High Diversity and Prevalence of Potentially Pathogenic Free-Living Amoebae in Water Sources from Castilla y León, Spain
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Sampling
2.2. Free-Living Amoeba Isolation
2.3. DNA Extraction
2.4. PCR and Molecular Characterizations
2.5. Phylogenetic Analysis
3. Results
3.1. Regional Variation
3.2. Seasonal Variation
3.3. Influence of Type of Water Source
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schuster, F.L.; Visvesvara, G.S. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int. J. Parasitol. 2004, 34, 1001–1027. [Google Scholar] [CrossRef]
- Król-Turmińska, K.; Olender, A. Human infections caused by free-living amoebae. Ann. Agric. Environ. Med. 2017, 24, 254–260. [Google Scholar] [CrossRef]
- Vaerewijck, M.J.M.; Baré, J.; Lambrecht, E.; Sabbe, K.; Houf, K. Interactions of Foodborne Pathogens with Free-living Protozoa: Potential Consequences for Food Safety. Compr. Rev. Food Sci. Food Saf. 2014, 13, 924–944. [Google Scholar] [CrossRef]
- Visvesvara, G.S.; Moura, H.; Schuster, F.L. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol. Med. Microbiol. 2007, 50, 1–26. [Google Scholar] [CrossRef]
- Trabelsi, H.; Dendana, F.; Sellami, A.; Sellami, H.; Cheikhrouhou, F.; Neji, S.; Makni, F.; Ayadi, A. Pathogenic free-living amoebae: Epidemiology and clinical review. Pathol. Biol. 2012, 60, 399–405. [Google Scholar] [CrossRef]
- Hara, T.; Yagita, K.; Sugita, Y. Pathogenic free-living amoebic encephalitis in Japan. Neuropathology 2019, 39, 251–258. [Google Scholar] [CrossRef]
- Pana, A.; Vijayan, V.; Anilkumar, A.C. Amebic Meningoencephalitis. 2023. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Pinna, A.; Porcu, T.; Boscia, F.; Cano, A.; Erre, G.; Mattana, A. Free-Living Amoebae Keratitis. Cornea 2017, 36, 785–790. [Google Scholar] [CrossRef]
- Scheid, P.L.; Lâm, T.T.; Sinsch, U.; Balczun, C. Vermamoeba vermiformis as etiological agent of a painful ulcer close to the eye. Parasitol. Res. 2019, 118, 1999–2004. [Google Scholar] [CrossRef]
- Samba-Louaka, A.; Delafont, V.; Rodier, M.H.; Cateau, E.; Héchard, Y. Free-living amoebae and squatters in the wild: Ecological and molecular features. FEMS Microbiol. Rev. 2019, 43, 415–434. [Google Scholar] [CrossRef]
- Balczun, C.; Scheid, P.L. Free-Living Amoebae as Hosts for and Vectors of Intracellular Microorganisms with Public Health Significance. Viruses 2017, 9, 65. [Google Scholar] [CrossRef]
- Mella, C.; Medina, G.; Flores-Martin, S.; Toledo, Z.; Simaluiza, R.J.; Pérez-Pérez, G.; Fernández, H. Interaction between zoonotic bacteria and free-living amoebas: A new angle of an epidemiological polyhedron of public health importance? Arch. Med. Vet. 2016, 48, 1–10. [Google Scholar] [CrossRef]
- Reyes-Batlle, M.; Todd, C.D.; Martín-Navarro, C.M.; López-Arencibia, A.; Cabello-Vilchez, A.M.; González, A.C.; Córdoba-Lanús, E.; Lindo, J.F.; Valladares, B.; Piñero, J.E.; et al. Isolation and characterization of Acanthamoeba strains from soil samples in Gran Canaria, Canary Islands, Spain. Parasitol. Res. 2014, 113, 1383–1388. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Batlle, M.; Rizo-Liendo, A.; Viera-Santana, R.A.; Afonso-Morales, S.; López-Arencibia, A.; Sifaoui, I.; Chiboub, O.; Bethencourt-Estrella, C.J.; Nicolás-Hernández, D.S.; Rodríguez-Expósito, R.L.; et al. Isolation and Molecular Identification of Naegleria australiensis in Irrigation Water of Fuerteventura Island, Spain. Acta Parasitol. 2019, 64, 331–335. [Google Scholar] [CrossRef]
- Reyes-Batlle, M.; Díaz, F.J.; Sifaoui, I.; Rodríguez-Expósito, R.; Rizo-Liendo, A.; Piñero, J.E.; Lorenzo-Morales, J. Free living amoebae isolation in irrigation waters and soils of an insular arid agroecosystem. Sci. Total Environ. 2021, 753, 141833. [Google Scholar] [CrossRef]
- Pérez-Pérez, P.; Reyes-Batlle, M.; Morchón, R.; Piñero, J.E.; Lorenzo-Morales, J. Isolation and molecular identification of pathogenic free-living amoebae from environmental samples in Tenerife, Canary Islands, Spain. ACS Est. Water. 2025, 5, 2861–2889. [Google Scholar] [CrossRef]
- Benito, M.; LaPlante, D.; Fernández, M.T.; Miguel, N.; Lasheras, A.M.; Gómez, J.; Ormad, M.P.; Rubio, E.; Goñi, M.P. Amebas de vida libre en aguas residuales y fangos: Su papel como reservorio natural de bacterias potencialmente patogénas. Rev. Esp. Saúde Ambient. 2018, 18, 69–77. Available online: https://ojs.diffundit.com/index.php/rsa/article/view/892 (accessed on 19 November 2024).
- Magnet, A.; Fenoy, S.; Galván, A.L.; Izquierdo, F.; Rueda, C.; Fernandez Vadillo, C.; Del Aguila, C. A year long study of the presence of free-living amoeba in Spain. Water Res. 2013, 47, 6966–6972. [Google Scholar] [CrossRef]
- Lares-Villa, F.; Hernández-Peña, C. Concentration of Naegleria fowleri in natural waters used for recreational purposes in Sonora, Mexico (November 2007–October 2008). Exp. Parasitol. 2010, 126, 33–36. [Google Scholar] [CrossRef]
- Cabanes, P.A.; Wallet, F.; Pringuez, E.; Pernin, P. Assessing the risk of primary amoebic meningoencephalitis from swimming in the presence of environmental Naegleria fowleri. Appl. Environ. Microbiol. 2001, 67, 2927–2931. [Google Scholar] [CrossRef]
- Agencia Estatal de Meteorología, Ministerio de Agricultura, Alimentación y Medio Ambiente. Iberian Climate Atlas. Air Temperature and Precipitation (1971–2000); Agencia Estatal de Meteorología: Madrid, Spain, 2021.
- Research Innovation Strategy for Smart Specialisation (RIS3) of Castilla y León 2014–2020. 2021. Available online: https://fuescyl.com/images/03innovacion_conocimiento/Comisionado/RIS3_Castilla_y_Leon_2014-2020_(eng).pdf (accessed on 13 December 2024).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Page, F.C. A New Key to Fresh Water and Soil Gymnamoebae; Freshwater Biological Association: Cumbria, UK, 1988; 122p. [Google Scholar]
- Reyes-Batlle, M.; Zamora-Herrera, J.; Vargas-Mesa, A.; Valerón-Tejera, M.A.; Wagner, C.; Martín-Navarro, C.M.; López-Arencibia, A.; Sifaoui, I.; Martínez-Carretero, E.; Valladares, B.; et al. Acanthamoeba genotypes T2, T4, and T11 in soil sources from El Hierro island, Canary Islands, Spain. Parasitol. Res. 2016, 115, 2953–2956. [Google Scholar] [CrossRef] [PubMed]
- Tsvetkova, N.; Schild, M.; Panaiotov, S.; Kurdova-Mintcheva, R.; Gottstein, B.; Walochnik, J.; Aspöck, H.; Lucas, M.S.; Müller, N. The identification of free-living environmental isolates of amoebae from Bulgaria. Parasitol. Res. 2004, 92, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, J.M.; Booton, G.C.; Hay, J. Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of Acanthamoebae from humans with keratitis and from sewage sludge. J. Clin. Microbiol. 2001, 39, 1903–1911. [Google Scholar] [CrossRef]
- Kuiper, M.W.; Valster, R.M.; Wullings, B.A.; Boonstra, H.; Smidt, H.; van der Kooij, D. Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time, P.C.R. Appl. Environ. Microbiol. 2006, 72, 5750–5756. [Google Scholar] [CrossRef]
- Córdoba-Lanús, E.; Reyes-Batlle, M.; Domínguez-de-Barros, A.; Pérez-Pérez, P.; Expósito-Rodríguez, R.L.; García-Ramos, A.; Sifaoui, I.; García-Pérez, O.; Aneiros-Giraldez, G.; Piñero, J.E.; et al. Multiplex qPCR assay to detect Acanthamoeba spp., Vermamoeba vermiformis, Naegleria fowleri and Balamuthia mandrillaris in different water sources. Am. J. Trop. Med. Hyg. 2024, 111, 785–790. [Google Scholar] [CrossRef]
- De Jonckheere, J.F.; Brown, S. The identification of vahlkampfiid amoebae by ITS sequencing. Protist 2005, 156, 89–96. [Google Scholar] [CrossRef]
- Kazutaka, K.; Standley, D.M. Standley, MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Rodríguez-Zaragoza, S. Ecology of free-living amoebae. Crit. Rev. Microbiol. 1994, 20, 225–241. [Google Scholar] [CrossRef]
- Reyes-Batlle, M.; Niyyati, M.; Martín-Navarro, C.M.; López-Arencibia, A.; Valladares, B.; Martínez-Carretero, E.; Piñero, J.E.; Lorenzo-Morales, J. Unusual Vermamoeba Vermiformis Strain Isolated from Snow in Mount Teide, Tenerife, Canary Islands, Spain. Nov. Biomed. 2015, 3, 189–192. [Google Scholar] [CrossRef]
- Lorenzo-Morales, J.; Ortega-Rivas, A.; Foronda, P.; Martínez, E.; Valladares, B. Isolation and identification of pathogenic Acanthamoeba strains in Tenerife, Canary Islands, Spain from water sources. Parasitol. Res. 2005, 95, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Morales, J.; Monteverde-Miranda, C.A.; Jiménez, C.; Tejedor, M.L.; Valladares, B.; Ortega-Rivas, A. Evaluation of Acanthamoeba isolates from environmental sources in Tenerife, Canary Islands, Spain. Ann. Agric. Environ. Med. 2005, 12, 233–236. [Google Scholar]
- Reyes-Batlle, M.; Wagner, C.; López-Arencibia, A.; Sifaoui, I.; Martínez-Carretero, E.; Valladares, B.; Piñero, J.E.; Lorenzo-Morales, J. Isolation and molecular characterization of a Naegleria strain from a recreational water fountain in Tenerife, Canary Islands, Spain. Acta Parasitol. 2017, 62, 265–268. [Google Scholar] [CrossRef]
- Siddiqui, R.; Makhlouf, Z.; Khan, N.A. The Increasing Importance of Vermamoeba vermiformis. J. Eukaryot. Microbiol. 2021, 68, e12857. [Google Scholar] [CrossRef]
- Delafont, V.; Rodier, M.H.; Maisonneuve, E.; Cateau, E. Vermamoeba vermiformis: A Free-Living Amoeba of Interest. Microbial. Ecol. 2018, 76, 991–1001. [Google Scholar] [CrossRef]
- Nazar, M.; Haghighi, A.; Taghipour, N.; Ortega-Rivas, A.; Tahvildar-Biderouni, F.; Mojarad, E.N.; Eftekhar, M. Molecular identification of Hartmannella vermiformis and Vannella persistens from man-made recreational water environments, Tehran, Iran. Parasitol. Res. 2012, 111, 835–839. [Google Scholar] [CrossRef]
- Armand, B.; Motazedian, M.H.; Asgari, Q. Isolation and identification of pathogenic free-living amoeba from surface and tap water of Shiraz City using morphological and molecular methods. Parasitol. Res. 2016, 115, 63–68. [Google Scholar] [CrossRef]
- Moran, S.; Mooney, R.; Henriquez, F.L. Diagnostic Considerations for Non-Acanthamoeba Amoebic Keratitis and Clinical Outcomes. Pathogens 2022, 11, 219. [Google Scholar] [CrossRef]
- Niyyati, M.; Lorenzo-Morales, J.; Rezaie, S.; Rahimi, F.; Martín-Navarro, C.M.; Mohebali, M.; Maghsood, A.M.; Farnia, S.; Valladares, B.; Rezaeian, M. First report of a mixedinfection due to Acanthamoeba genotype T3 and Vahlkampfia in a cosmetic soft contact lens wearer in Iran. Exp. Parasitol. 2010, 126, 89–90. [Google Scholar] [CrossRef]
- Arnalich-Montiel, F.; Lorenzo-Morales, J.; Irigoyen, C.; Morcillo-Laiz, R.; López-Vélez, R.; Muñoz-Negrete, F.; Piñero, J.E.; Valladares, B. Co-isolation of Vahlkampfia and Acanthamoeba in acanthamoeba-like keratitis in a Spanish population. Cornea 2013, 32, 608–614. [Google Scholar] [CrossRef]
- Alexandrakis, G.; Miller, D.; Huang, A.J. Amebic keratitis due to Vahlkampfia infection following corneal trauma. Arch. Ophthalmol. 1998, 116, 950–951. [Google Scholar]
- Magnet, A.; Galván, A.L.; Fenoy, S.; Izquierdo, F.; Rueda, C.; Fernandez-Vadillo, C.; Pérez-Irezábal, J.; Bandyopadhyay, K.; Visvesvara, G.S.; da Silva, A.J.; et al. Molecular characterization of Acanthamoeba isolated in water treatment plants and comparison with clinical isolates. Parasitol. Res. 2012, 111, 383–392. [Google Scholar] [CrossRef]
- Booton, G.C.; Visvesvara, G.S.; Byers, T.J.; Kelly, D.J.; Fuerst, P.A. Identification and distribution of Acanthamoeba species genotypes associated with nonkeratitis infections. J. Clin. Microbiol. 2005, 43, 1689–1693. [Google Scholar] [CrossRef]
- Ledee, D.R.; Iovieno, A.; Miller, D.; Mandal, N.; Diaz, M.; Fell, J.; Fini, M.E.; Alfonso, E.C. Molecular identification of T4 and T5 genotypes in isolates from acanthamoeba keratitis patients. J. Clin. Microbiol. 2009, 47, 1458–1462. [Google Scholar] [CrossRef]
- World Health Organization. Volume 2: Swimming pools and similar environments. In Guidelines for Safe Recreational Water Environments; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Corsaro, D.; Pages, G.S.; Catalan, V.; Loret, J.F.; Greub, G. Biodiversity of amoebae and amoeba-associated bacteria in water treatment plants. Int. J. Hyg. Environ. Health 2010, 213, 158–166. [Google Scholar] [CrossRef]
- Resumen anual del clima en España 2023. Available online: https://www.aemet.es/documentos/es/serviciosclimaticos/vigilancia_clima/resumenes_climat/anuales/res_anual_clim_2023.pdf (accessed on 16 December 2024).
- Bryant, A.S.; Hallem, E.A. Temperature-dependent behaviors of parasitic helminths. Neurosci. Lett. 2018, 687, 290–303. [Google Scholar] [CrossRef]
- Vingataramin, Y.; Quétel, I.; Pons, M.A.; Talarmin, A.; Marcelino, I. Spatiotemporal distribution of thermophilic free-living amoebae in recreational waters: A 5-year survey in Guadeloupe (French West Indies). Sci. Total Environ. 2024, 941, 173318. [Google Scholar] [CrossRef]
- John, D.T.; Howard, M.J. Seasonal distribution of pathogenic free-living amebae in Oklahoma waters. Parasitol. Res. 1995, 81, 193–201. [Google Scholar] [CrossRef]
Sample | Locality | Coordinates | Province | Water Type |
---|---|---|---|---|
SW1 | Salamanca | 40.966204, −5.668706 | Salamanca | Recreational fountain |
SW2 | Salamanca | 40.967639, −5.651176 | Salamanca | Recreational fountain |
SW3 | Salamanca | 40.955600, −5.668074 | Salamanca | River |
SW4 | Salamanca | 40.958195, −5.669783 | Salamanca | Tap water |
SW5 | Salamanca | 40.968051, −5.658020 | Salamanca | Recreational fountain |
SW6 | Salamanca | 40.967422, −5.667352 | Salamanca | Recreational fountain |
SW7 | Salamanca | 40.964468, −5.681959 | Salamanca | Tap water |
SW8 | Salamanca | 40.976289, −5.661977 | Salamanca | Recreational fountain |
SW9 | Salamanca | 40.965070, −5.678534 | Salamanca | Tap water |
SW10 | Aldeatejada | 40.946595, −5.681442 | Salamanca | Irrigation water |
SW11 | Aldeatejada | 40.945903, −5.681217 | Salamanca | Swimming pool |
SW12 | Aldeatejada | 40.945903, −5.681217 | Salamanca | Tap water |
SW13 | Galindo y Perahuy | 40.924286 −5.804917 | Salamanca | Swimming pool |
SW14 | Galindo y Perahuy | 40.926787, −5.807606 | Salamanca | Irrigation water |
SW15 | Galindo y Perahuy | 40.924027, −5.808318 | Salamanca | Swimming pool |
SW16 | Galindo y Perahuy | 40.925187, −5.805347 | Salamanca | Tap water |
SW17 | Trabanca | 41.231362, −6.386124 | Salamanca | Swimming pool |
SW18 | Trabanca | 41.231895, −6.383861 | Salamanca | Tap water |
SW19 | Trabanca | 41.232983, −6.384409 | Salamanca | Recreational fountain |
SW20 | Almendra | 41.273762, −6.321856 | Salamanca | Swamp |
SW21 | Espadaña | 41.131510, −6.361370 | Salamanca | Swamp |
SW22 | Almendra | 41.270194, −6.334739 | Salamanca | Swamp |
SW23 | Miranda de Azán | 40.886026, −5.684305 | Salamanca | River |
SW24 | Miranda de Azán | 40.875737, −5.683251 | Salamanca | Irrigation water |
SW25 | Miranda de Azán | 40.886327, −5.682139 | Salamanca | Tap water |
SW26 | Miranda de Azán | 40.871145, −5.682950 | Salamanca | Irrigitation water |
SW27 | Miranda de Azán | 40.874163, −5.683229 | Salamanca | Irrigation water |
SW28 | Miranda de Azán | 40.888639, −5.683626 | Salamanca | River |
VW1 | Valladolid | 41.646338, −4.744723 | Valladolid | Tap water |
VW2 | Valladolid | 41.643510, −4.715008 | Valladolid | Tap water |
VW3 | Valladolid | 41.657431, −4.733970 | Valladolid | River |
VW4 | Valladolid | 41.644816, −4.730373 | Valladolid | Recreational fountain |
VW5 | Valladolid | 41.645413, −4.729856 | Valladolid | Recreational fountain |
VW6 | Valladolid | 41.579598, −4.661287 | Valladolid | Swamp |
ZW1 | Zamora | 42.003143, −5.677092 | Zamora | Tap water |
ZW2 | Zamora | 41.995946, −5.682736 | Zamora | Recreational fountain |
ZW3 | Zamora | 41.507055, −5.740209 | Zamora | Recreational fountain |
ZW4 | Zamora | 41.506300, −5.740005 | Zamora | Recreational fountain |
ZW5 | Zamora | 41.496178, −5.754736 | Zamora | River |
ZW6 | Zamora | 41.495268, −5.741160 | Zamora | Tap water |
BW1 | Burgos | 42.337932, −3.705546 | Burgos | River |
BW2 | Burgos | 42.339900, −3.698603 | Burgos | Recreational fountain |
Primer Sets | PCR’s Conditions | ||||
---|---|---|---|---|---|
Initiation | Denaturation | Annealing | Primer Extension | Extension | |
Hv1227F/VermR | 95 °C—5 min | 95 °C—30 min | 50 °C—30 min | 72 °C—30 min | 72 °C—7 min |
35 Cycles | |||||
JDP1/JDP2 | 95 °C—2 min | 95 °C—30 min | 50 °C—30 min | 72 °C—30 min | 72 °C—7 min |
35 Cycles | |||||
FLAf/FLAr | 95 °C—2 min | 95 °C—30 min | 55 °C—30 min | 72 °C—30 min | 72 °C—7 min |
40 Cycles | |||||
VAHL1/VAHL2 | 95 °C—5 min | 95 °C—30 min | 55 °C—30 min | 72 °C—30 min | 72 °C—7 min |
35 Cycles |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Pérez, P.; Rodríguez-Escolar, I.; Piñero, J.E.; Morchón, R.; Lorenzo-Morales, J. High Diversity and Prevalence of Potentially Pathogenic Free-Living Amoebae in Water Sources from Castilla y León, Spain. Pathogens 2025, 14, 637. https://doi.org/10.3390/pathogens14070637
Pérez-Pérez P, Rodríguez-Escolar I, Piñero JE, Morchón R, Lorenzo-Morales J. High Diversity and Prevalence of Potentially Pathogenic Free-Living Amoebae in Water Sources from Castilla y León, Spain. Pathogens. 2025; 14(7):637. https://doi.org/10.3390/pathogens14070637
Chicago/Turabian StylePérez-Pérez, Patricia, Iván Rodríguez-Escolar, José E. Piñero, Rodrigo Morchón, and Jacob Lorenzo-Morales. 2025. "High Diversity and Prevalence of Potentially Pathogenic Free-Living Amoebae in Water Sources from Castilla y León, Spain" Pathogens 14, no. 7: 637. https://doi.org/10.3390/pathogens14070637
APA StylePérez-Pérez, P., Rodríguez-Escolar, I., Piñero, J. E., Morchón, R., & Lorenzo-Morales, J. (2025). High Diversity and Prevalence of Potentially Pathogenic Free-Living Amoebae in Water Sources from Castilla y León, Spain. Pathogens, 14(7), 637. https://doi.org/10.3390/pathogens14070637