Retrospective Review of Children Hospitalized for Epstein–Barr Virus-Related Infectious Mononucleosis
Abstract
1. Background
2. Methods
2.1. Study Participants
2.2. Inclusion and Exclusion Criteria
2.3. Clinical Data Collection
2.4. Pathogen Detection
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Main Clinical Manifestations of Inpatients
3.3. Co-Infection
3.4. Prevalence of Complications
3.5. Risk Factors for Prolonged Fever and Abnormal Liver Function
3.6. WBC and EBV DNA Load Analysis in Patients with HLH, Prolonged Fever, and Liver Function Impairment
3.7. Treatments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUC | Area under the curve |
CAEBV | Chronic active EBV infection |
CMV | Cytomegalovirus |
CRP | C-reactive protein |
EBV | Epstein–Barr virus |
GAS | Group A streptococcus |
MRSA | Methicillin-resistant staphylococcus aureus |
IM | Infectious mononucleosis |
IVIG | Intravenous immunoglobulin |
LDH | Lactate dehydrogenase |
ROC | Receiver operator characteristic |
SPSS | Statistical Package for Social science. |
RSV | Respiratory syncytial virus |
WBC | White blood cell |
References
- Shannon-Lowe, C.; Rickinson, A. The Global Landscape of EBV-Associated Tumors. Front. Oncol. 2019, 9, 713. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, P.; Bao, Y.; Luo, H.; Wang, J.; Huang, L.; Zheng, M. Outcomes of programmed death protein-1 inhibitors treatment of chronic active Epstein Barr virus infection: A single center retrospective analysis. Front. Immunol. 2023, 14, 1093719. [Google Scholar] [CrossRef] [PubMed]
- Naughton, P.; Healy, M.; Enright, F.; Lucey, B. Infectious Mononucleosis: Diagnosis and clinical interpretation. Br. J. Biomed. Sci. 2021, 78, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Dunmire, S.K.; Verghese, P.S.; Balfour, H.H., Jr. Primary Epstein-Barr virus infection. J. Clin. Virol. 2018, 102, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Taylor, G.S.; Long, H.M.; Brooks, J.M.; Rickinson, A.B.; Hislop, A.D. The immunology of Epstein-Barr virus-induced disease. Annu. Rev. Immunol. 2015, 33, 787–821. [Google Scholar] [CrossRef] [PubMed]
- Hatton, O.L.; Harris-Arnold, A.; Schaffert, S.; Krams, S.M.; Martinez, O.M. The interplay between Epstein-Barr virus and B lymphocytes: Implications for infection, immunity, and disease. Immunol. Res. 2014, 58, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Haruta, K.; Suzuki, T.; Yamaguchi, M.; Fukuda, Y.; Torii, Y.; Takahashi, Y.; Ito, Y.; Kawada, J.I. Comparison of plasma proteomic profiles of patients with Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis and infectious mononucleosis. J. Med. Virol. 2024, 96, e29450. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.J.; Li, J.; Song, H.M.; Li, Z.H.; Dong, M.; Zhou, X.G. Epstein-Barr Virus-Positive T/NK-Cell Lymphoproliferative Disorders Manifested as Gastrointestinal Perforations and Skin Lesions: A Case Report. Medicine 2016, 95, e2676. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, X.; Zhang, L.; Feng, G.; Zeng, Y.; Wang, R.; Xie, Z. Epidemiological characteristics and disease burden of infectious mononucleosis in hospitalized children in China: A nationwide retrospective study. Virol. Sin. 2022, 37, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.K.P.; Azzi, T.; Hui, K.F.; Wong, A.M.G.; McHugh, D.; Caduff, N.; Chan, K.H.; Munz, C.; Chiang, A.K.S. Co-infection of Cytomegalovirus and Epstein-Barr Virus Diminishes the Frequency of CD56dimNKG2A+KIR− NK Cells and Contributes to Suboptimal Control of EBV in Immunosuppressed Children with Post-transplant Lymphoproliferative Disorder. Front. Immunol. 2020, 11, 1231. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, K.; Wei, C.; Huang, Y.; Zhao, D. Coinfection with EBV/CMV and other respiratory agents in children with suspected infectious mononucleosis. Virol. J. 2010, 7, 247. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.H.; Shin, J.Y.; Lee, J.H.; Park, Y.S.; Lee, I.S.; Kim, G.H.; Na, H.K.; Ahn, J.Y.; Jung, K.W.; Kim, D.H.; et al. Clinical Significance of Epstein-Barr Virus and Helicobacter pylori Infection in Gastric Carcinoma. Gut Liver 2023, 17, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Chen, Y.; Su, Q.; Sun, B.; Lin, Z.; Long, Y.; Wang, H.; Liao, C.; Zhang, Y.; Zheng, J.; et al. Pertussis clinical profile shift, severity, prediction in a tertiary hospital: A comparative study before, during, and after COVID-19 in Southern China. J. Infect. Public. Health 2025, 18, 102610. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Wang, T.; Shen, K.; Shen, Y. Zhu Futang’s Practical Pediatrics, 9th ed.; People’s Medical Publishing House: Beijing, China, 2022; ISBN 978-7-117-32904-0. [Google Scholar]
- Luderer, R.; Kok, M.; Niesters, H.G.; Schuurman, R.; de Weerdt, O.; Thijsen, S.F. Real-time Epstein-Barr virus PCR for the diagnosis of primary EBV infections and EBV reactivation. Mol. Diagn. 2005, 9, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Hess, R.D. Routine Epstein-Barr virus diagnostics from the laboratory perspective: Still challenging after 35 years. J. Clin. Microbiol. 2004, 42, 3381–3387. [Google Scholar] [CrossRef]
- Pascarella, A.; Bracaglia, C.; Caiello, I.; Arduini, A.; Moneta, G.M.; Rossi, M.N.; Matteo, V.; Pardeo, M.; De Benedetti, F.; Prencipe, G. Monocytes From Patients With Macrophage Activation Syndrome and Secondary Hemophagocytic Lymphohistiocytosis Are Hyperresponsive to Interferon Gamma. Front. Immunol. 2021, 12, 663329. [Google Scholar] [CrossRef] [PubMed]
- Jing, C.; Dongming, Z.; Hong, C.; Quan, N.; Sishi, L.; Caixia, L. TRPC3 Overexpression Promotes the Progression of Inflammation-Induced Preterm Labor and Inhibits T Cell Activation. Cell Physiol. Biochem. 2018, 45, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.Q.; Zhang, Y.N.; Jing, J.; Ma, J.D.; Chen, Y.L.; Wu, C.Y.; Dai, L. A Novel Hypothesis on Excessive Activation of Residual B Lymphocytes in Common Variable Immunodeficiency Concurrent with Aseptic, Erosive Polyarthritis. Med. Sci. Monit. 2018, 24, 4952–4960. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.; Garcia-Rodriguez, V.; Yu, A.; Dutra, B.; Larson, S.; Cash, B.; DuPont, A.; Farooq, A. Elevated transaminases and hypoalbuminemia in Covid-19 are prognostic factors for disease severity. Sci. Rep. 2021, 11, 10308. [Google Scholar] [CrossRef] [PubMed]
- Nagy, N.; Adori, M.; Rasul, A.; Heuts, F.; Salamon, D.; Ujvari, D.; Madapura, H.S.; Leveau, B.; Klein, G.; Klein, E. Soluble factors produced by activated CD4+ T cells modulate EBV latency. Proc. Natl. Acad. Sci. USA 2012, 109, 1512–1517. [Google Scholar] [CrossRef] [PubMed]
- Ning, R.J.; Xu, X.Q.; Chan, K.H.; Chiang, A.K. Long-term carriers generate Epstein-Barr virus (EBV)-specific CD4+ and CD8+ polyfunctional T-cell responses which show immunodominance hierarchies of EBV proteins. Immunology 2011, 134, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Meckiff, B.J.; Ladell, K.; McLaren, J.E.; Ryan, G.B.; Leese, A.M.; James, E.A.; Price, D.A.; Long, H.M. Primary EBV Infection Induces an Acute Wave of Activated Antigen-Specific Cytotoxic CD4+ T Cells. J. Immunol. 2019, 203, 1276–1287. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhu, X.; Zhang, T.; Ye, Q. EBV-HLH children with reductions in CD4+ T cells and excessive activation of CD8+ T cells. Pediatr. Res. 2017, 82, 952–957. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.K.P.; Hui, K.F.; Ning, R.J.; Xu, X.Q.; Chan, K.H.; Chiang, A.K.S. Emergence of CD4+ and CD8+ Polyfunctional T Cell Responses Against Immunodominant Lytic and Latent EBV Antigens in Children with Primary EBV Infection. Front. Microbiol. 2018, 9, 416. [Google Scholar] [CrossRef] [PubMed]
- Sachla, A.J.; Eichenbaum, Z. The GAS PefCD exporter is a MDR system that confers resistance to heme and structurally diverse compounds. BMC Microbiol. 2016, 16, 68. [Google Scholar] [CrossRef] [PubMed]
- Zacharioudaki, M.E.; Galanakis, E. Management of children with persistent group A streptococcal carriage. Expert. Rev. Anti Infect. Ther. 2017, 15, 787–795. [Google Scholar] [CrossRef] [PubMed]
- de Benedictis, F.M.; Carloni, I.; Guidi, R. Question 4: Is there a role for antibiotics in infantile wheeze? Paediatr. Respir. Rev. 2020, 33, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Waddington, C.S.; Snelling, T.L.; Carapetis, J.R. Management of invasive group A streptococcal infections. J. Infect. 2014, 69 (Suppl. 1), S63–S69. [Google Scholar] [CrossRef] [PubMed]
- Pociupany, M.; Snoeck, R.; Dierickx, D.; Andrei, G. Treatment of Epstein-Barr Virus infection in immunocompromised patients. Biochem. Pharmacol. 2024, 225, 116270. [Google Scholar] [CrossRef] [PubMed]
- Rafailidis, P.I.; Mavros, M.N.; Kapaskelis, A.; Falagas, M.E. Antiviral treatment for severe EBV infections in apparently immunocompetent patients. J. Clin. Virol. 2010, 49, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Greczmiel, U.; Krautler, N.J.; Pedrioli, A.; Bartsch, I.; Agnellini, P.; Bedenikovic, G.; Harker, J.; Richter, K.; Oxenius, A. Sustained T follicular helper cell response is essential for control of chronic viral infection. Sci. Immunol. 2017, 2, eaam8686. [Google Scholar] [CrossRef] [PubMed]
- Garidou, L.; Heydari, S.; Truong, P.; Brooks, D.G.; McGavern, D.B. Therapeutic memory T cells require costimulation for effective clearance of a persistent viral infection. J. Virol. 2009, 83, 8905–8915. [Google Scholar] [CrossRef] [PubMed]
- Munz, C. Epstein Barr virus—A tumor virus that needs cytotoxic lymphocytes to persist asymptomatically. Curr. Opin. Virol. 2016, 20, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Solman, I.G.; Blum, L.K.; Burger, J.A.; Kipps, T.J.; Dean, J.P.; James, D.F.; Mongan, A. Impact of long-term ibrutinib treatment on circulating immune cells in previously untreated chronic lymphocytic leukemia. Leuk. Res. 2021, 102, 106520. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Value | Range |
---|---|---|
Age, median [Q1, Q3] years | 4 years [2, 6] | [0.67, 17] |
<1 year | 319 (12.0%) | |
1–3 years | 845 (31.8%) | |
3–6 years | 1007 (37.8%) | |
6–17 years | 489 (18.4%) | |
Male: Female ratio | 1578:1082 (1.46:1) | |
Length of stay, n (%) | ||
Median [Q1, Q3] | 5 (4, 7) | [1, 33] |
<3 days | 445 | |
3–7 days | 1794 | |
8–14 days | 401 | |
>14 days | 20 | |
Febrile duration, n (%) | ||
Median [Q1, Q3] | 7 (5, 9) | [1, 31] |
<7 days | 262 (52.4) | |
7–14 days | 210 (42.0) | |
>14 days | 28 (5.6) |
Variable | Fever Duration >1 Week | Variable | Abnormal Liver Function | ||||
---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | ||
Ferritin, ng/mL | 1.004 | 1.002, 1.006 | <0.001 | CRP, mg/L | 0.955 | 0.935, 0.976 | <0.001 |
Atypical lymphocyte % | 1.038 | 1.008, 1.070 | 0.012 | LDH, u/L | 1.004 | 1.002, 1.005 | <0.001 |
CD4% | 0.894 | 0.856, 0.935 | <0.001 |
Value | Comparison | Whole Blood EBV DNA+ (×103 Copies/mL) | Plasma EBV DNA+ (×103 Copies/mL) | WBC (×109/L) | |||
---|---|---|---|---|---|---|---|
Median [Q1, Q3] | p | Median [Q1, Q3] | p | Median [Q1, Q3] | p | ||
HLH or not | HLH | 352.20 (16.02, 5493.50) | 0.874 | 2.055 (0.6173, 37.8) | 0.815 | 4.06 (2.44, 5.67) | 0.015 |
IM | 242.00 (32.58, 1232.50) | 3.39 (0.987, 12.35) | 14.46 (9.82, 17.57) | ||||
Fever Time | ≥7 days | 326 (27.30, 925.00) | 1.000 | 1.92 (0.73, 4.42) | 0.987 | 13.49 (11.10, 18.30) | 0.99 |
<7 days | 314.00 (158.00, 1700.00) | 2.01 (0.71, 4.70) | 14.27 (10.50, 17.40) | ||||
Liver function | Normal | 187.00 (22.50, 901.00) | 0.001 | 2.88 (0.846, 11) | 0.085 | 13.40 (10.10, 17.30) | 0.002 |
Abnormal | 340.50 (49.53, 1682.50) | 3.73 (1.12, 13.85) | 14.00 (10.80, 18.60) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, S.; Zheng, J.; Zhou, Z.; Yang, Q.; Sun, B.; Li, Y.; Lin, Z.; Long, Y.; Guan, S.; Wang, S.; et al. Retrospective Review of Children Hospitalized for Epstein–Barr Virus-Related Infectious Mononucleosis. Pathogens 2025, 14, 702. https://doi.org/10.3390/pathogens14070702
Tian S, Zheng J, Zhou Z, Yang Q, Sun B, Li Y, Lin Z, Long Y, Guan S, Wang S, et al. Retrospective Review of Children Hospitalized for Epstein–Barr Virus-Related Infectious Mononucleosis. Pathogens. 2025; 14(7):702. https://doi.org/10.3390/pathogens14070702
Chicago/Turabian StyleTian, Shufeng, Jinjun Zheng, Zhe Zhou, Qingluan Yang, Biao Sun, Yuxi Li, Zengrui Lin, Yuchun Long, Song Guan, Sen Wang, and et al. 2025. "Retrospective Review of Children Hospitalized for Epstein–Barr Virus-Related Infectious Mononucleosis" Pathogens 14, no. 7: 702. https://doi.org/10.3390/pathogens14070702
APA StyleTian, S., Zheng, J., Zhou, Z., Yang, Q., Sun, B., Li, Y., Lin, Z., Long, Y., Guan, S., Wang, S., Zhuang, J., Zhang, W., Shao, L., & Deng, J. (2025). Retrospective Review of Children Hospitalized for Epstein–Barr Virus-Related Infectious Mononucleosis. Pathogens, 14(7), 702. https://doi.org/10.3390/pathogens14070702