Molecular Surveillance of Neoehrlichia mikurensis and Anaplasma phagocytophilum in Ticks from Urbanized Areas of Lithuania
Abstract
1. Introduction
2. Materials and Methods
2.1. Tick Collection and DNA Extraction
2.2. PCR Assay and Sequencing
2.3. Statistical Analysis
3. Results
3.1. Prevalence of A. phagocytophilum and N. mikurensis
3.2. Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de la Fuente, J.; Estrada-Pena, A.; Venzal, J.M.; Kocan, K.M.; Sonenshine, D.E. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 2008, 13, 6938–6946. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, P.A. Climate change impacts on ticks and tick-borne infections. Biologia 2022, 77, 1503–1512. [Google Scholar] [CrossRef]
- Černý, J.; Lynn, G.; Hrnková, J.; Golovchenko, M.; Rudenko, N.; Grubhoffer, L. Management options for Ixodes ricinus-associated pathogens: A review of prevention strategies. Int. J. Environ. Res. Public Health 2020, 17, 1830. [Google Scholar] [CrossRef]
- Kuyucu, A.C.; Hekimoglu, O. Predicting the distribution of Ixodes ricinus in Europe: Integrating microclimatic factors into ecological niche models. Parasitology 2024, 151, 1012–1023. [Google Scholar] [CrossRef]
- Zając, Z.; Obregon, D.; Foucault-Simonin, A.; Wu-Chuang, A.; Moutailler, S.; Galon, C.; Kulisz, J.; Woźniak, A.; Bartosik, K.; Cabezas-Cruz, A. Disparate dynamics of pathogen prevalence in Ixodes ricinus and Dermacentor reticulatus ticks occurring sympatrically in diverse habitats. Sci. Rep. 2023, 13, 10645. [Google Scholar] [CrossRef]
- Teixeira, S.C.; Teixeira, T.L.; Tavares, P.C.B.; Alves, R.N.; da Silva, A.A.; Borges, B.C.; Martins, F.A.; Dos Santos, M.A.; de Castilhos, P.; E Silva Brígido, R.T.; et al. Subversion strategies of lysosomal killing by intracellular pathogens. Microbiol. Res. 2023, 277, 127503. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, E. The Family Anaplasmataceae. In The Prokaryotes; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 79–80. [Google Scholar]
- Nicholson, W.N.; Pritt, B.S. Family Anaplasmataceae (Anaplasmosis, Ehrlichiosis, Neorickettsiosis, and Neoehrlichiosis). In Principles and Practice of Pediatric Infectious Diseases; Long, S.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 937–942.e2. [Google Scholar]
- Szczotko, M.; Kubiak, K.; Michalski, M.M.; Moerbeck, L.; Antunes, S.; Domingos, A.; Dmitryjuk, M. Neoehrlichia mikurensis—A new emerging tick-borne pathogen in north-eastern Poland? Pathogens 2023, 12, 307. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.B.; Tang, T.; Chen, J.J.; Zhang, Y.Y.; Lv, C.L.; Xu, Q.; Wang, G.L.; Zhu, Y.; Wei, Y.H.; Hay, S.I.; et al. The global distribution and risk prediction of Anaplasmataceae species: A systematic review and geospatial modelling analysis. EBioMedicine 2025, 115, 105722. [Google Scholar] [CrossRef]
- Derdáková, M.; Václav, R.; Pangrácova-Blaňárová, L.; Selyemová, D.; Koči, J.; Walder, G.; Špitalská, E. Candidatus Neoehrlichia mikurensis and its co-circulation with Anaplasma phagocytophilum in Ixodes ricinus ticks across ecologically different habitats of Central Europe. Parasit. Vectors 2014, 7, 160. [Google Scholar] [CrossRef]
- Kawahara, M.; Rikihisa, Y.; Isogai, E.; Takahashi, M.; Misumi, H.; Suto, C.; Shibata, S.; Zhang, C.; Tsuji, M. Ultrastructure and phylogenetic analysis of ‘Candidatus Neoehrlichia mikurensis’ in the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus ticks. Int. J. Syst. Evol. Microbiol. 2004, 54, 1837–1843. [Google Scholar] [CrossRef]
- Portillo, A.; Santibáñez, P.; Palomar, A.M.; Santibáñez, S.; Oteo, J.A. ‘Candidatus Neoehrlichia mikurensis’ in Europe. New Microbes New Infect. 2018, 22, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Wennerås, C. Infections with the tick-borne bacterium Candidatus Neoehrlichia mikurensis. Clin. Microbiol. Infect. 2015, 21, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xiao, W.; Du, X.; Xue, J.; Wang, H.; Wang, Q.; Wang, Y.; Jia, H.; Song, H.; Qiu, S. Molecular detection of tick-borne bacterial pathogens in ticks and rodents from the China-Vietnam border. Vet. Sci. 2025, 12, 256. [Google Scholar] [CrossRef]
- Stuen, S.; Granquist, E.G.; Silaghi, C. Anaplasma phagocytophilum—A widespread multi-host pathogen with highly adaptive strategies. Front. Cell. Infect. Microbiol. 2013, 3, 31. [Google Scholar] [CrossRef]
- Szekeres, S.; Claudia Coipan, E.; Rigó, K.; Majoros, G.; Jahfari, S.; Sprong, H.; Földvári, G. Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in natural rodent and tick communities in Southern Hungary. Ticks Tick-Borne Dis. 2015, 6, 111–116. [Google Scholar] [CrossRef]
- Rar, V.; Tkachev, S.; Tikunova, N. Genetic diversity of Anaplasma bacteria: Twenty years later. Infect. Genet. Evol. 2021, 91, 104833. [Google Scholar] [CrossRef]
- Radzijevskaja, J.; Paulauskas, A.; Rosef, O. Prevalence of Anaplasma phagocytophilum and Babesia divergens in Ixodes ricinus ticks from Lithuania and Norway. Int. J. Med. Microbiol. 2008, 298, 218–221. [Google Scholar] [CrossRef]
- Paulauskas, A.; Radzijevskaja, J.; Rosef, O. Anaplasma in ticks feeding on migrating birds and questing ticks in Lithuania and Norway. Clin. Microbiol. Infect. 2009, 15, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Paulauskas, A.; Radzijevskaja, J.; Rosef, O. Molecular detection and characterization of Anaplasma phagocytophilum strains. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 187–195. [Google Scholar] [CrossRef]
- Radzijevskaja, J.; Tamoliūnaitė, D.; Sabūnas, V.; Aleksandravičienė, A.; Paulauskas, A. Prevalence and co-infection of mosquito- and tick-borne pathogens in domestic dogs suspected for canine babesiosis in Lithuania. Biologija 2020, 66, 94–102. [Google Scholar] [CrossRef]
- Radzijevskaja, J.; Snegiriovaitė, J.; Kibiša, A.; Ražanskė, I.; Paulauskas, A. Molecular characterization of Anaplasma phagocytophilum infection in the cervids and feeding ticks from Lithuania. Biologija 2020, 66, 136–144. [Google Scholar] [CrossRef]
- Lipatova, I.; Černevičienė, D.; Griciuvienė, L.; Ražanskė, I.; Aleksandravičienė, A.; Kibiša, A.; Radzijevskaja, J.; Olech, W.; Anusz, K.; Didkowska, A.; et al. Anaplasma phagocytophilum in European bison (Bison bonasus) and their ticks from Lithuania and Poland. Ticks Tick-Borne Dis. 2023, 14, 102246. [Google Scholar] [CrossRef] [PubMed]
- Hillyard, P.D. Ticks of North-West Europe, Synopses of the British Fauna No. 52 (New Series); The Linnean Society of London: London, UK, 1996. [Google Scholar]
- Rijpkema, S.; Golubić, D.; Molkenboer, M.; Verbeek-De Kruif, N.; Schellekens, J. Identification of four genomic groups of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in a Lyme borreliosis endemic region of northern Croatia. Exp. Appl. Acarol. 1996, 20, 23–30. [Google Scholar] [CrossRef]
- Razanske, I.; Rosef, O.; Radzijevskaja, J.; Bratchikov, M.; Griciuviene, L.; Paulauskas, A. Prevalence and co-infection with tick-borne Anaplasma phagocytophilum and Babesia spp. in red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in Southern Norway. Int. J. Parasitol. Parasites Wildl. 2019, 8, 127–134. [Google Scholar] [CrossRef]
- Jenkins, A.; Raasok, C.; Pedersen, B.N.; Jensen, K.; Andreassen, Å.; Soleng, A.; Edgar, K.S.; Lindstedt, H.H.; Kjelland, V.; Stuen, S.; et al. Detection of Candidatus Neoehrlichia mikurensis in Norway up to the northern limit of Ixodes ricinus distribution using a novel real time PCR test targeting the groEL gene. BMC Microbiol. 2019, 19, 199. [Google Scholar] [CrossRef]
- Sumner, J.W.; Nicholson, W.L.; Massung, R.F. PCR amplification and comparison of nucleotide sequences from the groESL heat shock operon of Ehrlichia species. J. Clin. Microbiol. 1997, 35, 2087–2092. [Google Scholar] [CrossRef]
- Liz, J.S.; Sumner, J.W.; Pfister, K.; Brossard, M. PCR detection and serological evidence of granulocytic ehrlichial infection in roe deer (Capreolus capreolus) and chamois (Rupicapra rupicapra). J. Clin. Microbiol. 2002, 40, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Matei, I.A.; Estrada-Peña, A.; Cutler, S.J.; Vayssier-Taussat, M.; Varela-Castro, L.; Potkonjak, A.; Zeller, H.; Mihalca, A.D. A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe. Parasit. Vectors 2019, 12, 599. [Google Scholar] [CrossRef]
- Stańczak, J.; Cieniuch, S.; Lass, A.; Biernat, B.; Racewicz, M. Detection and quantification of Anaplasma phagocytophilum and Babesia spp. in Ixodes ricinus ticks from urban and rural environment, northern Poland, by real-time polymerase chain reaction. Exp. Appl. Acarol. 2015, 66, 63–81. [Google Scholar] [CrossRef]
- Capligina, V.; Seleznova, M.; Akopjana, S.; Freimane, L.; Lazovska, M.; Krumins, R.; Kivrane, A.; Namina, A.; Aleinikova, D.; Kimsis, J.; et al. Large-scale countrywide screening for tick-borne pathogens in field-collected ticks in Latvia during 2017–2019. Parasit. Vectors 2020, 13, 351. [Google Scholar] [CrossRef] [PubMed]
- Vikentjeva, M.; Geller, J.; Bragina, O. Ticks and tick-borne pathogens in popular recreational areas in Tallinn, Estonia: The underestimated risk of tick-borne diseases. Microorganisms 2024, 12, 1918. [Google Scholar] [CrossRef] [PubMed]
- Karshima, S.N.; Ahmed, M.I.; Mohammed, K.M.; Pam, V.A.; Momoh-Abdullateef, H.; Gwimi, B.P. Worldwide meta-analysis on Anaplasma phagocytophilum infections in animal reservoirs: Prevalence, distribution and reservoir diversity. Vet. Parasitol. Reg. Stud. Rep. 2023, 38, 100830. [Google Scholar] [CrossRef]
- Jahfari, S.; Coipan, E.C.; Fonville, M.; van Leeuwen, A.D.; Hengeveld, P.; Heylen, D.; Heyman, P.; van Maanen, C.; Butler, C.M.; Földvári, G.; et al. Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit. Vectors 2014, 7, 365. [Google Scholar] [CrossRef]
- Gandy, S.; Hansford, K.; McGinley, L.; Cull, B.; Smith, R.; Semper, A.; Brooks, T.; Fonville, M.; Sprong, H.; Phipps, P.; et al. Prevalence of Anaplasma phagocytophilum in questing Ixodes ricinus nymphs across twenty recreational areas in England and Wales. Ticks Tick-Borne Dis. 2022, 13, 101965. [Google Scholar] [CrossRef]
- Ivanova, A.; Geller, J.; Katargina, O.; Värv, K.; Lundkvist, Å.; Golovljova, I. Detection of Candidatus Neoehrlichia mikurensis and Ehrlichia muris in Estonian ticks. Ticks Tick- Borne Dis. 2017, 8, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Svitálková, Z.H.; Haruštiaková, D.; Mahríková, L.; Mojšová, M.; Berthová, L.; Slovák, M.; Kocianová, E.; Vayssier-Taussat, M.; Kazimírová, M. Candidatus Neoehrlichia mikurensis in ticks and rodents from urban and natural habitats of South-Western Slovakia. Parasit. Vectors 2016, 9, 2. [Google Scholar] [CrossRef]
- Richter, D.; Kohn, C.; Matuschka, F.R. Absence of Borrelia spp., Candidatus Neoehrlichia mikurensis, and Anaplasma phagocytophilum in questing adult Dermacentor reticulatus ticks. Parasitol. Res. 2013, 112, 107–111. [Google Scholar] [CrossRef]
- Ondruš, J.; Balážová, A.; Baláž, V.; Zechmeisterová, K.; Novobilský, A.; Široký, P. Candidatus Neoehrlichia mikurensis is widespread in questing Ixodes ricinus ticks in the Czech Republic. Ticks Tick-Borne Dis. 2020, 11, 101371. [Google Scholar] [CrossRef]
- Zając, Z.; Kulisz, J.; Kunc-Kozioł, R.; Woźniak, A.; Foucault-Simonin, A.; Banović, P.; Corduneanu, A.; Moutailler, S.; Cabezas-Cruz, A. Neoehrlichia mikurensis: An emerging pathogen in Southeastern Poland—Prevalence in Ixodes ricinus ticks and phylogenetic characterization. Ann. Agric. Environ. Med. 2025, 32, 146–150. [Google Scholar] [CrossRef]
- Azagi, T.; Hoornstra, D.; Kremer, K.; Hovius, J.W.R.; Sprong, H. Evaluation of disease causality of rare Ixodes ricinus-borne infections in Europe. Pathogens 2020, 9, 150. [Google Scholar] [CrossRef] [PubMed]
- Félix, M.L.; Muñoz-Leal, S.; Carvalho, L.A.; Queirolo, D.; Remesar Alonso, S.; Nava, S.; Armúa-Fernández, M.T.; Venzal, J.M. Molecular characterization of novel Ehrlichia genotypes in Ixodes auritulus from Uruguay. Curr. Res. Parasitol. Vector Borne Dis. 2021, 1, 100022. [Google Scholar] [CrossRef]
- Smetanová, K.; Boldis, V.; Kocianová, E.; Spitalská, E. Detection of Ehrlichia muris in a yellow-necked mouse (Apodemus flavicollis) in Central Slovakia. Acta Virol. 2007, 51, 69–71. [Google Scholar] [PubMed]
- Johnson, D.K.; Schiffman, E.K.; Davis, J.P.; Neitzel, D.F.; Sloan, L.M.; Nicholson, W.L.; Fritsche, T.R.; Steward, C.R.; Ray, J.A.; Miller, T.K.; et al. Human infection with Ehrlichia muris-like Pathogen, United States, 2007–2013(1). Emerg. Infect. Dis. 2015, 21, 1794–1799. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Foster, E.; Ribbe, F.; Hojgaard, A.; Eisen, R.J.; Paull, S.; Rich, S.M. Detection of Ehrlichia muris eauclairensis in blacklegged ticks (Ixodes scapularis) and white-footed mice (Peromyscus leucopus) in Massachusetts. Vector Borne Zoonotic Dis. 2023, 23, 311–315. [Google Scholar] [CrossRef]
- Hegarty, B.C.; Maggi, R.G.; Koskinen, P.; Beall, M.J.; Eberts, M.; Chandrashekar, R.; Breitschwerdt, E.B. Ehrlichia muris infection in a dog from Minnesota. J. Vet. Intern. Med. 2012, 26, 1217–1220. [Google Scholar] [CrossRef]
- Croci, C.; Erriquez, L.; Bisaglia, B.; Bellinzona, G.; Olivieri, E.; Sassera, D.; Castelli, M. Genome sequence of Ehrlichia muris from Ixodes ricinus collected in Italy on a migratory bird provides epidemiological and evolutionary insights. Ticks Tick-Borne Dis. 2024, 15, 102409. [Google Scholar] [CrossRef]
- Porcelli, S.; Deshuillers, P.L.; Moutailler, S.; Lagrée, A.C. Meta-analysis of tick-borne and other pathogens: Co-infection or co-detection? That is the question. Curr. Res. Parasitol. Vector Borne Dis. 2024, 6, 100219. [Google Scholar] [CrossRef]
- Kowalec, M.; Szewczyk, T.; Welc-Falęciak, R.; Siński, E.; Karbowiak, G.; Bajer, A. Rickettsiales occurrence and co-occurrence in Ixodes ricinus ticks in natural and urban areas. Microb. Ecol. 2019, 77, 890–904. [Google Scholar] [CrossRef]
- Thomas, V.; Anguita, J.; Barthold, S.W.; Fikrig, E. Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis alters murine immune responses, pathogen burden, and severity of Lyme arthritis. Infect. Immun. 2001, 69, 3359–3371. [Google Scholar] [CrossRef]
Primers and Probes | Sequences (5′-3′) | Target Gene | Amplicon Size | References |
---|---|---|---|---|
Anaplasma_F | GGACAACATGCTTGTAGCTATGGAAGG | msp2 | 98 bp | [26] |
Anaplasma_R | CCTTGGTCTTGAAGCGCTCGTA | |||
Anaplasma_Zr | VIC-TCTCAAGCTCAACCCTGGCACCACCA-BHQ1 | |||
Neo2f | GCAAATGGAGATAAAAACATAGGTAGTAAA | groEL | 129 bp | [27] |
Neo2r | CATACCGTCAGTTTTTTCAACTTCTAA | |||
Neo2m | Cy5-TTACAGTTGAGGAAAGTAAGGGA-BHQ2 | |||
HS1 | AITGGGCTGGTAITGAAAT | groEL | 1450 bp | [28,29] |
HS6a | CCICCIGGIACIAIACCTTC | |||
HS43 | ATWGCWAARGAAGCATAGTC | 1300 bp | ||
HSVR | CTCAACAGCAGCTCTAGTAGC |
N | Prevalence, n (%) (95% CI) | Pathogen Co-Occurrence | |||
---|---|---|---|---|---|
Anaplasma phagocytophilum | Neoehrlichia mikurensis | ||||
Tick species | Ixodes ricinus | 3599 | 161 (4.47) (3.80–5.15) | 224 (6.22) (5.44–7.01) | 15 |
Dermacentor reticulatus | 29 | 1 (3.45) (2.85–4.40) | 0 | 0 | |
Tick sex | Female | 985 | 53 (5.38) (4.65–6.11) | 66 (6.70) (5.89–7.51) | 1 |
Male | 1040 | 65 (6.25) (5.46–7.04) | 69 (6.63) (5.82–7.44) | 8 | |
Tick stage | Adults | 2025 | 118 (5.83) (5.06–6.59) | 135 (6.66) (5.85–7.48) | 9 |
Nymphs | 1603 | 44 (2.74) (2.21–3.27) | 89 (5.55) (4.81–6.29) | 6 | |
Area type | Urban | 1770 | 82 (4.63) (3.95–5.32) | 104 (5.87) (5.11–6.64) | 5 |
Peri-urban | 1858 | 80 (4.31) (3.64–4.97) | 120 (6.46) (5.66–7.26) | 10 | |
Habitat type | Forested | 2342 | 106 (4.53) (3.85–5.20) | 137 (5.85) (5.09–6.61) | 13 |
Non-forested | 1286 | 56 (4.35) (3.69–5.02) | 87 (6.76) (5.95–7.58) | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snegiriovaitė, J.; Lipatova, I.; Razgūnaitė, M.; Paulauskas, A.; Radzijevskaja, J. Molecular Surveillance of Neoehrlichia mikurensis and Anaplasma phagocytophilum in Ticks from Urbanized Areas of Lithuania. Pathogens 2025, 14, 642. https://doi.org/10.3390/pathogens14070642
Snegiriovaitė J, Lipatova I, Razgūnaitė M, Paulauskas A, Radzijevskaja J. Molecular Surveillance of Neoehrlichia mikurensis and Anaplasma phagocytophilum in Ticks from Urbanized Areas of Lithuania. Pathogens. 2025; 14(7):642. https://doi.org/10.3390/pathogens14070642
Chicago/Turabian StyleSnegiriovaitė, Justina, Indrė Lipatova, Miglė Razgūnaitė, Algimantas Paulauskas, and Jana Radzijevskaja. 2025. "Molecular Surveillance of Neoehrlichia mikurensis and Anaplasma phagocytophilum in Ticks from Urbanized Areas of Lithuania" Pathogens 14, no. 7: 642. https://doi.org/10.3390/pathogens14070642
APA StyleSnegiriovaitė, J., Lipatova, I., Razgūnaitė, M., Paulauskas, A., & Radzijevskaja, J. (2025). Molecular Surveillance of Neoehrlichia mikurensis and Anaplasma phagocytophilum in Ticks from Urbanized Areas of Lithuania. Pathogens, 14(7), 642. https://doi.org/10.3390/pathogens14070642