Decoding Dengue: A Global Perspective, History, Role, and Challenges
Abstract
1. Introduction
2. The Dengue Virus
2.1. Viral Structure
2.2. Viral Cycle
2.3. Infection and ADE
- Post-infection effects: acute disseminated encephalomyelitis (ADEM) [53], encephalomyelitis [48], myelitis [54], neuromyelitis optica [55], optic neuritis [56], Guillain–Barré syndrome [57], possible Miller–Fisher syndrome [58], phrenic neuropathy [59], long thoracic neuropathy [60], oculomotor paralysis [61], maculopathy [60], and fatigue syndrome [54].
2.4. Diagnosis
2.5. History and Epidemiology
2.5.1. Southeast Asia
2.5.2. Africa
2.5.3. Eastern Mediterranean
2.5.4. Americas
- Changes in vector distribution: The geographic spread of Aedes mosquitoes continues to expand, reaching previously unaffected areas.
- Climate change: Rising temperatures and increased humidity create more favora-ble conditions for mosquito breeding and viral replication within the vector, shortening the extrinsic incubation period.
- Political and financial instability: Countries facing complex humanitarian crises often experience weakened healthcare systems and inadequate public health in-frastructure, hindering effective surveillance and control measures.
- Increased human mobility and tourism: The movement of people facilitates the rapid dissemination of the virus to new locations, leading to outbreaks in areas previously considered non-endemic.
2.5.5. Western Pacific
2.6. Vaccines
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Ross, P.A.; Robinson, K.L.; Yang, Q.; Callahan, A.G.; Schmidt, T.L.; Axford, J.K.; Coquilleau, M.P.; Staunton, K.M.; Townsend, M.; Ritchie, S.A.; et al. A Decade of Stability for wMel Wolbachia in Natural Aedes Aegypti Populations. PLoS Pathog. 2022, 18, e1010256. [Google Scholar] [CrossRef]
- Parveen, S.; Riaz, Z.; Saeed, S.; Ishaque, U.; Sultana, M.; Faiz, Z.; Shafqat, Z.; Shabbir, S.; Ashraf, S.; Marium, A. Dengue Hemorrhagic Fever: A Growing Global Menace. J. Water Health 2023, 21, 1632–1650. [Google Scholar] [CrossRef]
- Byk, L.A.; Iglesias, N.G.; De Maio, F.A.; Gebhard, L.G.; Rossi, M.; Gamarnik, A.V. Dengue Virus Genome Uncoating Requires Ubiquitination. mBio 2016, 7, e00804-16. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Guo, S.; Zou, M.; Chen, C.; Deng, F.; Xie, Z.; Hu, S.; Wu, L. A Dengue Fever Predicting Model Based on Baidu Search Index Data and Climate Data in South China. PLoS ONE 2019, 14, e0226841. [Google Scholar] [CrossRef]
- Guzman, M.G.; Harris, E. Dengue. Lancet 2015, 385, 453–465. [Google Scholar] [CrossRef]
- Knope, K.; Whelan, P.; Smith, D.; Johansen, C.; Moran, R.; Doggett, S.; Sly, A.; Hobby, M.; Wright, P.; Nicholson, J.; et al. Arboviral Diseases and Malaria in Australia, 2010–2011: Annual Report of the National Arbovirus and Malaria Advisory Committee. Commun. Dis. Intell. Q. Rep. 2013, 37, E1–E20. [Google Scholar] [PubMed]
- Zou, J.; Xie, X.; Wang, Q.-Y.; Dong, H.; Lee, M.Y.; Kang, C.; Yuan, Z.; Shi, P.-Y. Characterization of Dengue Virus NS4A and NS4B Protein Interaction. J. Virol. 2015, 89, 3455–3470. [Google Scholar] [CrossRef]
- Perera, R.; Kuhn, R.J. Structural Proteomics of Dengue Virus. Curr. Opin. Microbiol. 2008, 11, 369–377. [Google Scholar] [CrossRef]
- Soo, K.-M.; Khalid, B.; Ching, S.-M.; Chee, H.-Y. Meta-Analysis of Dengue Severity during Infection by Different Dengue Virus Serotypes in Primary and Secondary Infections. PLoS ONE 2016, 11, e0154760. [Google Scholar] [CrossRef]
- Feitosa, F.M.; Calvo, E.; Merino, E.F.; Durham, A.M.; James, A.A.; de Bianchi, A.G.; Marinotti, O.; Capurro, M.L. A Transcriptome Analysis of the Aedes Aegypti Vitellogenic Fat Body. J. Insect Sci. 2006, 6, 1–26. [Google Scholar] [CrossRef]
- Chen, L.H.; Marti, C.; Diaz Perez, C.; Jackson, B.M.; Simon, A.M.; Lu, M. Epidemiology and Burden of Dengue Fever in the United States: A Systematic Review. J. Travel Med. 2023, 30, taad127. [Google Scholar] [CrossRef]
- GBD 2013 DALYs and HALE Collaborators; Murray, C.J.L.; Barber, R.M.; Foreman, K.J.; Abbasoglu Ozgoren, A.; Abd-Allah, F.; Abera, S.F.; Aboyans, V.; Abraham, J.P.; Abubakar, I.; et al. Global, Regional, and National Disability-Adjusted Life Years (DALYs) for 306 Diseases and Injuries and Healthy Life Expectancy (HALE) for 188 Countries, 1990-2013: Quantifying the Epidemiological Transition. Lancet 2015, 386, 2145–2191. [Google Scholar] [CrossRef]
- Sinha, S.; Singh, K.; Ravi Kumar, Y.S.; Roy, R.; Phadnis, S.; Meena, V.; Bhattacharyya, S.; Verma, B. Dengue Virus Pathogenesis and Host Molecular Machineries. J. Biomed. Sci. 2024, 31, 43. [Google Scholar] [CrossRef]
- Martina, B.E.E.; Koraka, P.; Osterhaus, A.D.M.E. Dengue Virus Pathogenesis: An Integrated View. Clin. Microbiol. Rev. 2009, 22, 564–581. [Google Scholar] [CrossRef]
- Olsen, L.R.; Zhang, G.L.; Keskin, D.B.; Reinherz, E.L.; Brusic, V. Conservation Analysis of Dengue Virus T-Cell Epitope-Based Vaccine Candidates Using Peptide Block Entropy. Front. Immunol. 2011, 2, 69. [Google Scholar] [CrossRef]
- Ross, T.M. Dengue Virus. Clin. Lab. Med. 2010, 30, 149–160. [Google Scholar] [CrossRef]
- de Borba, L.; Villordo, S.M.; Marsico, F.L.; Carballeda, J.M.; Filomatori, C.V.; Gebhard, L.G.; Pallarés, H.M.; Lequime, S.; Lambrechts, L.; Sánchez Vargas, I.; et al. RNA Structure Duplication in the Dengue Virus 3’ UTR: Redundancy or Host Specificity? mBio 2019, 10, e02506-18. [Google Scholar] [CrossRef]
- Gebhard, L.G.; Iglesias, N.G.; Byk, L.A.; Filomatori, C.V.; De Maio, F.A.; Gamarnik, A.V. A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production. J. Virol. 2016, 90, 5451–5461. [Google Scholar] [CrossRef]
- Pozzi, B.; Bragado, L.; Mammi, P.; Torti, M.F.; Gaioli, N.; Gebhard, L.G.; García Solá, M.E.; Vaz-Drago, R.; Iglesias, N.G.; García, C.C.; et al. Dengue Virus Targets RBM10 Deregulating Host Cell Splicing and Innate Immune Response. Nucleic Acids Res. 2020, 48, 6824–6838. [Google Scholar] [CrossRef]
- Voßmann, S.; Wieseler, J.; Kerber, R.; Kümmerer, B.M. A Basic Cluster in the N Terminus of Yellow Fever Virus NS2A Contributes to Infectious Particle Production. J. Virol. 2015, 89, 4951–4965. [Google Scholar] [CrossRef]
- Patkar, C.G.; Kuhn, R.J. Development of Novel Antivirals against Flaviviruses. Novartis Found. Symp. 2006, 277, 41–52; discussion 52–56, 71–73, 251–253. [Google Scholar] [PubMed]
- Lescar, J.; Luo, D.; Xu, T.; Sampath, A.; Lim, S.P.; Canard, B.; Vasudevan, S.G. Towards the Design of Antiviral Inhibitors against Flaviviruses: The Case for the Multifunctional NS3 Protein from Dengue Virus as a Target. Antiviral Res. 2008, 80, 94–101. [Google Scholar] [CrossRef]
- Zou, J.; Lee, L.T.; Wang, Q.Y.; Xie, X.; Lu, S.; Yau, Y.H.; Yuan, Z.; Geifman Shochat, S.; Kang, C.; Lescar, J.; et al. Mapping the Interactions between the NS4B and NS3 Proteins of Dengue Virus. J. Virol. 2015, 89, 3471–3483. [Google Scholar] [CrossRef]
- Teo, C.S.H.; Chu, J.J.H. Cellular Vimentin Regulates Construction of Dengue Virus Replication Complexes through Interaction with NS4A Protein. J. Virol. 2014, 88, 1897–1913. [Google Scholar] [CrossRef] [PubMed]
- Medina, F.; Medina, J.F.; Colón, C.; Vergne, E.; Santiago, G.A.; Muñoz-Jordán, J.L. Dengue Virus: Isolation, Propagation, Quantification, and Storage. Curr. Protoc. Microbiol. 2012, 27, 15D.2.1–15D.2.24. [Google Scholar] [CrossRef]
- Verma, M.; Bhatnagar, S.; Kumari, K.; Mittal, N.; Sukhralia, S.; Gopirajan At, S.; Dhanaraj, P.S.; Lal, R. Highly Conserved Epitopes of DENV Structural and Non-Structural Proteins: Candidates for Universal Vaccine Targets. Gene 2019, 695, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, P.; Bajpai, P.; Shrinet, J.; Kaja, M.K.; Chandele, A.; Sitaraman, R. Prediction of Human Protein Interactome of Dengue Virus Non-Structural Protein 5 (NS5) and Its Downstream Immunological Implications. 3 Biotech 2023, 13, 180. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.C.; Barrett, A.D.T. Transmission Cycles, Host Range, Evolution and Emergence of Arboviral Disease. Nat. Rev. Microbiol. 2004, 2, 789–801. [Google Scholar] [CrossRef]
- Higa, Y. Dengue Vectors and Their Spatial Distribution. Trop. Med. Health 2011, 39 (Suppl. S4), S17–S27. [Google Scholar] [CrossRef]
- Torres, J.R.; Brea-Del Castillo, J.; Saez-Llorens, X.; Ávila-Agüero, M.L.; Coronell R, W.; Martinez-De Cuellar, C.; Debbag, R. Regional Molecular Epidemiology of Dengue and the Potential Optimization of Its Control through the Use of Vaccines. Report of the Arbovirus Committee of the Latin American Society of Pediatric Infectious Diseases, SLIPE. Expert Rev. Vaccines 2024, 23, 773–778. [Google Scholar] [CrossRef]
- Goo, L.; Dowd, K.A.; Smith, A.R.Y.; Pelc, R.S.; DeMaso, C.R.; Pierson, T.C. Zika Virus Is Not Uniquely Stable at Physiological Temperatures Compared to Other Flaviviruses. mBio 2016, 7, e01396-16. [Google Scholar] [CrossRef]
- Marbán-Castro, E.; Goncé, A.; Fumadó, V.; Romero-Acevedo, L.; Bardají, A. Zika Virus Infection in Pregnant Women and Their Children: A Review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 265, 162–168. [Google Scholar] [CrossRef]
- Smith, D.L.; Perkins, T.A.; Reiner, R.C.; Barker, C.M.; Niu, T.; Chaves, L.F.; Ellis, A.M.; George, D.B.; Le Menach, A.; Pulliam, J.R.C.; et al. Recasting the Theory of Mosquito-Borne Pathogen Transmission Dynamics and Control. Trans. R. Soc. Trop. Med. Hyg. 2014, 108, 185–197. [Google Scholar] [CrossRef]
- Akter, R.; Tasneem, F.; Das, S.; Soma, M.A.; Georgakopoulos-Soares, I.; Juthi, R.T.; Sazed, S.A. Approaches of Dengue Control: Vaccine Strategies and Future Aspects. Front. Immunol. 2024, 15, 1362780. [Google Scholar] [CrossRef] [PubMed]
- Rodenhuis-Zybert, I.A.; Wilschut, J.; Smit, J.M. Dengue Virus Life Cycle: Viral and Host Factors Modulating Infectivity. Cell. Mol. Life Sci. 2010, 67, 2773–2786. [Google Scholar] [CrossRef]
- Melino, S.; Paci, M. Progress for Dengue Virus Diseases. Towards the NS2B-NS3pro Inhibition for a Therapeutic-Based Approach. FEBS J. 2007, 274, 2986–3002. [Google Scholar] [CrossRef] [PubMed]
- Perera, R.; Khaliq, M.; Kuhn, R.J. Closing the Door on Flaviviruses: Entry as a Target for Antiviral Drug Design. Antiviral Res. 2008, 80, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Abduljalil, J.M.; Abd Al Galil, F.M. Molecular Pathogenesis of Dengue Virus Infection in Aedes Mosquitoes. J. Insect Physiol. 2022, 138, 104367. [Google Scholar] [CrossRef]
- Salazar, M.I.; Richardson, J.H.; Sánchez-Vargas, I.; Olson, K.E.; Beaty, B.J. Dengue Virus Type 2: Replication and Tropisms in Orally Infected Aedes Aegypti Mosquitoes. BMC Microbiol. 2007, 7, 9. [Google Scholar] [CrossRef]
- Bentes, A.A.; Maia De Castro Romanelli, R.; Crispim, A.P.C.; Marinho, P.E.S.; Loutfi, K.S.; Araujo, S.T.; Campos E Silva, L.M.; Guedes, I.; Martins Alvarenga, A.; Santos, M.A.; et al. Neurological Manifestations Due to Dengue Virus Infection in Children: Clinical Follow-Up. Pathog. Glob. Health 2021, 115, 476–482. [Google Scholar] [CrossRef]
- Nanaware, N.; Banerjee, A.; Mullick Bagchi, S.; Bagchi, P.; Mukherjee, A. Dengue Virus Infection: A Tale of Viral Exploitations and Host Responses. Viruses 2021, 13, 1967. [Google Scholar] [CrossRef]
- Acosta, E.G.; Piccini, L.E.; Talarico, L.B.; Castilla, V.; Damonte, E.B. Changes in Antiviral Susceptibility to Entry Inhibitors and Endocytic Uptake of Dengue-2 Virus Serially Passaged in Vero or C6/36 Cells. Virus Res. 2014, 184, 39–43. [Google Scholar] [CrossRef]
- Gupta, M.; Nayak, R.; Khwaja, G.A.; Chowdhury, D. Acute Disseminated Encephalomyelitis Associated with Dengue Infection: A Case Report with Literature Review. J. Neurol. Sci. 2013, 335, 216–218. [Google Scholar] [CrossRef] [PubMed]
- Halstead, S. Recent Advances in Understanding Dengue. F1000Research 2019, 8, 1279. [Google Scholar] [CrossRef] [PubMed]
- Horstick, O.; Jaenisch, T.; Martinez, E.; Kroeger, A.; See, L.L.C.; Farrar, J.; Ranzinger, S.R. Comparing the Usefulness of the 1997 and 2009 WHO Dengue Case Classification: A Systematic Literature Review. Am. J. Trop. Med. Hyg. 2014, 91, 621–634. [Google Scholar] [CrossRef]
- Guo, C.; Zhou, Z.; Wen, Z.; Liu, Y.; Zeng, C.; Xiao, D.; Ou, M.; Han, Y.; Huang, S.; Liu, D.; et al. Global Epidemiology of Dengue Outbreaks in 1990-2015: A Systematic Review and Meta-Analysis. Front. Cell. Infect. Microbiol. 2017, 7, 317. [Google Scholar] [CrossRef]
- Kok, B.H.; Lim, H.T.; Lim, C.P.; Lai, N.S.; Leow, C.Y.; Leow, C.H. Dengue Virus Infection—A Review of Pathogenesis, Vaccines, Diagnosis and Therapy. Virus Res. 2023, 324, 199018. [Google Scholar] [CrossRef]
- Trivedi, S.; Chakravarty, A. Neurological Complications of Dengue Fever. Curr. Neurol. Neurosci. Rep. 2022, 22, 515–529. [Google Scholar] [CrossRef]
- Taylor-Salmon, E.; Hill, V.; Paul, L.M.; Koch, R.T.; Breban, M.I.; Chaguza, C.; Sodeinde, A.; Warren, J.L.; Bunch, S.; Cano, N.; et al. Travel Surveillance Uncovers Dengue Virus Dynamics and Introductions in the Caribbean. medRxiv 2023, 2023.11.11.23298412. [Google Scholar] [CrossRef]
- Bhatt, P.; Sabeena, S.P.; Varma, M.; Arunkumar, G. Current Understanding of the Pathogenesis of Dengue Virus Infection. Curr. Microbiol. 2021, 78, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Verma, R.; Jain, A.; Prakash, S.; Garg, R.K.; Malhotra, H.S.; Sharma, P.K.; Kumar, N.; Uniyal, R.; Pandey, S.; et al. Correlation of Serotype-Specific Strain in Patients with Dengue Virus Infection with Neurological Manifestations and Its Outcome. Neurol. Sci. 2022, 43, 1939–1946. [Google Scholar] [CrossRef] [PubMed]
- GBD 2021 Stroke Risk Factor Collaborators. Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990-2021: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 973–1003. [Google Scholar] [CrossRef] [PubMed]
- Britto, C.; Dold, C.; Reyes-Sandoval, A.; Rollier, C.S. Rapid Travel to a Zika Vaccine: Are We Heading towards Success or More Questions? Expert Opin. Biol. Ther. 2018, 18, 1171–1179. [Google Scholar] [CrossRef]
- Seet, R.C.S.; Quek, A.M.L.; Lim, E.C.H. Post-Infectious Fatigue Syndrome in Dengue Infection. J. Clin. Virol. 2007, 38, 1–6. [Google Scholar] [CrossRef]
- Miranda de Sousa, A.; Puccioni-Sohler, M.; Dias Borges, A.; Fernandes Adorno, L.; Papais Alvarenga, M.; Papais Alvarenga, R.M. Post-Dengue Neuromyelitis Optica: Case Report of a Japanese-Descendent Brazilian Child. J. Infect. Chemother. 2006, 12, 396–398. [Google Scholar] [CrossRef]
- Lima, M.E.d.S.; Bachur, T.P.R.; Aragão, G.F. Guillain-Barre Syndrome and Its Correlation with Dengue, Zika and Chikungunya Viruses Infection Based on a Literature Review of Reported Cases in Brazil. Acta Trop. 2019, 197, 105064. [Google Scholar] [CrossRef]
- do Rosário, M.S.; de Jesus, P.A.P.; Farias, D.S.; Novaes, M.A.C.; Francisco, M.V.L.O.; Santos, C.S.; Moura, D.; Lima, F.W.d.M.; Alcantara, L.C.J.; de Siqueira, I.C. Guillain-Barré Syndrome and Miller Fisher Syndrome in Association With an Arboviral Outbreak: A Brazilian Case Series. Front. Med. 2022, 9, 911175. [Google Scholar] [CrossRef]
- Gaultier, C.; Angibaud, G.; Laille, M.; Lacassin, F. Probable Miller Fisher syndrome during Dengue fever type 2. Rev. Neurol. 2000, 156, 169–171. [Google Scholar] [PubMed]
- Ansari, M.K.; Jha, S.; Nath, A. Unilateral Diaphragmatic Paralysis Following Dengue Infection. Neurol. India 2010, 58, 596–598. [Google Scholar] [CrossRef]
- Chappuis, F.; Justafré, J.-C.; Duchunstang, L.; Loutan, L.; Taylor, W.R.J. Dengue Fever and Long Thoracic Nerve Palsy in a Traveler Returning from Thailand. J. Travel Med. 2004, 11, 112–114. [Google Scholar] [CrossRef]
- Donnio, A.; Béral, L.; Olindo, S.; Cabie, A.; Merle, H. Dengue, a new etiology in oculomotor paralysis. Can. J. Ophthalmol. 2010, 45, 183–184. [Google Scholar] [CrossRef]
- Nightingale, Z.D.; Patkar, C.; Rothman, A.L. Viral Replication and Paracrine Effects Result in Distinct, Functional Responses of Dendritic Cells Following Infection with Dengue 2 Virus. J. Leukoc. Biol. 2008, 84, 1028–1038. [Google Scholar] [CrossRef] [PubMed]
- Uno, N.; Ross, T.M. Dengue Virus and the Host Innate Immune Response. Emerg. Microbes Infect. 2018, 7, 167. [Google Scholar] [CrossRef]
- Acosta, E.G.; Kumar, A.; Bartenschlager, R. Revisiting Dengue Virus-Host Cell Interaction: New Insights into Molecular and Cellular Virology. Adv. Virus Res. 2014, 88, 1–109. [Google Scholar] [CrossRef]
- Chotiwan, N.; Andre, B.G.; Sanchez-Vargas, I.; Islam, M.N.; Grabowski, J.M.; Hopf-Jannasch, A.; Gough, E.; Nakayasu, E.; Blair, C.D.; Belisle, J.T.; et al. Dynamic Remodeling of Lipids Coincides with Dengue Virus Replication in the Midgut of Aedes Aegypti Mosquitoes. PLoS Pathog. 2018, 14, e1006853. [Google Scholar] [CrossRef]
- Sawant, J.; Patil, A.; Kurle, S. A Review: Understanding Molecular Mechanisms of Antibody-Dependent Enhancement in Viral Infections. Vaccines 2023, 11, 1240. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Zhang, X.; Dejnirattisai, W.; Dai, X.; Gong, D.; Wongwiwat, W.; Duquerroy, S.; Rouvinski, A.; Vaney, M.-C.; Guardado-Calvo, P.; et al. The Epitope Arrangement on Flavivirus Particles Contributes to Mab C10’s Extraordinary Neutralization Breadth across Zika and Dengue Viruses. Cell 2021, 184, 6052–6066.e18. [Google Scholar] [CrossRef]
- Shukla, R.; Ramasamy, V.; Shanmugam, R.K.; Ahuja, R.; Khanna, N. Antibody-Dependent Enhancement: A Challenge for Developing a Safe Dengue Vaccine. Front. Cell. Infect. Microbiol. 2020, 10, 572681. [Google Scholar] [CrossRef]
- Montoya, M.; Collins, M.; Dejnirattisai, W.; Katzelnick, L.C.; Puerta-Guardo, H.; Jadi, R.; Schildhauer, S.; Supasa, P.; Vasanawathana, S.; Malasit, P.; et al. Longitudinal Analysis of Antibody Cross-Neutralization Following Zika Virus and Dengue Virus Infection in Asia and the Americas. J. Infect. Dis. 2018, 218, 536–545. [Google Scholar] [CrossRef]
- World Heath Organization. WHO Guidelines for Clinical Management of Arboviral Diseases: Dengue, Chikungunya, Zika and Yellow Fever. Available online: https://www.who.int/publications/i/item/9789240111110 (accessed on 16 September 2025).
- Tantawichien, T. Dengue Fever and Dengue Hemorrhagic Fever in Adults. Southeast Asian J. Trop. Med. Public Health 2015, 46 (Suppl. S1), 79–98. [Google Scholar] [PubMed]
- Muller, D.A.; Depelsenaire, A.C.I.; Young, P.R. Clinical and Laboratory Diagnosis of Dengue Virus Infection. J. Infect. Dis. 2017, 215 (Suppl. S2), S89–S95. [Google Scholar] [CrossRef] [PubMed]
- Henriques, P.; Rosa, A.; Caldeira-Araújo, H.; Vigário, A.M. Mouse Models as a Tool to Study Asymptomatic DENV Infections. Front. Cell. Infect. Microbiol. 2025, 15, 1554090. [Google Scholar] [CrossRef]
- Henriques, D.F.; Nunes, J.A.L.; Anjos, M.V.; Melo, J.M.; Rosário, W.O.; Azevedo, R.S.S.; Chiang, J.O.; Martins, L.C.; Dos Santos, F.B.; Casseb, L.M.N.; et al. Evaluation of Immunoglobulin M-Specific Capture Enzyme-Linked Immunosorbent Assays and Commercial Tests for Flaviviruses Diagnosis by a National Reference Laboratory. J. Virol. Methods 2020, 286, 113976. [Google Scholar] [CrossRef] [PubMed]
- Henriques, P.; Rosa, A.; Caldeira-Araújo, H.; Soares, P.; Vigário, A.M. Flying under the Radar—Impact and Factors Influencing Asymptomatic DENV Infections. Front. Cell. Infect. Microbiol. 2023, 13, 1284651. [Google Scholar] [CrossRef]
- Guzmán, M.G.; Kourí, G. Dengue Diagnosis, Advances and Challenges. Int. J. Infect. Dis. 2004, 8, 69–80. [Google Scholar] [CrossRef]
- Kuno, G.; Gubler, D.J.; Oliver, A. Use of “original Antigenic Sin” Theory to Determine the Serotypes of Previous Dengue Infections. Trans. R. Soc. Trop. Med. Hyg. 1993, 87, 103–105. [Google Scholar] [CrossRef]
- Russell, P.K.; Nisalak, A.; Sukhavachana, P.; Vivona, S. A Plaque Reduction Test for Dengue Virus Neutralizing Antibodies. J. Immunol. 1967, 99, 285–290. [Google Scholar] [CrossRef]
- Russell, P.K.; Udomsakdi, S.; Halstead, S.B. Antibody Response in Dengue and Dengue Hemorrhagic Fever. Jpn. J. Med. Sci. Biol. 1967, 20, 103–108. [Google Scholar]
- Damodar, T.; Dias, M.; Mani, R.; Shilpa, K.A.; Anand, A.M.; Ravi, V.; Tiewsoh, J. Clinical and Laboratory Profile of Dengue Viral Infections in and around Mangalore, India. Indian J. Med. Microbiol. 2017, 35, 256–261. [Google Scholar] [CrossRef]
- Young, P.R.; Hilditch, P.A.; Bletchly, C.; Halloran, W. An Antigen Capture Enzyme-Linked Immunosorbent Assay Reveals High Levels of the Dengue Virus Protein NS1 in the Sera of Infected Patients. J. Clin. Microbiol. 2000, 38, 1053–1057. [Google Scholar] [CrossRef] [PubMed]
- Vathanophas, K.; Hammon, W.M.; Atchison, R.W.; Sather, G.E. Attempted Type Specific Diagnosis of Dengue Virus Infection by the Indirect Fluorescent Antibody Method Directed at Differentiating IgM and IgG Responses. Proc. Soc. Exp. Biol. Med. 1973, 142, 697–702. [Google Scholar] [CrossRef]
- Hotta, S. Experimental Studies on Dengue. II. A Skin Reaction Observed during the Epidemic of Osaka, Japan, in 1944. J. Infect. Dis. 1952, 90, 10–12. [Google Scholar] [CrossRef]
- Zaki, A.; Perera, D.; Jahan, S.S.; Cardosa, M.J. Phylogeny of Dengue Viruses Circulating in Jeddah, Saudi Arabia: 1994 to 2006. Trop. Med. Int. Health 2008, 13, 584–592. [Google Scholar] [CrossRef]
- Nyathi, S.; Rezende, I.M.; Walter, K.S.; Thongsripong, P.; Mutuku, F.; Ndenga, B.; Mbakaya, J.O.; Aswani, P.; Musunzaji, P.S.; Chebii, P.K.; et al. Molecular Epidemiology and Evolutionary Characteristics of Dengue Virus 2 in East Africa. Nat. Commun. 2024, 15, 7832. [Google Scholar] [CrossRef]
- Mello, C.d.S.; Cabral-Castro, M.J.; Silva de Faria, L.C.; Peralta, J.M.; Puccioni-Sohler, M. Dengue and Chikungunya Infection in Neurologic Disorders from Endemic Areas in Brazil. Neurol. Clin. Pract. 2020, 10, 497–502. [Google Scholar] [CrossRef]
- Nogueira, M.L.; Cintra, M.A.T.; Moreira, J.A.; Patiño, E.G.; Braga, P.E.; Tenório, J.C.V.; de Oliveira Alves, L.B.; Infante, V.; Silveira, D.H.R.; de Lacerda, M.V.G.; et al. Efficacy and Safety of Butantan-DV in Participants Aged 2-59 Years through an Extended Follow-up: Results from a Double-Blind, Randomised, Placebo-Controlled, Phase 3, Multicentre Trial in Brazil. Lancet Infect. Dis. 2024, 24, 1234–1244. [Google Scholar] [CrossRef]
- Tantawichien, T. Dengue Fever and Dengue Haemorrhagic Fever in Adolescents and Adults. Paediatr. Int. Child Health 2012, 32 (Suppl. S1), 22–27. [Google Scholar] [CrossRef]
- Warrilow, D.; Northill, J.A.; Pyke, A.; Smith, G.A. Single Rapid TaqMan Fluorogenic Probe Based PCR Assay That Detects All Four Dengue Serotypes. J. Med. Virol. 2002, 66, 524–528. [Google Scholar] [CrossRef]
- Huang, B.; Montgomery, B.L.; Adamczyk, R.; Ehlers, G.; van den Hurk, A.F.; Warrilow, D. A LAMP-Based Colorimetric Assay to Expedite Field Surveillance of the Invasive Mosquito Species Aedes Aegypti and Aedes Albopictus. PLoS Negl. Trop. Dis. 2020, 14, e0008130. [Google Scholar] [CrossRef]
- World Health Organization. Laboratory Testing for Dengue Virus: Interim Guidance, April 2025. Available online: https://www.who.int/publications/i/item/B09394 (accessed on 16 September 2025).
- Roy, S.K.; Bhattacharjee, S. Dengue Virus: Epidemiology, Biology, and Disease Aetiology. Can. J. Microbiol. 2021, 67, 687–702. [Google Scholar] [CrossRef]
- Ehrenkranz, N.J.; Ventura, A.K.; Cuadrado, R.R.; Pond, W.L.; Porter, J.E. Pandemic Dengue in Caribbean Countries and the Southern United States--Past, Present and Potential Problems. N. Engl. J. Med. 1971, 285, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Reis, S.R.N.I.; Sampaio, A.L.F.; Henriques, M.d.G.M.; Gandini, M.; Azeredo, E.L.; Kubelka, C.F. An in Vitro Model for Dengue Virus Infection That Exhibits Human Monocyte Infection, Multiple Cytokine Production and Dexamethasone Immunomodulation. Mem. Inst. Oswaldo Cruz 2007, 102, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Hotta, S. Experimental Studies on Dengue. I. Isolation, Identification and Modification of the Virus. J. Infect. Dis. 1952, 90, 1–9. [Google Scholar] [CrossRef]
- Mustafa, M.S.; Rasotgi, V.; Jain, S.; Gupta, V. Discovery of Fifth Serotype of Dengue Virus (DENV-5): A New Public Health Dilemma in Dengue Control. Med. J. Armed Forces India 2015, 71, 67–70. [Google Scholar] [CrossRef]
- Normile, D. Tropical Medicine. Surprising New Dengue Virus Throws a Spanner in Disease Control Efforts. Science 2013, 342, 415. [Google Scholar] [CrossRef]
- World Health Organization. Dengue. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 16 September 2025).
- Srisawat, N.; Gubler, D.J.; Pangestu, T.; Limothai, U.; Thisyakorn, U.; Ismail, Z.; Goh, D.; Capeding, M.R.; Bravo, L.; Yoksan, S.; et al. Proceedings of the 6th Asia Dengue Summit, June 2023. PLoS Negl. Trop. Dis. 2024, 18, e0012060. [Google Scholar] [CrossRef]
- Tsheten, T.; Gray, D.J.; Clements, A.C.A.; Wangdi, K. Epidemiology and Challenges of Dengue Surveillance in the WHO South-East Asia Region. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 583–599. [Google Scholar] [CrossRef]
- Bhatia, R.; Dash, A.; Sunyoto, T. Changing epidemiology of dengue in South-East Asia. WHO South-East Asia J. Public Health 2013, 2, 23–27. [Google Scholar] [CrossRef]
- Singhal, T.; Kothari, V. Clinical and Laboratory Profile of Fatal Dengue Cases at a Tertiary Care Private Hospital in Mumbai, India. Am. J. Trop. Med. Hyg. 2020, 103, 1223–1227. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, A.; Kuritsky, J.N.; Letson, G.W.; Margolis, H.S. Dengue Virus Infection in Africa. Emerg. Infect. Dis. 2011, 17, 1349–1354. [Google Scholar] [CrossRef]
- Shah, M.M.; Ndenga, B.A.; Mutuku, F.M.; Vu, D.M.; Grossi-Soyster, E.N.; Okuta, V.; Ronga, C.O.; Chebii, P.K.; Maina, P.; Jembe, Z.; et al. High Dengue Burden and Circulation of 4 Virus Serotypes among Children with Undifferentiated Fever, Kenya, 2014–2017. Emerg. Infect. Dis. 2020, 26, 2638–2650. [Google Scholar] [CrossRef]
- Gainor, E.M.; Harris, E.; LaBeaud, A.D. Uncovering the Burden of Dengue in Africa: Considerations on Magnitude, Misdiagnosis, and Ancestry. Viruses 2022, 14, 233. [Google Scholar] [CrossRef]
- Africa Center for Strategic Studies. African Conflicts Displace Over 40 Million People. Africa Center. Available online: https://africacenter.org/spotlight/african-conflicts-displace-over-40-million-people/ (accessed on 29 May 2025).
- Humphrey, J.M.; Cleton, N.B.; Reusken, C.B.E.M.; Glesby, M.J.; Koopmans, M.P.G.; Abu-Raddad, L.J. Dengue in the Middle East and North Africa: A Systematic Review. PLoS Neglected Trop. Dis. 2016, 10, e0005194. [Google Scholar] [CrossRef]
- WHO EMRO. Infectious Disease Outbreaks Reported in the Eastern Mediterranean Region in 2019. Available online: https://joomla.emro.who.int/pandemic-epidemic-diseases/information-resources/infectious-disease-outbreaks-reported-in-the-eastern-mediterranean-region-in-2019.html?utm_source=chatgpt.com (accessed on 29 May 2025).
- SANOFI. Comunicado Sobre a Descontinuação Definitiva da Fabricação/Importação do Medicamento DENGVAXIA® (Vacina Dengue 1, 2, 3 e 4, Recombinante e Atenuada). Available online: https://www.sanofi.com.br/pt/noticias/informacoes-de-produtos/2025-2-28-comunicado-sobre-a-descontinuacao-definitiva-da-fabricacao-importacao-do-medicamento-dengvaxia-vacina-dengue-1-2-3-e-4-recombinante-e-atenuada (accessed on 16 September 2025).
- Pan American Health Organization; World Health Organization. Dengue Epidemiological Situation in the Region of the Americas—Epidemiological Week 33, 2025. Available online: https://www.paho.org/en/documents/dengue-epidemiological-situation-region-americas-epidemiological-week-32-2025 (accessed on 16 September 2025).
- Paz-Bailey, G.; Adams, L.E.; Deen, J.; Anderson, K.B.; Katzelnick, L.C. Dengue. Lancet 2024, 403, 667–682. [Google Scholar] [CrossRef]
- Togami, E.; Chiew, M.; Lowbridge, C.; Biaukula, V.; Bell, L.; Yajima, A.; Eshofonie, A.; Saulo, D.; Hien, D.T.H.; Otsu, S.; et al. Epidemiology of Dengue Reported in the World Health Organization’s Western Pacific Region, 2013–2019. West. Pac. Surveill. Response J. 2023, 14, 1–16. [Google Scholar] [CrossRef]
- Gubler, D.J. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21st Century. Trop. Med. Health 2011, 39, S3–S11. [Google Scholar] [CrossRef]
- Deng, S.-Q.; Yang, X.; Wei, Y.; Chen, J.-T.; Wang, X.-J.; Peng, H.-J. A Review on Dengue Vaccine Development. Vaccines 2020, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Pintado Silva, J.; Fernandez-Sesma, A. Challenges on the Development of a Dengue Vaccine: A Comprehensive Review of the State of the Art. J. Gen. Virol. 2023, 104, 001831. [Google Scholar] [CrossRef] [PubMed]
- Sabchareon, A.; Wallace, D.; Sirivichayakul, C.; Limkittikul, K.; Chanthavanich, P.; Suvannadabba, S.; Jiwariyavej, V.; Dulyachai, W.; Pengsaa, K.; Wartel, T.A.; et al. Protective Efficacy of the Recombinant, Live-Attenuated, CYD Tetravalent Dengue Vaccine in Thai Schoolchildren: A Randomised, Controlled Phase 2b Trial. Lancet 2012, 380, 1559–1567. [Google Scholar] [CrossRef]
- Angelin, M.; Sjölin, J.; Kahn, F.; Ljunghill Hedberg, A.; Rosdahl, A.; Skorup, P.; Werner, S.; Woxenius, S.; Askling, H.H. Qdenga®—A Promising Dengue Fever Vaccine; Can It Be Recommended to Non-Immune Travelers? Travel Med. Infect. Dis. 2023, 54, 102598. [Google Scholar] [CrossRef]
- Sun, W.; Cunningham, D.; Wasserman, S.S.; Perry, J.; Putnak, J.R.; Eckels, K.H.; Vaughn, D.W.; Thomas, S.J.; Kanesa-Thasan, N.; Innis, B.L.; et al. Phase 2 Clinical Trial of Three Formulations of Tetravalent Live-Attenuated Dengue Vaccine in Flavivirus-Naïve Adults. Hum. Vaccines 2009, 5, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Simasathien, S.; Thomas, S.J.; Watanaveeradej, V.; Nisalak, A.; Barberousse, C.; Innis, B.L.; Sun, W.; Putnak, J.R.; Eckels, K.H.; Hutagalung, Y.; et al. Safety and Immunogenicity of a Tetravalent Live-Attenuated Dengue Vaccine in Flavivirus Naive Children. Am. J. Trop. Med. Hyg. 2008, 78, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, A.K.; Ewing, D.; Blevins, M.; Liang, Z.; Sink, S.; Lassan, J.; Raviprakash, K.; Defang, G.; Williams, M.; Porter, K.R.; et al. Comparison of Purified Psoralen-Inactivated and Formalin-Inactivated Dengue Vaccines in Mice and Nonhuman Primates. Vaccine 2020, 38, 3313–3320. [Google Scholar] [CrossRef]
- Beckett, C.G.; Tjaden, J.; Burgess, T.; Danko, J.R.; Tamminga, C.; Simmons, M.; Wu, S.-J.; Sun, P.; Kochel, T.; Raviprakash, K.; et al. Evaluation of a Prototype Dengue-1 DNA Vaccine in a Phase 1 Clinical Trial. Vaccine 2011, 29, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Porter, K.R.; Ewing, D.; Chen, L.; Wu, S.-J.; Hayes, C.G.; Ferrari, M.; Teneza-Mora, N.; Raviprakash, K. Immunogenicity and Protective Efficacy of a Vaxfectin-Adjuvanted Tetravalent Dengue DNA Vaccine. Vaccine 2012, 30, 336–341. [Google Scholar] [CrossRef]
- Coller, B.-A.; Barrett, A.D.T.; Thomas, S.J. The Development of Dengue Vaccines. Introduction. Vaccine 2011, 29, 7219–7220. [Google Scholar] [CrossRef]
- Coller, B.-A.G.; Clements, D.E.; Bett, A.J.; Sagar, S.L.; Ter Meulen, J.H. The Development of Recombinant Subunit Envelope-Based Vaccines to Protect against Dengue Virus Induced Disease. Vaccine 2011, 29, 7267–7275. [Google Scholar] [CrossRef]
- Manoff, S.B.; Sausser, M.; Falk Russell, A.; Martin, J.; Radley, D.; Hyatt, D.; Roberts, C.C.; Lickliter, J.; Krishnarajah, J.; Bett, A.; et al. Immunogenicity and Safety of an Investigational Tetravalent Recombinant Subunit Vaccine for Dengue: Results of a Phase I Randomized Clinical Trial in Flavivirus-Naïve Adults. Hum. Vaccines Immunother. 2019, 15, 2195–2204. [Google Scholar] [CrossRef]
- Ramasamy, V.; Arora, U.; Shukla, R.; Poddar, A.; Shanmugam, R.K.; White, L.J.; Mattocks, M.M.; Raut, R.; Perween, A.; Tyagi, P.; et al. A Tetravalent Virus-like Particle Vaccine Designed to Display Domain III of Dengue Envelope Proteins Induces Multi-Serotype Neutralizing Antibodies in Mice and Macaques Which Confer Protection against Antibody Dependent Enhancement in AG129 Mice. PLoS Negl. Trop. Dis. 2018, 12, e0006191. [Google Scholar] [CrossRef]
- Zhang, N.; Li, C.; Jiang, S.; Du, L. Recent Advances in the Development of Virus-Like Particle-Based Flavivirus Vaccines. Vaccines 2020, 8, 481. [Google Scholar] [CrossRef]
Name | Year | Valence | Formulation | Developer/Manufacturer | Stage | Adjudicated |
---|---|---|---|---|---|---|
Dengvaxia (CYD-TDV) | 2015 | Tetravalent | YFV 17D and DENV-1-4 chimeric viruses | Sanofi Pasteur | Approved in Europe, United States and some Asian and Latin America countries | No |
TV003/TV005 | 2003 | Tetravalent | Three genetically attenuated viruses together with a chimeric virus | NIAID a (Bethesda, MD, USA) and Butantan (São Paulo, Brazil) | In vivo (stage IIIB) | No |
QDenga (TAK-003) | 2006 | Tetravalent | Chimeric viruses from the attenuated DENV-2 PDK-53 virus | Takeda (Tokyo, Japan) | Approved in Europe, Brazil (?), Argentina, Indonesia and Thailand | No |
TDEN | 2017 | Tetravalent | Viruses attenuated by multiple passages in PDK cells | WRAIR b (Silver Spring, MD, USA) and GlaxoSmithKline (London, UK) | In vivo (stage I–II) | No |
DPIV | 2012 | Tetravalent | Inactivated and purified viruses Boosted with aluminum hydroxide AS01, AS03 or AS04 | WRAIR b, GlaxoSmithKline and FIOcruz (Rio de Janeiro, Brazil) | In vivo (stage I) | Yes |
TVDV | 2018 | Tetravalent | DNA vaccine with the coding sequences for the prM and E proteins cloned into the VR1012 plasmid Adjuvanted with VAXFECTIN | U.S. AMRDC c (Fort Detrick, MD, USA), WRAIR, NMRC (Noida, India) and Vical (San Diego, CA, USA) | In vivo (animal and stage I) | Yes |
V180 | 2018 | Tetravalent | Recombinant proteins prM and 80% of E of the four serotypes Adjuvanted with ISCOMATRIX | Merck & Co. (Rahway, NJ, USA) | In vivo (stage I) | Yes |
DSV4 | 2018 | Tetravalent | DENV-1-4 EDIII VLPs with HBsAg | International Centre for Genetic Engineering and Biotechnology (New Delhi, India) | In vivo (animal) | No |
E80-mRNA | 2020 | Tetravalent | mRNA expressing human IgE and the E80 protein contained in a lipid nanoparticle (LNP) | CAS laboratory of Molecular Virology and Immunology, Shanghai Pasteur Institute (Shanghai, China) | In vivo (animal) | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulgheri, F.M.; Bernardes, B.G.; Lancellotti, M. Decoding Dengue: A Global Perspective, History, Role, and Challenges. Pathogens 2025, 14, 954. https://doi.org/10.3390/pathogens14090954
Ulgheri FM, Bernardes BG, Lancellotti M. Decoding Dengue: A Global Perspective, History, Role, and Challenges. Pathogens. 2025; 14(9):954. https://doi.org/10.3390/pathogens14090954
Chicago/Turabian StyleUlgheri, Flora Miranda, Bruno Gaia Bernardes, and Marcelo Lancellotti. 2025. "Decoding Dengue: A Global Perspective, History, Role, and Challenges" Pathogens 14, no. 9: 954. https://doi.org/10.3390/pathogens14090954
APA StyleUlgheri, F. M., Bernardes, B. G., & Lancellotti, M. (2025). Decoding Dengue: A Global Perspective, History, Role, and Challenges. Pathogens, 14(9), 954. https://doi.org/10.3390/pathogens14090954