Inhibitory Activity of Compounds Obtained from Streptomyces Against Trypanosoma cruzi
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Streptomyces
2.3. Activation of Streptomycetes
2.4. Culture of Trypanosoma cruzi Epimastigotes
2.5. Antagonistic Activity Assay of Streptomyces Against Trypanosoma cruzi
2.6. Extraction of Compounds
2.7. Antiparasitic Activity of the Extracellular Metabolite Extracts Against Epimastigote, Trypomastigote, and Amastigote Forms of Trypanosoma cruzi
2.8. Evaluation of the Toxic Activity of the Extracellular Metabolites in Artemia Salina Model
2.9. Evaluation of Hemolytic Activity of the Extracellular Metabolites
2.10. Production of Trypanosoma cruzi Trypomastigotes
2.11. Production of Trypanosoma cruzi Amastigotes
2.12. Cytotoxicity Assay
2.13. Fractionation of Extracellular Metabolites by Column Chromatography
2.14. LC-MS/MS Analysis
2.15. Statistical Analysis
3. Results
3.1. Inhibitory Activity of Streptomyces Cell Cultures Against T. cruzi Epimastigotes
3.2. Antiparasitic/Inhibitory Activity of Purified Streptomyces Extracellular Metabolites Against Multiple T. cruzi Forms
3.3. Trypanocidal, Toxic, and Hemolytic Activity of the Fractions
3.4. Identification of Chemical Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization: WHO. Available online: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (accessed on 27 March 2025).
- Cucunubá, Z.M.; Gutiérrez-Romero, S.A.; Ramírez, J.D.; Velásquez-Ortiz, N.; Ceccarelli, S.; Parra-Henao, G.; Henao-Martínez, A.F.; Rabinovich, J.; Basáñez, M.-G.; Nouvellet, P.; et al. The epidemiology of Chagas disease in the Americas. Lancet Reg. Health–Am. 2024, 37, 100881. [Google Scholar] [CrossRef]
- Rojo-Medina, J.; Ruiz-Matus, C.; Salazar-Schettino, P.M.; González-Roldán, J.F. Enfermedad de Chagas en México. Gac. Méd. Méx. 2018, 154, 605–612. [Google Scholar] [CrossRef]
- World Health Organization: WHO. Available online: https://www.who.int/health-topics/chagas-disease#tab=tab_1 (accessed on 27 March 2025).
- Coura, J.R. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions-A comprehensive review. Mem. Inst. Oswaldo Cruz. 2015, 110, 277–282. [Google Scholar] [CrossRef]
- Toso, M.A.; Vial, U.F.; Galanti, N. Transmisión de la enfermedad de Chagas por vía oral. Rev. Méd. Chile 2011, 139, 258–266. [Google Scholar] [CrossRef]
- Rassi, A.; Marin-Neto, J.A. Chagas disease. Lancet 2010, 375, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Thakare, R.; Dasgupta, A.; Chopra, S. Update on nifurtimox for treatment of Chagas disease. Drugs Today 2021, 57, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, E.; Brum-Soares, L.; Reis, R.; Cubides, J.C. Chagas disease: Review of needs, neglect, and obstacles to treatment access in Latin America. Rev. Soc. Bras. Med. Trop. 2017, 50, 296–300. [Google Scholar] [CrossRef]
- McPhee, S.J.; Papadakis, M.A.; Rabow, M.W. Current Medical Diagnosis & Treatment, 53rd ed.; McGraw Hill: New York, NY, USA, 2014; Volume 12, p. 1839. [Google Scholar]
- Tali, M.B.T.; Kamdem, B.P.; Tchouankeu, J.C.; Boyom, F.F. Current developments on the antimalarial, antileishmanial, and antitrypanosomal potential and mechanisms of action of Terminalia spp. S. Afr. J. Bot. 2023, 156, 309–333. [Google Scholar] [CrossRef]
- Isak, D.; Schwartz, L.A.; Schulthoff, S.; Pérez-Moreno, G.; Bosch-Navarrete, C.; González-Pacanowska, D.; Fürstner, A. Collective and diverted total synthesis of the strasseriolides: A family of macrolides endowed with potent antiplasmodial and antitrypanosomal activity. Angew. Chem. Int. Ed. 2024, 63, e202408725. [Google Scholar] [CrossRef]
- Araujo, S.C.; Sousa, F.S.; Costa-Silva, T.A.; Tempone, A.G.; Lago, J.H.G.; Honorio, K.M. Discovery of new hits as antitrypanosomal agents by in silico and in vitro assays using neolignan-inspired natural products from Nectandra leucantha. Molecules 2021, 26, 4116. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, Z.; Sharma, A.R.; Nakajima-Shimada, J.; Junko, E.; Oku, N.; Trianto, A.; Yasuhiro, I. Bulbiferamide, an antitrypanosomal hexapeptide cyclized via an N-Acylindole linkage from a marine obligate Microbulbifer. Nat. Prod. 2023, 86, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Genilloud, O. Actinomycetes: Still a source of novel antibiotics. Nat. Prod. Rep. 2017, 34, 1203–1232. [Google Scholar] [CrossRef]
- Pagmadulam, B.; Tserendulam, D.; Rentsenkhand, T.; Igarashi, M.; Sawa, R.; Nihei, C.; Nishikawa, Y. Isolation and characterization of antiprotozoal compound-producing Streptomyces species from Mongolian soils. Parasit. Int. 2020, 74, 101961. [Google Scholar] [CrossRef] [PubMed]
- Hauser, D.; Kaoser, M.; Mäser, P.; Albisetti, A. Venturicidin A affects the mitochondrial membrane potential and induces kDNA loss in Trypanosoma brucei. Antimicrob. Agents Chemother. 2024, 68, e01671-23. [Google Scholar] [CrossRef]
- Cartuche, L.; Sifaoui, I.; López-Arencibia, A.; Bethencourt-Estrella, C.J.; Nicolás-Hernández, D.S.; Lorenzo-Morales, J.; Piñero, J.E.; Díaz-Marrero, A.R.; Fernández, J.J. Antikinetoplastid activity of indolocarbazoles from Streptomyces sanyensis. Biomolecules 2020, 10, 657. [Google Scholar] [CrossRef] [PubMed]
- Abdelmohsen, U.R.; Yang, C.; Horn, H.; Hajjar, D.; Ravasi, T.; Hentschel, U. Actinomycetes from Red Sea sponges: Sources for chemical and phylogenetic diversity. Mar. Drugs 2014, 12, 2771–2789. [Google Scholar] [CrossRef]
- Ruanpanun, P.; Chiradej, C. Potential of actinomycetes isolated from earthworm castings in controlling root-knot nematode Meloidogyne incognita. J. Gen. Plant. Path. 2016, 82, 43–50. [Google Scholar] [CrossRef]
- Secretaría de Salud. Norma Oficial Mexicana NOM-253-SSA1-2012, Para la Disposición de Sangre Humana y sus Componentes con Fines Terapéuticos. Available online: https://www.dof.gob.mx/normasOficiales/4917/salud3a/salud3a.html (accessed on 7 June 2025).
- Toumatia, O.; Yekkour, A.; Goudjal, Y.; Riba, A.; Coppel, Y.; Mathieu, F.; Sabaou, N.; Zitouni, A. Antifungal properties of an actinomycin D-producing strain, Streptomyces sp. IA1, isolated from a Saharan soil. J. Basic. Microbiol. 2015, 55, 221–228. [Google Scholar] [CrossRef]
- Molina-Garza, Z.J.; Rosales-Encina, J.L.; Galaviz-Silva, L.; Molina-Garza, D. Prevalencia de Trypanosoma cruzi en triatominos silvestres de Nuevo León, México. Salud Pública Mex. 2007, 49, 37–44. [Google Scholar] [CrossRef]
- Teston, A.P.M.; de Abreu, A.P.; Abegg, C.P.; Gomes, M.L.; de Ornelas, M.J.T. Outcome of oral infection in mice inoculated with Trypanosoma cruzi IV of the Western Brazilian Amazon. Acta Trop. 2017, 166, 212–217. [Google Scholar] [CrossRef]
- Vivero-Gomez, R.J.; Largo, D.F.; Cadavid-Restrepo, G.; Duque-Granda, D.; Moreno-Herrera, C.X. Studying the interactions between microbiomes and Leishmania parasites in sand flies: A source of new targets for pathogen control. In Recent Advances in Parasitomics: Implications for Parasite and Vector Research, 1st ed.; Ramírez-González, J.D., Ed.; Springer: Cham, Switzerland, 2025; Volume 1, pp. 315–341. [Google Scholar] [CrossRef]
- Pérez-Rojas, F.; León-Quispe, J.; Galindo-Cabello, N. Actinomicetos aislados del compost y su actividad antagonista a fitopatógenos de la papa (Solanum tuberosum spp. andigena Hawkes). Rev. Mex. Fitopatol. 2015, 33, 116–139. [Google Scholar]
- Bavya, M.; Mohanapriya, P.; Pazhanimurugan, R.; Balagurunathan, R. Potential bioactive compound from marine actinomycetes against biofouling bacteria. Indian. J. Geomarine Sci. 2011, 40, 578–582. [Google Scholar]
- Kannahi, M.; Eshwari, N.T. Extraction, purification and antibacterial activity of bioactive compounds from marine Bacillus species. Int. J. Pure Appl. Biosci. 2016, 4, 244–254. [Google Scholar] [CrossRef]
- Rao, K.V.R.; Mani, P.; Satyanarayana, B.; Rao, T.R. Purification and structural elucidation of three bioactive compounds isolated from Streptomyces coelicoflavus BC 01 and their biological activity. 3 Biotech. 2017, 7, 24. [Google Scholar] [CrossRef]
- Sangkanu, S.; Rukachaisirikul, V.; Suriyachadkun, C.; Phongpaichit, S. Evaluation of antibacterial potential of mangrove sediment-derived actinomycetes. Microb. Pathog. 2017, 112, 303–312. [Google Scholar] [CrossRef]
- Muelas-Serrano, S.; Nogal-Ruiz, J.J.; Gómez-Barrio, A. Setting of a colorimetric method to determine the viability of Trypanosoma cruzi epimastigotes. Parasitol. Res. 2000, 86, 999–1002. [Google Scholar] [CrossRef]
- Molina-Garza, Z.J.; Bazaldúa-Rodríguez, A.F.; Quintanilla-Licea, R.; Galaviz-Silva, L. Anti-Trypanosoma cruzi activity of 10 medicinal plants used in Northeast Mexico. Acta Trop. 2014, 136, 14–18. [Google Scholar] [CrossRef]
- Pérez-Treviño, K.C.; Galaviz-Silva, L.; Iracheta-Villarreal, J.M.; Lucero-Velasco, E.A.; Molina-Garza, Z.J. Activity against Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae) of methanolic extracts of medicinal use plants in Mexico. Rev. Biol. Trop. 2017, 65, 1459–1469. [Google Scholar] [CrossRef]
- Lagarto, A.P.; Silva, R.Y.; Guerra, I.S.; Iglesias, L.B. Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine 2001, 8, 395–400. [Google Scholar] [CrossRef]
- Fernández-Calienes, A.V.; Mendiola, J.M.; Monzote, L.F.; García, M.P.; Sariego, I.R.; Acuña, D.R.; Scull, R.L.; Gutiérrez, Y.G. Evaluación de la toxicidad de extractos de plantas cubanas con posible acción antiparasitaria utilizando larvas de Artemia salina L. Rev. Cubana Med. Trop. 2009, 61, 254–258. [Google Scholar]
- Zohra, M.; Fawzia, A. Hemolytic activity of different herbal extracts used in Algeria. Int. J. Pharm. Sci. Res. 2014, 5, 495–500. [Google Scholar]
- Hernández-Salmerón, J.E.; Prieto-Barajas, C.M.; Valencia-Cantero, E.; Moreno-Hagelsieb, G.; Santoyo, G. Isolation and characterization of genetic variability in bacteria with β-hemolytic and antifungal activity isolated from the rhizosphere of Medicago truncatula plants. Genet. Mol. Res. 2014, 13, 4967–4975. [Google Scholar] [CrossRef]
- Martínez, M.; Mancuello, C.; Pereira, C.; González, F.; Prieto, R.; Rolón, M.; Álvarez, S.; Benítez, B. Estudio espectrofotométrico de la actividad hemolítica del extracto crudo de Phoradendron bathyoryctum Eichler sobre eritrocitos humanos. Steviana 2013, 5, 114–121. [Google Scholar] [CrossRef]
- Alonso-Geli, Y.; Alonso-Moreno, Y.; Falcón-Diéguez, J.E.; Lucambio-Miró, L.; Castro-Piñol, M. Caracterización de la fragilidad osmótica de eritrocitos humanos en la anemia drepanocítica. Rev. Cub. Quim. 2015, 27, 110–118. [Google Scholar]
- Contreras, V.; Salles, J.M.; Thomas, N.; Morel, C.M.; Goldenberg, S. In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol. Biochem. Parasitol. 1985, 16, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.C.; Scharfstein, J.; de A. Lima, A.P.C. Role of chagasin-like inhibitors as endogenous regulators of cysteine proteases in parasitic protozoa. Parasitol. Res. 2006, 99, 323–324. [Google Scholar] [CrossRef]
- Tempone, A.G.; Treiger-Borborema, S.E.; de Andrade, H.F.J.; de Amoriom-Gualda, N.C.; Yogi, Á.; Salerno-Carvalho, C.; Bachiega, D.; Lupo, F.N.; Bonotto, S.V.; Fischer, D.C.H. Antiprotozoal activity of Brazilian plant extracts from isoquinoline alkaloid-producing families. Phytomedicine 2005, 12, 382–390. [Google Scholar] [CrossRef]
- Neira, L.F.; Stashenko, E.; Escobar, P. Actividad antiparasitaria de extractos de plantas colombianas de la familia Euphorbiaceae. Salud UIS 2014, 46, 15–22. [Google Scholar]
- Zapata, B.; Durán, C.; Stashenko, E.; Betancur-Galvis, L.; Mesa-Arango, A.C. Actividad antimicótica, citotoxicidad y composición de aceites esenciales de plantas de la familia Labiatae. Salud UIS 2009, 41, 223–230. [Google Scholar]
- Osorio, E.; Arango, G.J.; Jiménez, N.; Alzate, F.; Ruiz, G.; Gutiérrez, D.; Paco, M.A.; Giménez, A.; Robledo, S. Antiprotozoal and cytotoxic activities in vitro of Colombian Annonaceae. J. Ethnopharmacol. 2007, 111, 630–635. [Google Scholar] [CrossRef]
- Rodríguez-Garza, N.E.; Marín, M.; Sánchez-Montejo, J.; Elizondo-Luévano, J.H.; Bazaldúa-Rodríguez, A.F.; Quintanilla-Licea, R.; Romo-Sáenz, C.I.; Peláez, R.; Muro, A.; López-Abán, J. Antiparasitic Activity of Chalepensin and Graveoline Isolated from Ruta chalepensis L.: In Vitro Evaluation Against Strongyloides venezuelensis. Pathogens 2025, 14, 419. [Google Scholar] [CrossRef] [PubMed]
- Valencia, L.; Muñoz, D.L.; Robledo, S.M.; Echeverri, F.; Arango, G.J.; Vélez, I.D.; Triana, O. Trypanocidal and cytotoxic activity of extracts of Colombian plants. Biomedica 2011, 31, 552–559. [Google Scholar] [CrossRef] [PubMed]
- García-Huertas, P.; Olmo, F.; Sánchez-Moreno, M.; Dominguez, J.; Chahboun, R.; Triana-Chávez, O. Activity in vitro and in vivo against Trypanosoma cruzi of a furofuran lignan isolated from Piper jericoense. Exp. Parasitol. 2018, 189, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Birch, H.; Redman, A.D.; Letinski, D.J.; Lyon, D.Y.; Mayer, P. Determining the water solubility of difficult-to-test substances: A tutorial review. Anal. Chim. Acta. 2019, 1086, 16–28. [Google Scholar] [CrossRef]
- Sebak, M.; Saafan, A.E.; Abdelghani, S.; Bakeer, W.; Moawad, A.S.; El-Gendy, A.O. Isolation and optimized production of putative antimicrobial compounds from Egyptian soil isolate Streptomyces sp. MS. 10. Beni-Suef. Univ. J. Basic. Appl. Sci. 2021, 10, 1–12. [Google Scholar] [CrossRef]
- Cázares-Jaramillo, G.E.; Molina-Garza, Z.J.; Luna-Cruz, I.E.; Solís-Soto, L.Y.; Rosales-Encina, J.L.; Galaviz-Silva, L. In vitro anti-Trypanosoma cruzi activity of m ethanolic extract of Bidens pilosa and identification of active compounds by gas chromatography-mass spectrometry analysis. Parasites Hosts Dis. 2023, 61, 405. [Google Scholar] [CrossRef] [PubMed]
- Hening, E.N.W.; Priyanto, J.A.; Prastya, M.E.; Astuti, R.I.; Hasidu, L.; Jamilah, O.A.F. Soil bacteria from Muna Island, Southeast Sulawesi, Indonesia: Antibacterial and antibiofilm activities, and the presence of antibiotic-biosynthetic genes. J. Appl. Pharm. Sci. 2024, 14, 207–217. [Google Scholar] [CrossRef]
- Cammilleri, G.; Pulvirenti, A.; Vella, A.; Macaluso, A.; Lo Dico, G.M.; Giaccone, V.; Giordano, V.; Vinciguerra, M.; Cicero, N.; Cicero, A.; et al. Tetracycline residues in bovine muscle and liver samples from Sicily (southern Italy) by LC-MS/MS method: A Six-Year Study. Molecules 2019, 24, 695. [Google Scholar] [CrossRef]
- Al-Adhroey, A.H.; Nor, Z.M.; Al-Mekhlafi, H.M.; Mahmud, R. Median lethal dose, antimalarial activity, phytochemical screening and radical scavenging of methanolic Languas galanga rhizome extract. Molecules 2010, 15, 8366–8376. [Google Scholar] [CrossRef]
- Braña, A.; Sarmiento-Vizcaíno, A.; Pérez-Victoria, I.; Martín, J.; Otero, L.; Palacios-Gutiérrez, J.J.; Fernández, J.; Mohamedi, Y.; Fontanil, T.; Salmón, M.; et al. Desertomycin G, a new antibiotic with activity against Mycobacterium tuberculosis and human breast tumor cell lines produced by Streptomyces althioticus MSM3, isolated from the Cantabrian Sea Intertidal macroalgae Ulva sp. Mar. Drugs 2019, 17, 114. [Google Scholar] [CrossRef]
- Salwan, R.; Sharma, V. Bioactive compounds of Streptomyces: Biosynthesis to applications. Stud. Nat. Prod. Chem. 2020, 64, 467–491. [Google Scholar] [CrossRef]
- Shepherdson, E.M.F.; Christine, R.B.; Elliot, M.A. Streptomyces behavior and competition in the natural environment. Curr. Opin. Microbiol. 2023, 71, 102257. [Google Scholar] [CrossRef]
- Argüello-García, R.; Leitsch, D.; Skinner-Adams, T.; Ortega-Pierres, M.G. Drug resistance in Giardia: Mechanisms and alternative treatments for Giardiasis. Adv. Parasitol. 2020, 107, 201–282. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, K.; Dharumadurai, D.; Ramasamy, T.; Manickam, M. An In Vitro Antiamoebic activity of actinobacteria. In Methods in Actinobacteriology, 1st ed.; Dharumadurai, D., Ed.; Humana: New York, NY, USA, 2022; Volume 1, pp. 413–417. [Google Scholar] [CrossRef]
- Kaaniche, F.; Hamed, A.; Elleuch, L.; Chakchouk-Mtibaa, A.; Smaoui, S.; Karray-Rebai, I.; Koubaa, I.; Arcile, G.; Allouche, N.; Mellouli, L. Purification and characterization of seven bioactive compounds from the newly isolated Streptomyces cavourensis TN638 strain via solid-state fermentation. Microb. Pathog. 2020, 142, 104106. [Google Scholar] [CrossRef] [PubMed]
- Tangerina, N.M.P.; Costa-Furtado, L.; Leite, V.M.B.; Bauermeister, A.; Velasco-Alzate, K.; Jimenez, P.C.; Garrido, L.M.; Padilla, G.; Lopes, N.P.; Costa-Lotufo, L.V.; et al. Metabolomic study of marine sp.: Secondary metabolites and the production of potential anticancer compounds. PLoS ONE 2020, 15, e0244385. [Google Scholar] [CrossRef]
- Ni, H.; Lv, S.; Sheng, Y.; Wang, H.; Chu, x.; Zhang, H. Optimization of fermentation conditions and medium compositions for the production of chrysomycin a by a marine-derived strain Streptomyces sp. 891. Prep. Biochem. Biotechnol. 2021, 51, 998–1003. [Google Scholar] [CrossRef]
- Yao, Z.; Fan, J.; Dai, J.; Yu, C.; Zeng, H.; Li, Q.; Hu, W.; Yan, C.; Hao, M.; Li, H.; et al. A high-throughput method based on microculture technology for screening of high-yield strains of tylosin-producing Streptomyces fradiae. J. Microbiol. Biotechnol. 2023, 33, 831. [Google Scholar] [CrossRef]
- Butt, U.D.; Khan, S.; Liu, X.; Sharma, A.; Zhang, X.; Wu, B. Present status, limitations, and prospects of using Streptomyces bacteria as a potential probiotic agent in aquaculture. Probiotics Antimicro. Prot. 2024, 16, 426–442. [Google Scholar] [CrossRef]
- Qureshi, K.A.; Nasr, I.A.; Koko, W.S.; Khan, T.A.; Fatmi, M.Q.; Imtiaz, M.; Khan, R.A.; Mohammed, H.A.; Jaremko, M.; Emwas, A.H.; et al. In vitro and in silico approaches for the antileishmanial activity evaluations of actinomycins isolated from novel Streptomyces smyrnaeus strain UKAQ_23. Antibiotics 2021, 10, 887. [Google Scholar] [CrossRef]
- Gamaleldin, N.M.; Bakeer, W.; Sayed, A.M.; Shamikh, Y.I.; El-Gendy, A.O.; Hassan, H.M.; Horn, H.; Abdelmohsen, U.R.; Hozzein, W.N. Exploration of chemical diversity and antitrypanosomal activity of some red sea-derived actinomycetes using the OSMAC approach supported by LC-MS-based metabolomics and molecular modelling. Antibiotics 2020, 9, 629. [Google Scholar] [CrossRef]
- Martinez-Peinado, N.; Martori, C.; Cortes-Serra, N.; Sherman, J.; Rodriguez, A.; Gascon, J.; Alberola, J.; Pinazo, M.; Rodriguez-Cortes, A.; Alonso-Padilla, J. Anti-Trypanosoma cruzi activity of metabolism modifier compounds. Int. J. Mol. Sci. 2021, 22, 688. [Google Scholar] [CrossRef]
- Zheng, G.; Liu, P.; He, W.; Tao, H.; Yang, Z.; Sun, C.; Wang, W.; Lu, Y.; Jiang, W. Identification of the cognate response regulator of the orphan histidine kinase OhkA involved in both secondary metabolism and morphological differentiation in Streptomyces coelicolor. Appl. Microbiol. Biotechnol. 2021, 105, 5905–5914. [Google Scholar] [CrossRef]
- Cuozzo, S.; De LeBlanc, A.D.; LeBlanc, J.G.; Hoffmann, N.; Tortella, G.R. Streptomyces genus as a source of probiotics and its potential for its use in health. Microbiol. Res. 2023, 266, 127248. [Google Scholar] [CrossRef] [PubMed]
- Luan, X.; Zhang, L.J.; Li, X.Q.; Rahman, K.; Zhang, H.; Chen, H.Z.; Zhang, W.D. Compound-based Chinese medicine formula: From discovery to compatibility mechanism. J. Ethnopharmacol. 2020, 254, 112687. [Google Scholar] [CrossRef]
- Cerna-Chávez, E.; Rodríguez-Rodríguez, J.F.; García-Conde, K.B.; Ochoa-Fuentes, Y.M. Potential of Streptomyces avermitilis: A Review on Avermectin production and its biocidal effect. Metabolites 2024, 14, 374. [Google Scholar] [CrossRef] [PubMed]
- Nayaka, S.; Muthuraj, R.; Chakraborty, B.; Bhat, M.P.; Pallavi, S.S.; Shashiraj, K.N.; Halaswamy, H.M.; Dhanyakumara, S.B.; Airodagi, D.; Haged, K. A Potential bioactive secondary metabolites and antimicrobial efficacy of Streptomyces thermocarboxydus strain KSA-2, isolated from Kali River, Karwar. Curr. Res. Microbiol. Infect. 2020, 1, 5–13. [Google Scholar] [CrossRef]
- Jakubiec-Krzesniak, K.; Rajnisz-Mateusiak, A.; Guspiel, A.; Ziemska, J.; Solecka, J. Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. Pol. J. Microbiol. 2018, 67, 259. [Google Scholar] [CrossRef]
- Alam, K.; Mazumder, A.; Sikdar, S.; Zhao, Y.; Hao, J.; Song, C.; Wang, Y.; Sarkar, R.; Islam, S.; Zhang, Y.; et al. Streptomyces: The biofactory of secondary metabolites. Front. Microbiol. 2022, 13, 968053. [Google Scholar] [CrossRef]
- Donald, L.; Pipite, A.; Subramani, R.; Owen, J.; Keyzers, R.A.; Taufa, T. Streptomyces: Still the biggest producer of new natural secondary metabolites, a current perspective. Microbiol. Res. 2022, 13, 418–465. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Q.; Zhang, Q.; Cui, X.; Zhu, L. Promising antiparasitic natural and synthetic products from marine invertebrates and microorganisms. Mar. Drugs 2023, 21, 84. [Google Scholar] [CrossRef]
- Kumar, P.; Kundu, A.; Kumar, M.; Solanki, R.; Kapur, M.K. Exploitation of potential bioactive compounds from two soil derived actinomycetes, Streptomyces sp. strain 196 and RI. 24. Microbiol. Res. 2019, 229, 126312. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, G.; Sun, M.; He, H.; Wang, H.; Li, Y.; Lu, C.H.; Shen, Y.M. Identification and characterization of the biosynthetic gene cluster of divergolides from Streptomyces sp. W112. Gene 2014, 544, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Khosravi-Babadi, Z.; Ebrahimipour, G.; Wink, J.; Narmani, A.; Risdian, C. Isolation and identification of Streptomyces sp. Act4Zk, a good producer of Staurosporine and some derivatives. Lett. Appl. Microbiol. 2021, 72, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Inahashi, Y.; Iwatsuki, M.; Ishiyama, A.; Matsumoto, A.; Hirose, T.; Oshita, J.; Sunazuka, T.; Panbangred, W.; Takahashi, Y.; Kaiser, M.; et al. Actinoallolides A–E, new anti-trypanosomal macrolides, produced by an endophytic actinomycete, Actinoallomurus fulvus MK10-036. Org. Lett. 2015, 17.4, 864–867. [Google Scholar] [CrossRef]
- Maatsuura, H.N.; Fett-Neto, A.G. Plant Alkaloids: Main Features, Toxicity, and Mechanisms of Action. Plant Toxins 2015, 2, 1–15. [Google Scholar] [CrossRef]
- Rubinchik, E.; Schneider, T.; Elliott, M.; Scott, W.R.P.; Pan, J.; Anklin, C.; Yang, H.; Dugourd, D.; Müller, A.; Gries, K.; et al. Mechanism of action and limited cross-resistance of new lipopeptide MX-2401. Antimicrob. Agents Chemother. 2011, 55, 2743–2754. [Google Scholar] [CrossRef]
Cell Concentration of Streptomyces (CFU/mL) | T. cruzi Epimastigotes Mortality (%) +/− SD | |
---|---|---|
ST-C43 | S-C104 | |
1 × 107 | 93.25 ± 0.07 a | 92.33 ± 2.35 a |
2 × 107 | 94.25 ± 0.14 a | 93.33 ± 2.36 a |
3 × 107 | 95.17 ± 1.01 a | 94.50 ± 1.47 a |
4 × 107 | 96.42 ± 1.02 a | 96.00 ± 3.43 a |
5 × 107 | 97.75 ± 1.89 b | 97.50 ± 2.17 b |
Activity | ST-C43 | S-C104 |
---|---|---|
Epimastigotes | 100 (89–108) | 110 (91–121) |
Trypomastigotes | 102 (91–107) | 116 (97–129) |
Amastigotes | 198 (178–217) | >300 |
Toxicity | >1000 (not toxic) | >1000 (not toxic) |
Cytotoxicity | >1000 (not cytotoxic) | >1000 (not cytotoxic) |
Hemolysis | >1000 (not hemolytic) | >1000 (not hemolytic) |
SI | >10 | >10 |
Fraction | Activity | |||
---|---|---|---|---|
Anti-Trypanosoma | Toxic | Hemolytic | SI | |
ST-C43-EAM-F1 | 105 (96–108) | >1000 * | 245 (227–266) | >10 |
ST-C43-EAM-F2 | 115 (102–122) | >1000 * | >1000 ** | >10 |
ST-C43-EAM-F3 | 107 (100–116) | >1000 * | 256 (240–271) | >10 |
ST-C43-EAM-F4 | 116 (110–128) | >1000 * | >1000 ** | >10 |
S-C104-EAM-F1 | >1000 (no activity) | >1000 * | >1000 ** | N.A. |
S-C104-EAM-F2 | >1000 (no activity) | >1000 * | >1000 ** | N.A. |
S-C104-EAM-F3 | >1000 (no activity) | >1000 * | >1000 ** | N.A. |
Unit | Retention Time (min) | Molecular Weight | m/z Value |
---|---|---|---|
Amphomycin | 12.28 | 1290.4 | 1318.6900 |
K-252-C-Aglycone | 10.54 | 311.4 | 334.0501 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Garduño, J.A.; Galaviz-Silva, L.; Rojas-Verde, M.G.; Elizondo-Luevano, J.H.; Baylón-Pacheco, L.; Rosales-Encina, J.L.; Gutiérrez-Soto, G.; Molina-Garza, Z.J. Inhibitory Activity of Compounds Obtained from Streptomyces Against Trypanosoma cruzi. Pathogens 2025, 14, 638. https://doi.org/10.3390/pathogens14070638
Delgado-Garduño JA, Galaviz-Silva L, Rojas-Verde MG, Elizondo-Luevano JH, Baylón-Pacheco L, Rosales-Encina JL, Gutiérrez-Soto G, Molina-Garza ZJ. Inhibitory Activity of Compounds Obtained from Streptomyces Against Trypanosoma cruzi. Pathogens. 2025; 14(7):638. https://doi.org/10.3390/pathogens14070638
Chicago/Turabian StyleDelgado-Garduño, Jorge Andrés, Lucio Galaviz-Silva, Ma Guadalupe Rojas-Verde, Joel Horacio Elizondo-Luevano, Lidia Baylón-Pacheco, José Luis Rosales-Encina, Guadalupe Gutiérrez-Soto, and Zinnia Judith Molina-Garza. 2025. "Inhibitory Activity of Compounds Obtained from Streptomyces Against Trypanosoma cruzi" Pathogens 14, no. 7: 638. https://doi.org/10.3390/pathogens14070638
APA StyleDelgado-Garduño, J. A., Galaviz-Silva, L., Rojas-Verde, M. G., Elizondo-Luevano, J. H., Baylón-Pacheco, L., Rosales-Encina, J. L., Gutiérrez-Soto, G., & Molina-Garza, Z. J. (2025). Inhibitory Activity of Compounds Obtained from Streptomyces Against Trypanosoma cruzi. Pathogens, 14(7), 638. https://doi.org/10.3390/pathogens14070638