-Associated Pneumonia: Predictive Microbiology and Evidence-Based Therapy. Infect. Dis. Ther. 2023, 12, 1527–1552. [Google Scholar] [CrossRef] [PubMed]
- Baudet, A.; Regad, M.; Gibot, S.; Conrath, É.; Lizon, J.; Demoré, B.; Florentin, A. Pseudomonas aeruginosa Infections in Patients with Severe COVID-19 in Intensive Care Units: A Retrospective Study. Antibiotics 2024, 13, 390. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Liang, X.; Han, L.; Zhao, S. Incidence, antimicrobial resistance and mortality of Pseudomonas aeruginosa bloodstream infections among hospitalized patients in China: A retrospective observational multicenter cohort study from 2017 to 2021. Front. Public Health 2024, 11, 1294141. [Google Scholar] [CrossRef]
- Huang, X.; Ding, J.; Yang, X.; Tian, B.; Yu, R.; Lyu, M.; Liu, W.; Ding, Q. Clinical characteristics and prognosis analysis of Pseudomonas aeruginosa bloodstream infection in adults: A retrospective study. Clin. Exp. Med. 2024, 25, 5. [Google Scholar] [CrossRef]
- Bangera, D.; Shenoy, S.M.; Saldanha, D.R. Clinico-microbiological study of Pseudomonas aeruginosa in wound infections and the detection of metallo-β-lactamase production. Int. Wound J. 2016, 13, 1299–1302. [Google Scholar] [CrossRef]
- Boni, S.; Marin, G.H.; Campaña, L.; Marin, L.; Risso-Patrón, S.; Marin, G.; Gabriel, F.; Corso, A.; Garay, V.; Limeres, M. Association between Consumption of Fluoroquinolones and Carbapenems and Their Resistance Rates in Pseudomonas aeruginosa in Argentina. Interdiscip. Perspect. Infect. Dis. 2022, 2022, 3924212. [Google Scholar] [CrossRef]
- Estepa, V.; Rojo-Bezares, B.; Azcona-Gutiérrez, J.M.; Olarte, I.; Torres, C.; Sáenz, Y. Characterisation of carbapenem-resistance mechanisms in clinical Pseudomonas aeruginosa isolates recovered in a Spanish hospital. Caracterización de mecanismos de resistencia a carbapenémicos en aislados clínicos de Pseudomonas aeruginosa en un hospital español. Enfermedades Infecc. Microbiol. Clin. 2017, 35, 141–147. [Google Scholar] [CrossRef]
- Shortridge, D.; Gales, A.C.; Streit, J.M.; Huband, M.D.; Tsakris, A.; Jones, R.N. Geographic and Temporal Patterns of Antimicrobial Resistance in Pseudomonas aeruginosa Over 20 Years From the SENTRY Antimicrobial Surveillance Program, 1997–2016. Open Forum Infect. Dis. 2019, 6, S63–S68. [Google Scholar] [CrossRef]
- Kunz Coyne, A.J.; El Ghali, A.; Holger, D.; Rebold, N.; Rybak, M.J. Therapeutic Strategies for Emerging Multidrug-Resistant Pseudomonas aeruginosa. Infect. Dis. Ther. 2022, 11, 661–682. [Google Scholar] [CrossRef] [PubMed]
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin. Microbiol. Rev. 2019, 32, e00031-19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kazeminezhad, B.; Bostanmanesh Rad, A.; Gharib, A.; Zahedifard, S. blaVIM and blaIMP Genes Detection in Isolates of Carbapenem Resistant P. aeruginosa of Hospitalized Patients in Two Hospitals in Iran. Iran. J. Pathol. 2017, 12, 392–396. [Google Scholar] [CrossRef]
- Suresh, M.; Skariyachan, S.; Narayanan, N.; Pullampara Rajamma, J.; Panickassery Ramakrishnan, M.K. Mutational Variation Analysis of oprD Porin Gene in Multidrug-Resistant Clinical Isolates of Pseudomonas aeruginosa. Microb. Drug Resist. 2020, 26, 869–879. [Google Scholar] [CrossRef]
- Huang, H.; Jeanteur, D.; Pattus, F.; Hancock, R.E. Membrane topology and site-specific mutagenesis of Pseudomonas aeruginosa porin OprD. Mol. Microbiol. 1995, 16, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Hammes-Schiffer, S.; Benkovic, S.J. Relating protein motion to catalysis. Annu. Rev. Biochem. 2006, 75, 519–541. [Google Scholar] [CrossRef]
- Chen, S.C.; Chou, C.C.; Chen, W.M.; Sheu, S.Y.; Huang, L.W.; Huang, C.H.; Chang, S.H.; Kuo, C.H.; Hsu, C.H. Structural and functional insights into an archaeal dUTPase reveal a subdomain-mediated mechanism for substrate recognition and evolutionary adaptation. Int. J. Biol. Macromol. 2026, 335, 149194. [Google Scholar] [CrossRef] [PubMed]
- Ocampo-Sosa, A.A.; Cabot, G.; Rodríguez, C.; Roman, E.; Tubau, F.; Macia, M.D.; Moya, B.; Zamorano, L.; Suárez, C.; Peña, C.; et al. Alterations of OprD in carbapenem-intermediate and -susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish multicenter study. Antimicrob. Agents Chemother. 2012, 56, 1703–1713. [Google Scholar] [CrossRef]
- Cortes-Lara, S.; Barrio-Tofiño, E.D.; López-Causapé, C.; Oliver, A.; GEMARA-SEIMC/REIPI Pseudomonas study Group. Predicting Pseudomonas aeruginosa susceptibility phenotypes from whole genome sequence resistome analysis. Clin. Microbiol. Infect. 2021, 27, 1631–1637. [Google Scholar] [CrossRef]
- Biggel, M.; Johler, S.; Roloff, T.; Tschudin-Sutter, S.; Bassetti, S.; Siegemund, M.; Egli, A.; Stephan, R.; Seth-Smith, H.M.B. PorinPredict: In Silico Identification of OprD Loss from WGS Data for Improved Genotype-Phenotype Predictions of P. aeruginosa Carbapenem Resistance. Microbiol. Spectr. 2023, 11, e0358822. [Google Scholar] [CrossRef]


| HAI/Isolation Source | Year/n (%) | Sex/n (%) | ||
|---|---|---|---|---|
| 2021 | 2022 | Male | Female | |
| a CAUTI/urine | 8 (21.6) | 6 (23.1) | 9 (25.7) | 5 (17.9) |
| b VAP/lung | 22 (59.5) | 15 (57.7) | 21 (60.0) | 16 (57.1) |
| c CLABSI/blood | 5 (13.4) | 3 (11.5) | 3 (8.6) | 5 (17.9) |
| d SSI/wound | 2 (5.4) | 2 (7.7) | 2 (5.7) | 2 (7.1) |
| Total | 37 (100) | 26 (100) | 35 (100) | 28 (100) |
| Loop | Position | Amino Acid Change | Frequency n (%) |
|---|---|---|---|
| 1 | 43 | D → N | 15 (55.6) |
| 1 | 57 | S → E | 15 (55.6) |
| 1 | 59 | S → R | 15 (55.6) |
| 2 | 103 | S → T | 21 (77.8) |
| 2 | 114 | G → S | 1 (3.7) |
| 2 | 115 | T → K | 21 (77.8) |
| 3 | 170 | L → F | 21 (77.8) |
| 3 | 185 | Q → E | 20 (68.7) |
| 3 | 186 | G → P | 21 (77.8) |
| 3 | 189 | T → V | 21 (77.8) |
| 3 | 190 | K → N | 2 (7.1) |
| 3 | 192 | S → A | 2 (7.1) |
| 3 | 193 | R → V | 2 (7.1) |
| 3 | 194 | G → S | 2 (7.1) |
| 3 | 195 | E → S | 2 (7.1) |
| 3 | 196 | L → T | 2 (7.1) |
| 3 | 197 | Y → P | 2 (7.1) |
| 3 | 198 | A → P | 2 (7.1) |
| 3 | 200 | Y → P | 2 (7.1) |
| 3 | 202 | G → R | 2 (7.1) |
| 3 | 203 | E → Q | 17 (63) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Nicolas-Sayago, L.; Loyola-Cruz, M.Á.; Vásquez-Martínez, Y.; Cortez-San Martín, M.; Márquez-Valdelamar, L.M.; Cruz-Cruz, C.; Durán-Manuel, E.M.; Ruíz-Valdés, M.; Calzada-Mendoza, C.C.; Rojas-Bernabé, A.; et al. Genetic Determinants Linked to MDR/XDR in Pseudomonas aeruginosa Strains from a Mexican Tertiary Hospital. Pathogens 2026, 15, 100. https://doi.org/10.3390/pathogens15010100
Nicolas-Sayago L, Loyola-Cruz MÁ, Vásquez-Martínez Y, Cortez-San Martín M, Márquez-Valdelamar LM, Cruz-Cruz C, Durán-Manuel EM, Ruíz-Valdés M, Calzada-Mendoza CC, Rojas-Bernabé A, et al. Genetic Determinants Linked to MDR/XDR in Pseudomonas aeruginosa Strains from a Mexican Tertiary Hospital. Pathogens. 2026; 15(1):100. https://doi.org/10.3390/pathogens15010100
Chicago/Turabian StyleNicolas-Sayago, Liliana, Miguel Ángel Loyola-Cruz, Yesseny Vásquez-Martínez, Marcelo Cortez-San Martín, Laura Margarita Márquez-Valdelamar, Clemente Cruz-Cruz, Emilio Mariano Durán-Manuel, Mireya Ruíz-Valdés, Claudia Camelia Calzada-Mendoza, Araceli Rojas-Bernabé, and et al. 2026. "Genetic Determinants Linked to MDR/XDR in Pseudomonas aeruginosa Strains from a Mexican Tertiary Hospital" Pathogens 15, no. 1: 100. https://doi.org/10.3390/pathogens15010100
APA StyleNicolas-Sayago, L., Loyola-Cruz, M. Á., Vásquez-Martínez, Y., Cortez-San Martín, M., Márquez-Valdelamar, L. M., Cruz-Cruz, C., Durán-Manuel, E. M., Ruíz-Valdés, M., Calzada-Mendoza, C. C., Rojas-Bernabé, A., Tamayo-Ordóñez, M. C., Tamayo-Ordóñez, Y. d. J., Castañeda-Ortega, J. C., López-Martínez, B., Hernández-Castellanos, B., Moreno-Torres, D., Castro-Escarpulli, G., & Bello-López, J. M. (2026). Genetic Determinants Linked to MDR/XDR in Pseudomonas aeruginosa Strains from a Mexican Tertiary Hospital. Pathogens, 15(1), 100. https://doi.org/10.3390/pathogens15010100

