Persistence of Infectivity of Different Enteroviruses on a Surrogate Fomite: Correlation with Clinical Case Incidence
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nikonov, O.S.; Chernykh, E.S.; Garber, M.B.; Nikonova, E.Y. Enteroviruses: Classification, disease they cause, and approaches to development of antiviral drugs. Biochemistry 2017, 82, 1615–1631. [Google Scholar] [CrossRef] [PubMed]
- Khetsuriani, N.; LaMonte-Fowlkes, A.; Oberste, M.S.; Pallansch, M.A. Enterovirus surveillance—United States, 1970–2005. MMWR 2006, 55, 1–20. [Google Scholar] [PubMed]
- Wells, A.I.; Coyne, C.B. Enteroviruses: A gut-wrenching game of entry, detection, and evasion. Viruses 2019, 11, 460. [Google Scholar] [CrossRef] [PubMed]
- Abedi, G.R.; Watson, J.T.; Pham, H.; Nix, W.A.; Obserste, M.S.; Gerber, S.I. Enterovirus and human parechovirus surveillance—United States, 2009–2013. MMWR 2015, 64, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Abedi, G.R.; Watson, J.T.; Nix, W.A.; Obserste, M.S.; Gerber, S.I. Enterovirus and human parechovirus surveillance—United States, 2014–2016. MMWR 2018, 67, 515–518. [Google Scholar] [PubMed]
- U.S. Centers for Disease Control and Prevention. National Enterovirus Surveillance System. 2024. Available online: https://www.cdc.gov/ness/data-vis/index.html (accessed on 28 May 2025).
- Kiseleva, L.F. Survival of enteric viruses in water and foodstuffs and on various surfaces. Hyg. Sanit. 1968, 33, 439–440. [Google Scholar]
- Mahl, M.C.; Sadler, C. Virus survival on inanimate surfaces. Can. J. Microbiol. 1975, 21, 6. [Google Scholar] [CrossRef] [PubMed]
- LaBelle, R.L.; Gerba, C.P. Influence of estuarine sediment on virus survival under field conditions. Appl. Environ. Microbiol. 1980, 39, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Mbithi, J.N.; Springthorpe, V.S.; Sattar, S.A. Effect of relative humidity and air temperature on survival of hepatitis A virus on environmental surfaces. Appl. Environ. Microbiol. 1991, 57, 1394–1399. [Google Scholar] [CrossRef] [PubMed]
- Abad, F.X.; Pintó, R.M.; Bosch, A. Survival of enteric viruses on environmental fomites. Appl. Environ. Microbiol. 1994, 60, 3704–3710. [Google Scholar] [CrossRef] [PubMed]
- Mocé-Llivina, L.; Papageorgiou, G.T.; Jofre, J. A membrane-based quantitative carrier test to assess the virucidal activity of disinfectants and persistence of viruses on porous fomites. J. Virol. Methods 2006, 135, 49–55. [Google Scholar] [CrossRef] [PubMed]
- de Roda Husman, A.M.; Lodder, W.J.; Rutjes, S.A.; Schijven, J.F.; Teunis, P.F.M. Long-term inactivation study of three enteroviruses in artificial surface and groundwaters, using PCR and cell culture. Appl. Environ. Microbiol. 2009, 75, 4. [Google Scholar] [CrossRef] [PubMed]
- Tuladhar, E.; de Koning, M.C.; Fundeanu, I.; Beumer, R.; Duizer, E. Different virucidal activities of hyperbranched quaternary ammonium coatings on poliovirus and influenza virus. Appl. Environ. Microbiol. 2012, 78, 2456–2458. [Google Scholar] [CrossRef] [PubMed]
- Tamrakar, S.B.; Henley, J.; Gurian, P.L.; Gerba, C.P.; Mitchell, K.; Enger, K.; Rose, J.B. Persistence analysis of poliovirus on three different types of fomites. J. Appl. Microbiol. 2017, 122, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Wißmann, J.E.; Kirchhoff, L.; Brüggemann, Y.; Todt, D.; Steinmann, J.; Steinmann, E. Persistence of pathogens on inanimate surfaces: A narrative review. Microorganisms 2021, 9, 343. [Google Scholar] [CrossRef] [PubMed]
- ASTM E1053-20; Standard Practice to Assess Virucidal Activity of Chemicals Intended for Disinfection of Inanimate, Nonporous Environmental Surfaces. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/e1053-20.html (accessed on 28 May 2025).
- ASTM E1053-11; Standard Test Method to Assess Virucidal Activity of Chemicals Intended for Disinfection of Inanimate, Nonporous Environmental Surfaces. ASTM International: West Conshohocken, PA, USA, 2011. Available online: www.astm.org/e1053-11.html (accessed on 28 May 2025).
- EN 1500:2013; Chemical Disinfectants and Antiseptics. Hygienic Handrub. Test Method and Requirements (Phase 2/Step 2). British Standards Institution: London, UK, 2013. Available online: https://www.en-standard.eu/bs-en-1500-2013-chemical-disinfectants-and-antiseptics-hygienic-handrub-test-method-and-requirements-phase-2-step-2/ (accessed on 28 May 2025).
- EN 14476:2013+A1:2015+prA2:2019; Chemical Disinfectants and Antiseptics. Quantitative Suspension Test for the Evaluation of Virucidal Activity in the Medical Area. Test method and Requirements (Phase 2/Step 1). British Standards Institution: London, UK, 2019. Available online: https://www.en-standard.eu/bs-en-14476-2013-a2-2019-chemical-disinfectants-and-antiseptics-quantitative-suspension-test-for-the-evaluation-of-virucidal-activity-in-the-medical-area-test-method-and-requirements-phase-2-step-1/ (accessed on 28 May 2025).
- EN 14885:2018; Chemical Disinfectants and Antiseptics-Application of European Standards for Chemical Disinfectants and Antiseptics. European Committee for Standardization: Brussels, Belgium, 2018. Available online: https://standards.globalspec.com/std/14554221/en-14885 (accessed on 28 May 2025).
- EN 16777:2018; Chemical Disinfectants and Antiseptics-Quantitative Non-Porous Surface Test without Mechanical Action for the Evaluation of Virucidal Activity of Chemical Disinfectants Used in the Medical Area-Test Method and Requirements (Phase 2/Step 2). European Committee for Standardization: Brussels, Belgium, 2018. Available online: https://standards.globalspec.com/std/13399715/en-13697 (accessed on 28 May 2025).
- EN 17111:2018; Chemical Disinfectants and Antiseptics-Quantitative Carrier Test for the Evaluation of Virucidal Activity for Instruments Used in the Medical Area-Test Method and Requirements (Phase 2, Step 2). European Committee for Standardization: Brussels, Belgium, 2018. Available online: https://standards.globalspec.com/std/13088972/en-17111 (accessed on 28 May 2025).
- EN 17430:2019; Chemical Disinfectants and Antiseptics-Hygienic Handrub Virucidal-Test Method and Requirements (Phase 2/Step 2). British Standards Institution: London, UK, 2019. Available online: https://www.en-standard.eu/bs-en-17430-2024-chemical-disinfectants-and-antiseptics-hygienic-handrub-virucidal-test-method-and-requirements-phase-2-step-2/ (accessed on 28 May 2025).
- United States Environmental Protection Agency (U.S. EPA). Disinfectants for Emerging Viral Pathogens (EVPs): List Q. Available online: https://www.epa.gov/pesticide-registration/disinfectants-emerging-viral-pathogens-evps-list-q (accessed on 6 June 2025).
- Tarka, P.; Nitsch-Osuch, A. Evaluating the virucidal activity of disinfectants according to European Union standards. Viruses 2021, 13, 534. [Google Scholar] [CrossRef] [PubMed]
- Eggers, M.; Schwebke, I.; Suchomel, M.; Fotheringham, V.; Gebel, J.; Meyer, B.; Morace, G.; Roedger, H.J.; Roques, C.; Visa, P.; et al. The European tiered approach for virucidal efficacy testing–rationale for rapidly selecting disinfectants against emerging and re-emerging viral diseases. Euro. Surveill. 2021, 26, 2000708. [Google Scholar] [CrossRef] [PubMed]
- Vasickova, P.; Pavlik, I.; Verani, M.; Carducci, A. Issues concerning survival of viruses on surfaces. Food Environ. Virol. 2010, 2, 224–234. [Google Scholar] [CrossRef]
- Bosch, A.; Pintó, R.M.; Abad, F.A. Survival and transport of enteric viruses in the environment. In Viruses in Foods. Food Microbiology and Food Safety; Goyal, S.M., Ed.; Springer: Boston, MA, USA, 2006. [Google Scholar]
- Rusin, P.; Maxwell, S.; Gerba, C. Comparative surface-to-hand and fingertip-to-mouth transfer efficiency of gram-positive bacteria, gram-negative bacteria, and phage. J. Appl. Microbiol. 2002, 93, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Payment, P.; Trudel, M. Methods and Techniques in Virology; Marcel Dekker Inc.: New York, NY, USA, 1993. [Google Scholar]
- Fox, J.P.; Hall, C.E. Viruses in Families: Surveillance of Families as a Key to Epidemiology of Virus Infections; PSG Publishing Company, Inc.: Littleton, MA, USA, 1980; ISBN 0884160424/9780884160427. [Google Scholar]
- Sattar, S.A.; Lloyd-Evans, N.; Springthorpe, V.S.; Nair, R.C. Institutional outbreaks of rotavirus diarrhea: Potential role of fomites and environmental surfaces as vehicles for virus transmission. J. Hyg. 1986, 96, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Abad, F.X.; Villena, C.; Guix, S.; Caballero, S.; Pintó, R.M.; Bosch, A. Potential role of fomites in the vehicular transmission of human astroviruses. Appl. Environ. Microbiol. 2001, 67, 3904–3907. [Google Scholar] [CrossRef] [PubMed]
- Boone, S.A.; Gerba, C.P. Significance of fomites in the spread of respiratory and enteric viral disease. Appl. Environ. Microbiol. 2007, 73, 1687–1696. [Google Scholar] [CrossRef] [PubMed]
- Sittikul, P.; Sriburin, P.; Rattanamahaphoom, J.; Nuprasert, W.; Thammasonthijarern, N.; Thaipadungpanit, J.; Hattasingh, W.; Kosoltanapiwat, N.; Puthavathana, P.; Chatchen, S. Stability and infectivity of enteroviruses on dry surfaces: Potential for indirect transmission control. Biosaf. Health 2023, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Global Polio Eradication Initiative. GPEI—Global Polio Eradication Initiative. Available online: https://polioeradication.org/ (accessed on 28 May 2025).
- World Health Organization. WHO Global Action Plan for Poliovirus Containment. 2022. Available online: https://polioeradication.org/wp-content/uploads/2022/07/WHO-Global-Action-Plan-for-Poliovirus-Containment-GAPIV.pdf (accessed on 9 June 2025).
- Ottendorfer, C.; Shelby, B.; Sanders, C.A.; Llewellen, A.; Myrick, C.; Brown, C.; Suppiah, S.; Gustin, K.; Smith, L.H. Establishment of a poliovirus containment program and containment certification process for poliovirus-essential facilities. United States 2117–2022. Pathogens 2024, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- Gerba, C.P.; Boone, S.A.; Nims, R.W.; Maillard, J.-Y.; Sattar, S.A.; Rubino, J.R.; McKinney, J.; Ijaz, M.K. Mechanisms of action of microbicides commonly used in infection prevention and control. Microbiol. Mol. Biol. Rev. 2024, 88, e00205-22. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.S. Variability and relative order of susceptibility of non-enveloped viruses to chemical inactivation. In Disinfection of Viruses; Nims, R.W., Ijaz, M.K., Eds.; Intech Open: London, UK, 2022. [Google Scholar] [CrossRef]
- Roy, D.; Englebrecht, R.S.; Chian, E.S.K. Comparative inactivation of six enteroviruses by ozone. J. AWWA 1982, 74, 660–664. [Google Scholar] [CrossRef]
- Harakeh, S. The behavior of viruses on disinfection by chlorine dioxide and other disinfectants in effluent. FEMS Microbiol. Lett. 1987, 44, 335–341. [Google Scholar] [CrossRef]
- Chambon, M.; Bailly, J.-L.; Peigue-Lefeuille, H. Comparative sensitivity of the echovirus type 25 JV-4 prototype strain and two recent isolates to glutaraldehyde at low concentrations. Appl. Environ. Microbiol. 1994, 60, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Cromeans, T.L.; Kahler, A.M.; Hill, V.R. Inactivation of adenoviruses, enteroviruses, and murine norovirus in water by free chlorine and monochloramine. Appl. Environ. Microbiol. 2010, 76, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Larivé, O.; Torii, S.; Derlon, N.; Kohn, T. Selective elimination of enterovirus genotypes by activated sludge and chlorination. Environ. Sci. Water Res. Technol. 2023, 9, 1620–1633. [Google Scholar] [CrossRef] [PubMed]
- Kadurugamuwa, J.L.; Shaheen, E. Inactivation of human enterovirus 71 and coxsackie virus A16 and hand, foot, and mouth disease. Am. J. Infect. Control 2011, 39, 788–789. [Google Scholar] [CrossRef] [PubMed]
- Schürmann, W.; Eggers, H.J. Antiviral activity of an alcoholic hand disinfectant. Comparison of the in vitro suspension test with in vivo experiments on hands, and on individual fingertips. Antiviral Res. 1983, 3, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Han, J.; Li, J.; Ren, Z.; Huang, L.; Xu, B.; Wei, Q. Resistance of poliovirus 1 and enterovirus A71 against alcohol and other disinfectants. J. Virol. Methods 2021, 298, 114292. [Google Scholar] [CrossRef] [PubMed]
Virus (Strain) 1 | Source | Cell Line Used for Titrations |
---|---|---|
Echovirus 1 (Farouk) | ATCC 2 VR-1808 | BGM (Buffalo green monkey) |
Echovirus 2 (Cornelis) | ATCC VR-1867 | BGM (Buffalo green monkey) |
Echovirus 3 (Morrisey) | ATCC VR-33 | BGM (Buffalo green monkey) |
Echovirus 5 (Noyce) | ATCC VR-35 | LLC-MK2 (Lewis lung carcinoma—monkey kidney 2) |
Echovirus 6 (D-1 [Cox]) | ATCC VR-241 L | LLC-MK2 (Lewis lung carcinoma—monkey kidney 2) |
Echovirus 7 (Wallace) | ATCC VR-37 | BGM (Buffalo green monkey) |
Poliovirus 1 (LSc-2ab) | BCM 3 | BGM (Buffalo green monkey) |
Virus (Strain) | Incidence Rank of Enterovirus Cases Reported to U.S. CDC (1970–2005) 1 | % of Enterovirus Cases Reported to the U.S. CDC (1970–2005) 2 | Log10 Reduction in Titer After: | Infectivity Half-Life (h) | |
---|---|---|---|---|---|
24 h | 48 h | ||||
Echovirus 6 | 5 | 6.1 | 0.36 | 1.25 | 12.6 |
Echovirus 7 | 10 | 4.0 | 0.94 | >4.80 | 3.4 |
Echovirus 3 | 14 | 1.9 | 1.14 | >3.04 | 5.0 |
Echovirus 5 | 15 | 1.8 | 0.80 | 1.25 | 10.9 |
Echovirus 2 | 28 | 0.4 | 4.20 | >4.20 | <1.7 |
Echovirus 1 | 29–30 | 0.4 | >3.53 | >3.53 | <2.0 |
Poliovirus 1 (LSc-2ab) | Vaccine strain—spreads among populations | - | 1.32 | 2.52 | 5.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerba, C.P.; Ijaz, M.K.; Nims, R.W.; Boone, S.A. Persistence of Infectivity of Different Enteroviruses on a Surrogate Fomite: Correlation with Clinical Case Incidence. Pathogens 2025, 14, 721. https://doi.org/10.3390/pathogens14080721
Gerba CP, Ijaz MK, Nims RW, Boone SA. Persistence of Infectivity of Different Enteroviruses on a Surrogate Fomite: Correlation with Clinical Case Incidence. Pathogens. 2025; 14(8):721. https://doi.org/10.3390/pathogens14080721
Chicago/Turabian StyleGerba, Charles P., M. Khalid Ijaz, Raymond W. Nims, and Stephanie A. Boone. 2025. "Persistence of Infectivity of Different Enteroviruses on a Surrogate Fomite: Correlation with Clinical Case Incidence" Pathogens 14, no. 8: 721. https://doi.org/10.3390/pathogens14080721
APA StyleGerba, C. P., Ijaz, M. K., Nims, R. W., & Boone, S. A. (2025). Persistence of Infectivity of Different Enteroviruses on a Surrogate Fomite: Correlation with Clinical Case Incidence. Pathogens, 14(8), 721. https://doi.org/10.3390/pathogens14080721