Pathogens of Wild Birds: Prevalence and Molecular and Morphological Characterization
1. Introduction
2. Ectoparasites: External Threats to Wild Birds
3. Endoparasites: Internal Infections and Their Impact on Avian Health
4. Viral Pathogens in Wild Birds: Emerging and Zoonotic Threats
5. Epidemiological Surveillance: A Key Approach in Avian and Zoonotic Health
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Gustafsson, L.; Nordling, D.; Andersson, M.S.; Sheldon, B.C.; Qvarnström, A. Infectious diseases, reproductive effort and the cost of reproduction in birds. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1994, 346, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Fitze, P.S.; Tschirren, B.; Richner, H. Life history and fitness consequences of ectoparasites. J. Anim. Ecol. 2004, 73, 216–226. [Google Scholar] [CrossRef]
- Martínez-de la Puente, J.; Merino, S.; Tomás, G.; Moreno, J.; Morales, J.; Lobato, E.; García-Fraile, S.; Belda, E.J. The blood parasite Haemoproteus reduces survival in a wild bird: A medication experiment. Biol. Lett. 2010, 6, 663–665. [Google Scholar] [CrossRef] [PubMed]
- Gangoso, L.; Santamaría-Cervantes, C.; Martínez-de la Puente, J.; López, M.J.R.; Figuerola, J. Does malaria infection increase the risk of predation-related mortality during bird migration? iScience 2024, 27, 111358. [Google Scholar] [CrossRef] [PubMed]
- Malik, Y.S.; Arun Prince Milton, A.; Ghatak, S.; Ghosh, S. Role of Birds in Transmitting Zoonotic Pathogens; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Martínez-de La Puente, J.; Merino, S.; Tomás, G.; Moreno, J.; Morales, J.; Lobato, E.; Martínez, J. Nest ectoparasites increase physiological stress in breeding birds: An experiment. Naturwissenschaften 2011, 98, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Carrión, S.A.; Dimov, I.; Márquez Jiménez, F.J.; de Rojas Álvarez, M. Morphometrical Identification and Phylogenetic Analysis of Rhinonyssidae (Acari: Mesostigmata) Parasitizing Avian Hosts: New Molecular Data. Microorganisms 2023, 11, 1783. [Google Scholar] [CrossRef] [PubMed]
- Veiga, J.; Dimov, I.; de Rojas, M. Endoparasitic Mites (Rhinonyssidae) on urban pigeons and doves: Updating morphological and epidemiological information. Diversity 2021, 13, 11. [Google Scholar] [CrossRef]
- Sánchez-Carrión, S.A.; Márquez, F.J.; de Rojas, M. Utility of 28S Ribosomal RNA Gene Domains for Molecular Classification and Phylogeny of Rhinonyssid Mites. Pathogens 2025, 14, 156. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, C.T. Avian malaria. In Parasitic Diseases of Wild Birds, 1st ed.; Carter, T., Atkinson, C.T., Thomas, N.C., Hunter, D.B., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 35–53. [Google Scholar] [CrossRef]
- Gutiérrez-López, R.; Martínez-de la Puente, J.; Gangoso, L.; Soriguer, R.; Figuerola, J. Plasmodium transmission differs between mosquito species and parasite lineages. Parasitology 2020, 147, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Bensch, S.; Hellgren, O.; Pérez-Tris, J. MalAvi: A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol. Ecol. Resour. 2009, 9, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, E.; Taubert, H.; Hellgren, O.; Huang, X.; Palinauskas, V.; Markovets, M.Y.; Valkiunas, G.; Bensch, S. Multiple cryptic species of sympatric generalists within the avian blood parasite Haemoproteus majoris. J. Evol. Biol. 2016, 29, 1812–1826. [Google Scholar] [CrossRef] [PubMed]
- Duc, M.; Himmel, T.; Harl, J.; Iezhova, T.; Nedorost, N.; Matt, J.; Ilgūnas, M.; Weissenböck, H.; Valkiūnas, G. Comparative analysis of the exo-erythrocytic development of five lineages of Haemoproteus majoris, a common haemosporidian parasite of European passeriform birds. Pathogens 2023, 1, 898. [Google Scholar] [CrossRef] [PubMed]
- Valkiunas, G. Avian Malaria Parasites and Other Haemosporidia; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Chagas, C.R.F.; Duc, M.; Gutiérrez-Liberato, G.A.; Valkiūnas, G. Host cells of Leucocytozoon (Haemosporida, Leucocytozoidae) gametocytes, with remarks on the phylogenetic importance of this character. Pathogens 2023, 12, 712. [Google Scholar] [CrossRef] [PubMed]
- Solarczyk, P.; Perec-Matysiak, A.; Wojtkowiak-Giera, A.; Heddergott, M. Molecular Detection of Encephalitozoon cuniculi in Migratory Waterfowl of the Genus Anser (Anseriformes: Anatidae) in Poland. Pathogens 2025, 14, 489. [Google Scholar] [CrossRef]
- Talmi-Frank, D.; Byas, A.D.; Murrieta, R.; Weger-Lucarelli, J.; Rückert, C.; Gallichotte, E.N.; Yoshimoto, J.A.; Allen, C.; Bosco-Lauth, A.M.; Graham, B.; et al. Intracellular Diversity of WNV within Circulating Avian Peripheral Blood Mononuclear Cells Reveals Host-Dependent Patterns of Polyinfection. Pathogens 2023, 12, 767. [Google Scholar] [CrossRef]
- Mihiretu, B.D.; Usui, T.; Kiyama, M.; Soda, K.; Yamaguchi, T. Novel Genotype of HA Clade 2.3. 4.4 b H5N8 Subtype High Pathogenicity Avian Influenza Virus Emerged at a Wintering Site of Migratory Birds in Japan, 2021/22 Winter. Pathogens 2024, 13, 380. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, F.; Mesquita, J.R.; Cardoso, L.; Santos-Silva, S.; Moreira, G.; Bento, J.T.; Soeiro, V.; Gonçalves, A.; Silva, F.; Barradas, P.F.; et al. Screening Wild Birds for Tick-Borne Zoonotic Pathogens in Portugal. Pathogens 2025, 14, 75. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díez-Fernández, A.; Gutiérrez-López, R. Pathogens of Wild Birds: Prevalence and Molecular and Morphological Characterization. Pathogens 2025, 14, 825. https://doi.org/10.3390/pathogens14080825
Díez-Fernández A, Gutiérrez-López R. Pathogens of Wild Birds: Prevalence and Molecular and Morphological Characterization. Pathogens. 2025; 14(8):825. https://doi.org/10.3390/pathogens14080825
Chicago/Turabian StyleDíez-Fernández, Alazne, and Rafael Gutiérrez-López. 2025. "Pathogens of Wild Birds: Prevalence and Molecular and Morphological Characterization" Pathogens 14, no. 8: 825. https://doi.org/10.3390/pathogens14080825
APA StyleDíez-Fernández, A., & Gutiérrez-López, R. (2025). Pathogens of Wild Birds: Prevalence and Molecular and Morphological Characterization. Pathogens, 14(8), 825. https://doi.org/10.3390/pathogens14080825