Core Perturbomes of Escherichia coli and Staphylococcus aureus Using a Machine Learning Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection of Biological Models and Transcriptomic Data
- E. coli—GPL3154: 8815 probes (target genes) after intergenic elements were excluded. Note: Annotated genomes of E. coli strains typically report > 4200 genes, but the Affymetrix microarray covers genes of the pangenome of four strains; details at the following website: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL3154;
- S. aureus—GPL1339: 3312 probes (target genes). Note: microarray based on a single genome; details at the following website: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL1339.
2.2. Normalization
2.3. Machine Learning Algorithms
2.4. Molecular Interactions and Functional Enrichment
3. Results
3.1. Core Perturbome Genes of E. coli and S. aureus Can Be Identified Using a Machine Learning Approach
3.2. Biological Functions and Well-Defined Interactions Can Be Recognized for Genes of the Core Perturbome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | Area under the receiver operating characteristic curve |
Cfs | Correlation-based feature selection |
KNN | K-nearest neighbors |
RF | Random forest |
SVM | Support vector machine |
References
- Caldera, M.; Müller, F.; Kaltenbrunner, I.; Licciardello, M.P.; Lardeau, C.H.; Kubicek, S.; Menche, J. Mapping the perturbome network of cellular perturbations. Nat. Commun. 2019, 10, 5140. [Google Scholar] [CrossRef]
- Bermingham, M.L.; Pong-Wong, R.; Spiliopoulou, A.; Hayward, C.; Rudan, I.; Campbell, H.; Wright, A.F.; Wilson, J.F.; Agakov, F.; Navarro, P. Application of high-dimensional feature selection: Evaluation for genomic prediction in man. Sci. Rep. 2015, 5, 10312. [Google Scholar] [CrossRef]
- Sadeh, S.; Clopath, C. Theory of Neuronal Perturbome: Linking Connectivity to Coding via Perturbations. bioRxiv 2020. bioRxiv: 2020.02.20.954222. [Google Scholar] [CrossRef]
- Dragosits, M.; Mozhayskiy, V.; Quinones-Soto, S.; Park, J.; Tagkopoulos, I. Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli. Mol. Syst. Biol. 2014, 9, 643. [Google Scholar] [CrossRef]
- Nagar, S.D.; Aggarwal, B.; Joon, S.; Bhatnagar, R.; Bhatnagar, S. A Network Biology Approach to Decipher Stress Response in Bacteria Using Escherichia coli As a Model. OMICS 2016, 20, 310–324. [Google Scholar] [CrossRef]
- KC, K.; Li, R.; Cui, F.; Yu, Q.; Haake, A.R. GNE: A deep learning framework for gene network inference by aggregating biological information. BMC Syst. Biol. 2019, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.A.M.; Montero-Manso, P.; García-Batán, R.; Campos-Sánchez, R.; Fernández, J.V.; García, F. A first perturbome of Pseudomonas aeruginosa: Identification of core genes related to multiple perturbations by a machine learning approach. Biosystems 2021, 205, 104411. [Google Scholar] [CrossRef]
- Trastoy, R.; Manso, T.; Fernández-García, L.; Blasco, L.; Ambroa, A.; del Molino, M.L.P.; Bou, G.; García-Contreras, R.; Wood, T.K.; Tomás, M. Mechanisms of bacterial tolerance and persistence in the gastrointestinal and respiratory environments. Am. Soc. Microbiol. 2018, 31, e00023-18. [Google Scholar] [CrossRef]
- Vollmer, A.C.; Belkin, S.; Smulski, D.R.; Van Dyk, T.K.; Larossa, R.A. Detection of DNA damage by use of Escherichia coli carrying recA’::lux, uvrA’::lux, or alkA’::lux reporter plasmids. Appl. Environ. Microbiol. 1997, 63, 2566–2571. [Google Scholar] [CrossRef] [PubMed]
- Valencia, E.Y.; Esposito, F.; Spira, B.; Blázquez, J.; Galhardo, R.S. Ciprofloxacin-mediated mutagenesis is suppressed by subinhibitory concentrations of amikacin in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2016, 61, e02107-16. [Google Scholar] [CrossRef] [PubMed]
- Weber, H.; Polen, T.; Heuveling, J.; Wendisch, V.F.; Hengge, R. Genome-wide analysis of the general stress response network in Escherichia coli: σS-dependent genes, promoters, and sigma factor selectivity. Society 2005, 187, 1591–1603. [Google Scholar] [CrossRef]
- Galhardo, R.S.; Do, R.; Yamada, M.; Friedberg, E.C.; Hastings, P.J.; Nohmi, T.; Rosenberg, S.M. DinB upregulation is the sole role of the SOS response in stress-induced mutagenesis in Escherichia coli. Genetics 2009, 182, 55–68. [Google Scholar] [CrossRef]
- Khodaparast, L.; Wu, G.; Khodaparast, L.; Schmidt, B.Z.; Rousseau, F.; Schymkowitz, J. Bacterial Protein Homeostasis Disruption as a Therapeutic Intervention. Front. Mol. Biosci. 2021, 8, 681855. [Google Scholar] [CrossRef]
- Nwobodo, D.C.; Ugwu, M.C.; Oliseloke Anie, C.; Al-Ouqaili, M.T.; Chinedu Ikem, J.; Victor Chigozie, U.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Suay-García, B.; Pérez-Gracia, M.T. Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics 2019, 8, 122. [Google Scholar] [CrossRef]
- Jenkins, C.; Rentenaar, R.J.; Landraud, L.; Brisse, S. 180—Enterobacteriaceae. In Infectious Diseases; Cohen, J., Powderly, W.G., Opal, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1565–1578.e2. [Google Scholar] [CrossRef]
- Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, 10–1128. [Google Scholar] [CrossRef]
- Li, L.; Yeaman, M.R.; Bayer, A.S.; Xiong, Y.Q. Phenotypic and Genotypic Characteristics of Methicillin-Resistant Staphylococcus aureus (MRSA) Related to Persistent Endovascular Infection. Antibiotics 2019, 8, 71. [Google Scholar] [CrossRef] [PubMed]
- Rağbetli, C.; Parlak, M.; Bayram, Y.; Guducuoglu, H.; Ceylan, N. Evaluation of Antimicrobial Resistance in Staphylococcus aureus Isolates by Years. Interdiscip. Perspect. Infect. Dis. 2016, 2016, 9171395. [Google Scholar] [CrossRef] [PubMed]
- Molina-Mora, J.A.; Herrera-Hidalgo, M.L. Inteligencia Artificial en Ciencias de Laboratorio: Conceptos, Aplicaciones y Escenario Actual en Costa Rica. Rev. Del. Col. De. Microbiól. Quím. Clín. 2025, 29, 1–13. Available online: https://revista.microbiologos.cr/wp-content/uploads/2025/01/Articulo-MOLINA-MORA-IA.pdf (accessed on 5 February 2025).
- Gupta, C.; Ramegowda, V.; Basu, S.; Pereira, A. Using Network-Based Machine Learning to Predict Transcription Factors Involved in Drought Resistance. Front. Genet. 2021, 12, 652189. [Google Scholar] [CrossRef]
- Tahmasebi, A.; Niazi, A.; Akrami, S. Integration of meta-analysis, machine learning and systems biology approach for investigating the transcriptomic response to drought stress in Populus species. Sci. Rep. 2023, 13, 847. [Google Scholar] [CrossRef]
- Ma, C.; Xin, M.; Feldmann, K.A.; Wang, X. Machine Learning-Based Differential Network Analysis: A Study of Stress-Responsive Transcriptomes in Arabidopsis. Plant Cell 2014, 26, 520–537. [Google Scholar] [CrossRef]
- Huang, Y.; Sinha, N.; Wipat, A.; Bacardit, J. A knowledge integration strategy for the selection of a robust multi-stress biomarkers panel for Bacillus subtilis. Synth. Syst. Biotechnol. 2023, 8, 97–106. [Google Scholar] [CrossRef]
- Hanes, R.; Zhang, F.; Huang, Z. Protein Interaction Network Analysis to Investigate Stress Response, Virulence, and Antibiotic Resistance Mechanisms in Listeria monocytogenes. Microorganisms 2023, 11, 930. [Google Scholar] [CrossRef]
- Irizarry, R.A.; Hobbs, B.; Collin, F.; Beazer-Barclay, Y.D.; Antonellis, K.J.; Scherf, U.; Speed, T.P. Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data. Biostatistics 2018, 4, 249–264. [Google Scholar]
- Hall, M.A. Correlation-Based Feature Selection for Machine Learning. Ph.D. Thesis, University of Waikato, Hamilton, New Zealand, 1999. Available online: https://ml.cms.waikato.ac.nz/publications/1999/99MH-Thesis.pdf (accessed on 5 March 2021).
- Vapnik, V. Estimation of Dependences Based on Empirical Data; Springer: Berlin/Heidelberg, Germany, 1982; Available online: https://dl.acm.org/citation.cfm?id=1098680 (accessed on 16 November 2018).
- Li, L.; Weinberg, C.R.; Darden, T.A.; Pedersen, L.G. Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 2001, 17, 1131–1142. Available online: http://www.ncbi.nlm.nih.gov/pubmed/11751221 (accessed on 16 November 2018). [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.-H.; Chen, S.-H.; Wu, H.-H.; Ho, C.-W.; Ko, M.-T.; Lin, C.-Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8 (Suppl. 4), S11. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef]
- DeLong, E.F. Prokaryotes: Prokaryotic Physiology and Biochemistry; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- McVicker, G.; Prajsnar, T.K.; Williams, A.; Wagner, N.L.; Boots, M.; Renshaw, S.A.; Foster, S.J. Clonal Expansion during Staphylococcus aureus Infection Dynamics Reveals the Effect of Antibiotic Intervention. PLoS Pathog. 2014, 10, e1003959. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Prevention and Control of Carbapenem-Resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in Health Care Facilities; World Health Organization: Geneva, Switzerland, 2017; Available online: https://apps.who.int/iris/bitstream/handle/10665/259462/9789241550178-eng.pdf?sequence=1&ua=1 (accessed on 21 January 2020).
- Pinto, A.C.; de Sá, P.H.C.G.; Ramos, R.T.J.; Barbosa, S.; Barbosa, H.P.M.; Ribeiro, A.C.; Silva, W.M.; Rocha, F.S.; Santana, M.P.; de Paula Castro, T.L.; et al. Differential transcriptional profile of Corynebacterium pseudotuberculosis in response to abiotic stresses. BMC Genom. 2014, 15, 14. [Google Scholar] [CrossRef]
- Blasdel, B.G.; Chevallereau, A.; Monot, M.; Lavigne, R.; Debarbieux, L. Comparative transcriptomics analyses reveal the conservation of an ancestral infectious strategy in two bacteriophage genera. ISME J. 2017, 11, 1988–1996. [Google Scholar] [CrossRef]
- Chung, M.; Bruno, V.M.; Rasko, D.A.; Cuomo, C.A.; Muñoz, J.F.; Livny, J.; Shetty, A.C.; Mahurkar, A. Best practices on the differential expression analysis of multi-species RNA-seq. Genome Biol. 2021, 22, 121. [Google Scholar] [CrossRef]
- Li, L.; Tetu, S.G.; Paulsen, I.T.; Hassan, K.A. A transcriptomic approach to identify novel drug efflux pumps in bacteria. Methods Mol. Biol. 2018, 1700, 221–235. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, J.J.; Perkins, R.; Wang, Y.; Liu, Z.; Hong, H.; Tong, W.; Zou, W. A novel procedure on next generation sequencing data analysis using text mining algorithm. BMC Bioinform. 2016, 17, 213. [Google Scholar] [CrossRef] [PubMed]
- Cornforth, D.M.; Dees, J.L.; Ibberson, C.B.; Huse, H.K.; Mathiesen, I.H.; Kirketerp-Møller, K.; Wolcott, R.D.; Rumbaugh, K.P.; Bjarnsholt, T.; Whiteley, M. Pseudomonas aeruginosa transcriptome during human infection. Proc. Natl. Acad. Sci. USA 2018, 115, E5125–E5134. [Google Scholar] [CrossRef] [PubMed]
- Glaab, E.; Bacardit, J.; Garibaldi, J.M.; Krasnogor, N. Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data. PLoS ONE 2012, 7, e39932. [Google Scholar] [CrossRef]
- Raza, K.; Hasan, A. A Comprehensive Evaluation of Machine Learning Techniques for Cancer Class Prediction Based on Microarray Data. Int. J. Bioinform. Res. Appl. 2015, 11, 397–416. [Google Scholar] [CrossRef]
- Ranganathan, N.; Johnson, R.; Edwards, A.M. The general stress response of Staphylococcus aureus promotes tolerance of antibiotics and survival in whole human blood. Microbiology 2020, 166, 1088. [Google Scholar] [CrossRef]
- Pané-Farré, J.; Jonas, B.; Förstner, K.; Engelmann, S.; Hecker, M. The σB regulon in Staphylococcus aureus and its regulation. Int. J. Med. Microbiol. 2006, 296, 237–258. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.T.; Lee, D.; Selvarajoo, K. ScatLay: Utilizing transcriptome-wide noise for identifying and visualizing differentially expressed genes. Sci. Rep. 2020, 10, 17483. [Google Scholar] [CrossRef]
- Leung, R.K.K.; Wang, Y.; Ma, R.C.; Luk, A.O.; Lam, V.; Ng, M.; So, W.Y.; Tsui, S.K.; Chan, J.C. Using a multi-staged strategy based on machine learning and mathematical modeling to predict genotype-phenotype risk patterns in diabetic kidney disease: A prospective case-control cohort analysis. BMC Nephrol. 2013, 14, 162. [Google Scholar] [CrossRef] [PubMed]
- Noi, P.T.; Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors 2018, 18, 18. [Google Scholar] [CrossRef]
- Park, H.; Shimamura, T.; Imoto, S.; Miyano, S. Adaptive NetworkProfiler for Identifying Cancer Characteristic-Specific Gene Regulatory Networks. J. Comput. Biol. 2017, 25, 130–145. [Google Scholar] [CrossRef]
- Tabe-Bordbar, S.; Emad, A.; Zhao, S.D.; Sinha, S. A closer look at cross-validation for assessing the accuracy of gene regulatory networks and models. Sci. Rep. 2018, 8, 6620. [Google Scholar] [CrossRef]
- Sharma, P.; Haycocks, J.R.; Middlemiss, A.D.; Kettles, R.A.; Sellars, L.E.; Ricci, V.; Piddock, L.J.; Grainger, D.C. The multiple antibiotic resistance operon of enteric bacteria controls DNA repair and outer membrane integrity. Nat. Commun. 2017, 8, 1444. [Google Scholar] [CrossRef]
- Poole, K. Bacterial stress responses as determinants of antimicrobial resistance. J. Antimicrob. Chemother. 2012, 67, 2069–2089. [Google Scholar] [CrossRef]
- Andersson, D. The biological cost of mutational antibiotic resistance: Any practical conclusions? Curr. Opin. Microbiol. 2006, 9, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Wiesch, P.S.Z.; Engelstädter, J.; Bonhoeffer, S. Compensation of fitness costs and reversibility of antibiotic resistance mutations. Antimicrob. Agents Chemother. 2010, 54, 2085–2095. [Google Scholar] [CrossRef] [PubMed]
- Storvik, K.A.M.; Foster, P.L. RpoS, the stress response sigma factor, plays a dual role in the regulation of Escherichia coli’s error-prone DNA polymerase IV. J. Bacteriol. 2010, 192, 3639–3644. [Google Scholar] [CrossRef]
- Cirz, R.T.; O’Neill, B.M.; Hammond, J.A.; Head, S.R.; Romesberg, F.E. Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. J. Bacteriol. 2006, 188, 7101–7110. [Google Scholar] [CrossRef] [PubMed]
- Vihervaara, A.; Duarte, F.M.; Lis, J.T. Molecular mechanisms driving transcriptional stress responses. Nat. Rev. Genet. 2018, 19, 385–397. [Google Scholar] [CrossRef]
- Molina-Mora, J.A.; García, F. Molecular Determinants of Antibiotic Resistance in the Costa Rican Pseudomonas aeruginosa AG1 by a Multi-omics Approach: A Review of 10 Years of Study. Phenomics 2021, 1, 3. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef]
- Molina-Mora, J.A.; Sibaja-Amador, M.; Rivera-Montero, L.; Chacón-Arguedas, D.; Guzmán, C.; García, F. Assessment of Mathematical Approaches for the Estimation and Comparison of Efficiency in qPCR Assays for a Prokaryotic Model. DNA 2024, 4, 189–200. [Google Scholar] [CrossRef]
Model | GEO-ID | Perturbation | Strain | Number of Samples | |
---|---|---|---|---|---|
Control | Perturbation | ||||
E. coli | GSE10159 | Cefzulodin, mecillinam | K12 MG1655 | 20 | 41 |
GSE10160 | |||||
GSE10345 | Bicyclomycin | K12 MG1655 | 2 | 6 | |
GSE13982 | Carbon monoxide | K12 MG1655 | 4 | 4 | |
GSE34275 | Glycerol | K12 MG1655 | 6 | 6 | |
GSE37026 | Colicine | K12 MG1655 | 4 | 4 | |
GSE44211 | PGRP, gentamicin, CCCP | K12 MG1655 | 3 | 9 | |
GSE53140 | Octanoic acid | K12 MG1655 | 3 | 2 | |
GSE56133 | Ampicillin, gentamicin, kanamycin, norfloxacin, H2O2 | K12 MG1655 | 3 | 15 | |
S. aureus | GSE7944 | Berberine chloride | ATCC25923 | 3 | 3 |
GSE8135 | Rhein/cassic acid | ATCC25923 | 3 | 3 | |
GSE8861 | Triclosan | NCTC8325 WT | 5 | 10 | |
GSE10605 | Ortho-phenylphenol | NCTC8325 WT | 5 | 10 | |
GSE13203 | Cryptotanshinone | ATCC25923 | 3 | 3 | |
GSE13233 | Sodium houttuyfonate | ATCC25923 | 3 | 3 | |
GSE13236 | Magnolol | ATCC25923 | 3 | 3 | |
GSE14669 | Ramoplanin | NCTC 8325 | 6 | 6 | |
GSE15394 | Fosfomycin | ATCC 29213 | 14 | 23 | |
GSE36231 | Oleic acid | NCTC8325 | 3 | 3 | |
GSE40448 | Ortho-Benzyl-Para-Chloro Phenol | NCTC 8325 | 5 | 10 | |
GSE40449 | Para-Tert-Amylphenol | NCTC 8325 | 4 | 8 | |
GSE58938 | Licochalcone A | ATCC 29213 | 2 | 2 | |
GSE65750 | Nisin | ATCC 29213 | 2 | 2 | |
GSE84485 | Benzimidazole derivative C162 | NCTC8325, ATCC25923 | 3 | 3 |
Model | Partition | Gene Dataset (Number of Genes) | Correctly Classified Instances (%) | ||
---|---|---|---|---|---|
KNN | SVM | RF | |||
E. coli | 70/30 | All (8815) | 67.7 | 67.7 | 44.1 |
Selected genes (55) | 82.5 | 70.6 | 88.2 | ||
80/20 | All (8815) | 56.5 | 65.2 | 39.1 | |
Selected genes (55) | 82.6 | 91.3 | 91.3 | ||
90/10 | All (8815) | 54.6 | 81.8 | 54.6 | |
Selected genes (55) | 90.9 | 81.8 | 81.8 | ||
S. aureus | 70/30 | All (3312) | 74.5 | 63.8 | 80.9 |
Selected genes (46) | 85.1 | 91.5 | 78.7 | ||
80/20 | All (3312) | 61.3 | 74.2 | 74.2 | |
Selected genes (46) | 77.4 | 80.6 | 74.2 | ||
90/10 | All (3312) | 87.5 | 87.5 | 100.0 | |
Selected genes (46) | 93.8 | 93.7 | 87.5 |
Model | Metrics | KNN | SVM | RF | ||||||
---|---|---|---|---|---|---|---|---|---|---|
70/30 | 80/20 | 90/10 | 70/30 | 80/20 | 90/10 | 70/30 | 80/20 | 90/10 | ||
E. coli | Accuracy | 82.5 | 82.6 | 90.9 | 70.6 | 91.3 | 81.8 | 88.2 | 91.3 | 81.8 |
Kappa | 65.0 | 65.4 | 81.3 | 42.9 | 82.7 | 62.0 | 76.5 | 82.5 | 87.1 | |
TP rate | 82.4 | 82.6 | 90.9 | 70.6 | 91.3 | 81.8 | 88.2 | 91.3 | 93.8 | |
FP rate | 16.4 | 16.7 | 10.9 | 26.1 | 8.0 | 21.8 | 11.2 | 8.7 | 3.8 | |
Precision | 84.5 | 83.7 | 92.2 | 81.9 | 92.6 | 86.4 | 88.8 | 91.3 | 94.6 | |
Recall | 82.4 | 82.6 | 90.9 | 70.6 | 91.3 | 81.8 | 88.2 | 91.3 | 93.8 | |
F score | 82.2 | 82.5 | 90.8 | 68.4 | 91.3 | 80.8 | 88.2 | 91.3 | 93.8 | |
AUC | 83.0 | 83.0 | 90.0 | 72.2 | 91.7 | 80.0 | 96.9 | 98.1 | 100.0 | |
S. aureus | Accuracy | 85.1 | 77.4 | 93.8 | 91.5 | 80.6 | 93.7 | 78.7 | 74.2 | 87.5 |
Kappa | 70.0 | 55.0 | 87.1 | 82.4 | 58.4 | 87.1 | 55.3 | 44.6 | 73.3 | |
TP Rate | 85.1 | 77.4 | 93.8 | 91.5 | 80.6 | 93.8 | 78.7 | 74.2 | 87.5 | |
FP Rate | 14.8 | 20.6 | 3.8 | 10.5 | 24.7 | 3.8 | 25.4 | 31.5 | 14.2 | |
Precision | 85.2 | 79.2 | 94.6 | 92.6 | 82.1 | 94.6 | 81.9 | 74.8 | 87.5 | |
Recall | 85.1 | 77.4 | 93.8 | 91.5 | 80.6 | 93.8 | 78.7 | 74.2 | 87.5 | |
F score | 85.1 | 77.6 | 93.8 | 91.3 | 79.9 | 93.8 | 77.6 | 73.1 | 87.5 | |
AUC | 85.2 | 78.4 | 95.0 | 99.1 | 96.2 | 100.0 | 76.6 | 71.4 | 86.7 |
ID (Array) | Gene Names | Protein ID | StringID | Annotation |
---|---|---|---|---|
c0820 | c0820 | A0A0H2V608 | Not mapped | Uncharacterized protein |
c1618 | c1618 | A0A0H2V6W5 | 199310.c1618 | YmgI protein |
c1419 | c1419 | A0A0H2V7D7 | Not mapped | Uncharacterized protein |
c2755 | c2755 | A0A0H2V917 | Not mapped | Uncharacterized protein |
c4081 | c4081 | A0A0H2VBA2 | 199310.c4081 | Uncharacterized protein |
c4088 | c4088 | A0A0H2VBF5 | Not mapped | Uncharacterized protein |
c4086 | c4086 | A0A0H2VE07 | Not mapped | Uncharacterized protein |
uhpB | uhpB b3668 JW3643 | P09835 | 511145.b3668 | Sensor histidine protein kinase UhpB |
dnaT | dnaT b4362 JW4326 | P0A8J2 | 511145.b4362 | Primosomal protein DnaT |
ybbI (hub) | cueR copR ybbI b0487 JW0476 | P0A9G4 | 511145.b0487 | Transcriptional regulator cueR, transcription factor |
c1561 | essD ybcR b0554 JW0543 | P0A9R2 | 511145.b0554 | Lysis protein S homolog from lambdoid prophage DLP12 |
fabF | fabF fabJ b1095 JW1081 | P0AAI5 | 511145.b1095 | 3-oxoacyl-[acyl-carrier-protein] synthase II |
ycdO | efeO ycdO b1018 JW1003 | P0AB24 | 511145.b1018 | Iron uptake system component EfeO |
ycfJ (hub) | ycfJ b1110 JW1096 | P0AB35 | 511145.b1110 | Hypothetical protein |
b1171 | ymgD b1171 JW5177 | P0AB46 | 511145.b1171 | Hypothetical protein ymgD precursor |
cydA | cydA cyd-1 b0733 JW0722 | P0ABJ9 | 511145.b0733 | Cytochrome d terminal oxidase polypeptide subunit I |
nirC | nirC b3367 JW3330 | P0AC26 | 511145.b3367 | Nitrite reductase activity |
sdhA | sdhA b0723 JW0713 | P0AC41 | 511145.b0723 | Succinate dehydrogenase flavoprotein subunit |
ygaC | ygaC b2671 JW2646 | P0AD53 | 511145.b2671 | Hypothetical protein |
caiF | caiF b0034 JW0033 | P0AE58 | 511145.b0034 | Transcriptional regulator of cai operon, transcription factor |
hdeA | hdeA yhhC yhiB b3510 JW3478 | P0AES9 | 511145.b3510 | Acid stress chaperone HdeA (10K-S protein) |
hycH | hycH hevH b2718 JW2688 | P0AEV7 | 511145.b2718 | Formate hydrogenlyase maturation protein |
yjbQ | yjbQ b4056 JW4017 | P0AF48 | 511145.b4056 | Hypothetical protein |
rfaH (hub) | rfaH hlyT sfrB b3842 JW3818 | P0AFW0 | 511145.b3842 | Transcriptional activator RfaH, transcription factor |
rho | rho nitA psuA rnsC sbaA tsu b3783 JW3756 | P0AG30 | 511145.b3783 | Transcription termination factor Rho |
rbsC | rbsC b3750 JW3729 | P0AGI1 | 511145.b3750 | D-ribose high-affinity transport system permease protein |
b3113 | tdcF yhaR b3113 JW5521 | P0AGL2 | 511145.b3113 | Putative reactive intermediate deaminase TdcF |
b0161 (hub) | degP htrA ptd b0161 JW0157 | P0C0V0 | 511145.b0161 | Serine endoprotease (protease Do), membrane-associated |
yijP | eptC cptA yijP b3955 JW3927 | P0CB39 | 511145.b3955 | Membrane protein |
rcsC (hub) | rcsC b2218 JW5917/JW5920 | P0DMC5 | 511145.b2218 | Sensor for ctr capsule biosynthesis |
nhaA | nhaA ant b0019 JW0018 | P13738 | 511145.b0019 | Na+/H antiporter |
menD | menD b2264 JW5374 | P17109 | 511145.b2264 | 2-oxoglutarate decarboxylase |
malZ | malZ b0403 JW0393 | P21517 | 511145.b0403 | Maltodextrin glucosidase |
marR (hub) | marR cfxB inaR soxQ b1530 JW5248 | P27245 | 511145.b1530 | Repressor of mar operon, transcription factor |
marB | marB b1532 JW1525 | P31121 | 511145.b1532 | Multiple antibiotic resistance protein |
potF | potF b0854 JW0838 | P31133 | 511145.b0854 | Periplasmic putrescine-binding permease protein |
chaA (hub) | chaA b1216 JW1207 | P31801 | 511145.b1216 | Sodium-calcium/proton antiporter |
yihT | yihT b3881 JW3852 | P32141 | 511145.b3881 | Putative aldolase |
ybbB | selU ybbB b0503 JW0491 | P33667 | 511145.b0503 | Putative capsule anchoring protein |
arsR | arsR arsE b3501 JW3468 | P37309 | 511145.b3501 | Arsenical resistance operon repressor, transcription factor |
aldB | aldB yiaX b3588 JW3561 | P37685 | 511145.b3588 | Aldehyde dehydrogenase B |
yddE | yddE b1464 JW1459 | P37757 | 511145.b1464 | Hypothetical protein |
ytfG | qorB qor2 ytfG b4211 JW4169 | P39315 | 511145.b4211 | Putative oxidoreductase |
yjiT | yjiT b4342 JW5787 | P39391 | Not mapped | Hypothetical protein |
ygjT | alx ygjT b3088 JW5515 | P42601 | 511145.b3088 | Putative membrane-bound redox modulator Alx |
yraJ | yraJ b3144 JW3113 | P42915 | 511145.b3144 | Outer membrane usher protein YraJ |
ybcI | ybcI b0527 JW0516 | P45570 | 511145.b0527 | Inner membrane protein YbcI |
yebK | hexR yebK b1853 JW1842 | P46118 | 511145.b1853 | HTH-type transcriptional regulator HexR (Hex regulon repressor), transcription factor |
yhcQ (hub) | aaeA yhcQ b3241 JW3210 | P46482 | 511145.b3241 | p-hydroxybenzoic acid efflux pump subunit AaeA (pHBA efflux pump protein A) |
b1839 | yebY b1839 JW1828 | P64506 | 511145.b1839 | Uncharacterized protein |
c2390 | ypeC b2390 JW2387 | P64542 | 511145.b2390 | Uncharacterized protein |
yahM | yahM b0327 JW5044 | P75692 | 511145.b0327 | Uncharacterized protein |
ycdY | ycdY b1035 JW1018 | P75915 | 511145.b1035 | Chaperone protein YcdY |
Z4985 | ysaB b4553 JW3532 | Q2M7M3 | 511145.b4553 | Uncharacterized lipoprotein YsaB |
yqhD (hub) | yqhD b3011 JW2978 | Q46856 | 511145.b3011 | Alcohol dehydrogenase YqhD |
ID (Array) | Gene Names | Protein ID | StringID | Annotation |
---|---|---|---|---|
SACOL0995 | ABD30052.1 SACOL0995 | A0A0H2WVP6 | 93061.SAOUHSC_00927 | Oligopeptide ABC transporter, oligopeptide-binding protein |
SACOL1539 | ABD30669.1 SACOL1539 | A0A0H2WW35 | 93061.SAOUHSC_01590 | Cytosolic protein |
SACOL1360 | ABD30417.1 SACOL1360 | A0A0H2WW94 | 93061.SAOUHSC_01319 | Aspartokinase |
SACOL1169 | ABD30229.1 SACOL1169 | A0A0H2WWH1 | 93061.SAOUHSC_01115 | Staphylococcal complement inhibitor |
SACOL2193 (hub) | ABD31481.1 SACOL2193 | A0A0H2WWP9 | 93061.SAOUHSC_02461 | Transcriptional regulator, MerR family, transcription factor |
SACOL1033 | ABD30087.1 SACOL1033 | A0A0H2WWU8 | 93061.SAOUHSC_00962 | IDEAL domain-containing protein |
tcaB | ABD31642.1 tcaB SACOL2350 | A0A0H2WX36 | 93061.SAOUHSC_02633 | Bcr/CflA family efflux transporter |
SACOL2561 | ABD31859.1 SACOL2561 | A0A0H2WX88 | 93061.SAOUHSC_02860 | Hydroxymethylglutaryl-CoA synthase |
SACOL2731 | ABD32028.1 SACOL2731 | A0A0H2WXD2 | 93061.SAOUHSC_03045 | Cold shock protein CspA |
SACOL2330 | ABD31623.1 SACOL2330 | A0A0H2WXH1 | 93061.SAOUHSC_02613 | MOSC domain-containing protein |
cap5F (hub) | ABD29300.1 cap5F SACOL0141 | A0A0H2WXH2 | 93061.SAOUHSC_00119 | Capsular polysaccharide biosynthesis protein Cap5F |
SACOL0587 | ABD29671.1 SACOL0587 | A0A0H2WXZ9 | 93061.SAOUHSC_00523 | Methyltransferase small domain-containing protein |
SACOL2551 | ABD31847.1 SACOL2551 | A0A0H2WY92 | 93061.SAOUHSC_02846 | Acyl-CoA thioesterase |
SACOL0959 | ABD30018.1 SACOL0959 | A0A0H2WYF8 | 93061.SAOUHSC_00893 | NADH-dependent flavin oxidoreductase, Oye family |
SACOL2138 | ABD31420.1 SACOL2138 | A0A0H2WZ64 | 93061.SAOUHSC_02389 | Cation efflux family protein |
SACOL2147 | ABD31430.1 SACOL2147 | A0A0H2WZ69 | 93061.SAOUHSC_02401 | Transcriptional antiterminator, BglG family/DNA-binding protein, transcription factor |
SACOL1645 | ABD30766.1 SACOL1645 | A0A0H2WZH6 | 93061.SAOUHSC_01692 | ComE operon protein 2 |
SACOL2624 (hub) | ABD31924.1 SACOL2624 | A0A0H2WZI5 | 93061.SAOUHSC_02929 | Putative long-chain fatty acid-CoA ligase VraA |
SACOL2452 | ABD31749.1 SACOL2452 | A0A0H2X000 | 93061.SAOUHSC_02743 | Amino acid ABC transporter, permease protein |
SACOL2566 | ABD31865.1 SACOL2566 | A0A0H2X034 | 93061.SAOUHSC_02866 | MmpL efflux pump, putative |
SACOL1948 | ABD31154.1 SACOL1948 | A0A0H2X044 | 93061.SAOUHSC_02104 | Uncharacterized protein |
prmC | prmC SACOL2109 | A0A0H2X056 | 93061.SAOUHSC_02358 | Release factor glutamine methyltransferase PrmC |
SACOL0102 | sbnC SACOL0102 | A0A0H2X061 | 93061.SAOUHSC_00077 | Siderophore biosynthesis protein, IucC family |
clpC | clpC SA0483 | Q7A797 | 93061.SAOUHSC_00505 | ATP-dependent Clp protease ATP-binding subunit ClpC |
def | def def1 pdf1 SAV1091 | P68825 | 93061.SAOUHSC_01038 | Peptide deformylase |
drp35 | drp35 SACOL2712 | Q5HCK9 | 93061.SAOUHSC_03023 | Lactonase drp35 |
fdhD | fdhD narQ SAV2280 | P64120 | 93061.SAOUHSC_02550 | Sulfur carrier protein FdhD |
fmtA | fmtA fmt SACOL1066 | Q5HH27 | 93061.SAOUHSC_00998 | Teichoic acid D-alanine hydrolase |
glnA (hub) | ABD30386.1 glnA SAV1310 | P60890 | 93061.SAOUHSC_01287 | Glutamine synthetase |
gtaB | gtaB galU SACOL2508 | Q5HD54 | 93061.SAOUHSC_02801 | UTP--glucose-1-phosphate uridylyltransferase |
guaA (hub) | guaA SAV0391 | P64296 | 93061.SAOUHSC_00375 | GMP synthase [glutamine-hydrolyzing] |
guaC (hub) | guaC SAV1337 | P60562 | 93061.SAOUHSC_01330 | GMP reductase |
SAV1152 | ABD30221.1 SAV1152 | P64309 | 93061.SAOUHSC_01107 | dITP/XTP pyrophosphatase |
mprF | mprF SACOL1396 | Q5HG59 | 93061.SAOUHSC_01359 | Phosphatidylglycerol lysyltransferase |
murI | murI SAV1151 | P63637 | 93061.SAOUHSC_01106 | Glutamate racemase |
SACOL0944 | ABD30003.1 SACOL0944 | Q5HHE4 | 93061.SAOUHSC_00878 | Type II NADH:quinone oxidoreductase |
SACOL2002 | ABD31208.1 SACOL2002 | Q5HEI2 | 93061.SAOUHSC_02161 | Membrane protein |
pckA | pckA SAV1791 | P0A0B3 | 93061.SAOUHSC_01910 | Phosphoenolpyruvate carboxykinase |
purA | purA SAV0017 | P65884 | 93061.SAOUHSC_00019 | Adenylosuccinate synthetase |
rbsK | rbsK SACOL0253 | A0A0H2WZY4 | 93061.SAOUHSC_00239 | Ribokinase |
recA (hub) | recA SAV1285 | P68843 | 93061.SAOUHSC_01262 | Protein RecA |
prfA | prfA SAV2118 | P66018 | 93061.SAOUHSC_02359 | Peptide chain release factor 1 |
rpmJ | rpmJ SAV2227 | P66298 | 93061.SAOUHSC_02488 | Large ribosomal subunit protein bL36 |
sle1 (hub) | sle1 aaa SACOL0507 | Q5HIL2 | 93061.SAOUHSC_00427 | N-acetylmuramoyl-L-alanine amidase sle1 |
argS | argS SACOL0663 | Q5HI60 | 93061.SAOUHSC_00611 | Arginine--tRNA ligase |
SACOL0974 | ABD30032.1 SACOL0974 | Q5HHB5 | 93061.SAOUHSC_00907 | UPF0344 protein SACOL0974 |
E. coli | S. aureus |
---|---|
Orthologs and modules
| Orthologs and modules
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos-Godínez, J.F.; Villegas-Campos, M.; Molina-Mora, J.A. Core Perturbomes of Escherichia coli and Staphylococcus aureus Using a Machine Learning Approach. Pathogens 2025, 14, 788. https://doi.org/10.3390/pathogens14080788
Campos-Godínez JF, Villegas-Campos M, Molina-Mora JA. Core Perturbomes of Escherichia coli and Staphylococcus aureus Using a Machine Learning Approach. Pathogens. 2025; 14(8):788. https://doi.org/10.3390/pathogens14080788
Chicago/Turabian StyleCampos-Godínez, José Fabio, Mauricio Villegas-Campos, and Jose Arturo Molina-Mora. 2025. "Core Perturbomes of Escherichia coli and Staphylococcus aureus Using a Machine Learning Approach" Pathogens 14, no. 8: 788. https://doi.org/10.3390/pathogens14080788
APA StyleCampos-Godínez, J. F., Villegas-Campos, M., & Molina-Mora, J. A. (2025). Core Perturbomes of Escherichia coli and Staphylococcus aureus Using a Machine Learning Approach. Pathogens, 14(8), 788. https://doi.org/10.3390/pathogens14080788