Methods of Controlling Microbial Contamination of Food
Abstract
:1. Introduction
2. The Most Important Foodborne Zoonoses
3. Methods of Reducing Microbial Contamination of Food
3.1. Physical Methods
3.2. Chemical Methods
3.3. Biological Methods
3.4. Bacteriophages for Control of Bacteria in Food
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Endersen, L.; Coffey, A. The use of bacteriophages for food safety. Curr. Opin. Food Sci. 2020, 36, 1–8. [Google Scholar] [CrossRef]
- USFDA/USDA-FSIS (U.S. Food and Drug Administration/U.S. Department of Agriculture-Food Safety and Inspection Service). Quantitative Assessment of the Relative Risk to Public Health from Foodborne Listeria monocytogenes Among Selected Categories of Ready-To-Eat Foods. 2017. Available online: https://www.fda.gov/food/cfsan-risk-safety-assessments/quantitative-assessment-relative-risk-public-health-foodborne-listeria-monocytogenes-among-selected (accessed on 21 November 2017).
- European Food Safety Authority (EFSA)|European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2023 Zoonoses report. EFSA J. 2024, 22, e9106. [Google Scholar] [CrossRef]
- Vikram, A.; Woolston, J.; Sulakvelidze, A. Phage biocontrol applications in food production and processing. Curr. Issues Mol. Biol. 2021, 40, 267–302. [Google Scholar] [CrossRef] [PubMed]
- EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union One Health 2022 zoonoses report. EFSA J. 2023, 21, e8442. [Google Scholar] [CrossRef]
- Igwaran, A.; Okoh, A.I. Human campylobacteriosis: A public health concern of global importance. Heliyon 2019, 5, e02814. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Shantikumar, S.; Beaufoy, D.; Allman, A.; Fenelon, D.; Reynolds, K.; Normington, A.; Afza, M.; Todkill, D. Outbreak of Clostridium perfringens food poisoning linked to leeks in cheese sauce: An unusual source. Epidemiol. Infect. 2020, 148, E43. [Google Scholar] [CrossRef]
- Kiran, A.; Ruiz Alvarez, M.J.; Swe Han, K.S.; Kumar, A.; Chakraborty, D.; Mugisha, L.; Elbadawi, H.; Khalaf, Y.; Panicker, A.; Souda, S.; et al. Campylobacter: A foodborne pathogen with emerging antimicrobial resistance. Preprints 2021. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2005, 338, 1–26. [Google Scholar]
- Asuming-Bediako, N.; Kunadu, A.P.H.; Abraham, S.; Habib, I. Campylobacter at the human–food interface: The African perspective. Pathogens 2019, 8, 87. [Google Scholar] [CrossRef]
- Koluman, B.U.; Koluman, A. Vero-Toxigenic Escherichia coli (VTEC): To sum up all we know. J. Gastroenterol. Res. 2017, 1, 14–23. [Google Scholar]
- Euroepean Commission. Opinion of the Scientific Committee on Veterinary Measures Relating to Public Health on Verotoxigenic E. coli (VTEC) in Foodstuffs. Available online: https://food.ec.europa.eu/document/download/505262ea-6f8e-474c-ac18-1d4ad44ac6e2_en?filename=sci-com_scv_out58_en.pdf (accessed on 21 January 2003).
- Milillo, S.R.; Friedly, E.C.; Saldivar, J.C.; Muthaiyan, A.; O’Bryan, C.; Crandall, P.G.; Johnson, M.G.; Ricke, S.C. A review of the ecology, genomics, and stress response of Listeria innocua and Listeria monocytogenes. Critical Rev. Food Sci. Nutr. 2012, 52, 712–725. [Google Scholar] [CrossRef]
- Shamloo, E.; Hosseini, H.; Abdi Moghadam, Z.; Halberg Larsen, M.; Haslberger, A.; Alebouyeh, M. Importance of Listeria monocytogenes in food safety: A review of its prevalence, detection, and antibiotic resistance. Iran. J. Vet. Res. 2019, 20, 241–254. [Google Scholar] [PubMed]
- Scallan, E.; Hoekstra, B.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Gooneratne, R.; Hussain, M.A. Listeria monocytogenes in fresh produce: Outbreaks, prevalence and contamination levels. Foods 2017, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, I.C.; Luna, E.O.; Pozo, M.D.; Vásquez, M.V.; Montoya, D.C.; Moran, G.C.; Romero, L.G.; Yépez, X.; Salazar, R.; Romero-Peña, M.; et al. Conventional and non-conventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables. LWT-Food Sci. Technol. 2022, 165, 113714. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 1190/2012 of 12 December 2012 concerning a Union target for the reduction of Salmonella enteritidis and Salmonella typhimurium in flocks of turkeys, as provided for in Regulation (EC) No 2160/2003 of the European Parliament and of the Council. Off. J. Eur. Union 2012, 340, 29–34. [Google Scholar]
- Chacha, J.S.; Zhang, L.; Ofoedu, C.E.; Suleiman, R.A.; Dotto, J.M.; Roobab, U.; Agunbiade, A.O.; Duguma, H.T.; Mkojera, B.T.; Hossaini, S.M.; et al. Revisiting non-thermal food processing and preservation methods—Action mechanisms, Pros and Cons: A Technological Update (2016–2021). Foods 2021, 10, 1430. [Google Scholar] [CrossRef]
- Suklim, K.; Flick, G.J.; Vichitphan, K. Effects of gamma irradiation on the physical and sensory quality and inactivation of Listeria monocytogenes in blue swimming crab meat (Portunas pelagicus). Rad. Phys. Chem. 2014, 103, 22–26. [Google Scholar] [CrossRef]
- Rahman, M.S. Handbook of Food Preservation, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; p. 1088. ISBN 9780429191084. [Google Scholar] [CrossRef]
- Amit, S.K.; Uddin, M.M.; Rahman, R.S.M.; Rezwanul Islam, R.; Khan, M.S. A review on mechanisms and commercial aspects of food preservation and processing. Agricult. Food Sec. 2017, 6, 51. [Google Scholar] [CrossRef]
- Bajovic, B.; Bolumar, T.; Heinz, V. Quality considerations with high pressure processing of fresh and value added meat products. Meat Sci. 2012, 92, 280–289. [Google Scholar] [CrossRef]
- Wolbang, C.M.; Fitos, J.L.; Treeby, M.T. The effect of high pressure processing on nutritional value and quality attributes of Cucumis melo L. Innov. Food Sci. Emerg. Technol. J. 2008, 9, 196–200. [Google Scholar] [CrossRef]
- Li, R.; Wang, C.; Zhou, G.; Li, C.; Ye, K. The effects of thermal treatment on the bacterial community and quality characteristics of meatballs during storage. Food Sci. Nutr. 2021, 9, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Bucur, F.I.; Grigore-Gurgu, L.; Crauwels, P.; Riedel, C.U.; Nicolau, A.I. Resistance of Listeria monocytogenes to stress conditions encountered in food and food processing environments. Front. Microbiol. 2018, 9, 2700. [Google Scholar] [CrossRef]
- Huang, H.W.; Lung, H.M.; Yang, B.B.; Wang, C.Y. Responses of microorganisms to high hydrostatic pressure processing. Food Control 2014, 40, 250–259. [Google Scholar] [CrossRef]
- Ferreira, M.; Almeida, A.; Delgadillo, I.; Saraiva, J.; Cunha, A. Susceptibility of Listeria monocytogenes to high pressure processing: A review. Food Rev. Internat. 2016, 32, 377–399. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Ragaert, P.; Debevere, J.; Devlieghere, F. Pulsed light for food decontamination: A review. Trends Food Sci. Technol. 2007, 18, 464–473. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Richa; Kumar, A.; Tyagi, M.B.; Singha, R.P. Molecular mechanism of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids 2010, 592980. [Google Scholar] [CrossRef]
- Beauchamp, S.; Lacroix, M. Resistance of the genome of Escherichia coli and Listeria monocytogenes to irradiation evaluated by the induction of cyclobutane pyrimidine dimers and 6-4 photoproducts using gamma and UVC radiations. Rad. Phys. Chem. 2012, 81, 1193–1197. [Google Scholar] [CrossRef]
- Bernbom, N.; Vogel, B.F.; Gram, L. Listeria monocytogenes survival of UV-C radiation is enhanced by presence of sodium chloride, organic food material and by biofilm formation. Int. J. Food Microbiol. 2011, 147, 69–73. [Google Scholar] [CrossRef]
- McKinney, J.; Williams, R.C.; Boardman, G.D.; Eifert, J.D.; Sumner, S.S. Dose of UV light required to inactivate Listeria monocytogenes in distilled water, fresh brine, and spent brine. J. Food Protect. 2009, 72, 2144–2150. [Google Scholar] [CrossRef]
- Keyser, M.; Műller, I.A.; Cilliers, F.P.; Nel, W.; Gouws, P.A. Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Sci. Emerg. Technol. 2008, 9, 348–354. [Google Scholar] [CrossRef]
- Unluturk, S.; Atilgan, M.R.; Baysal, A.H.; Unluturk, M. Modeling inactivation kinetics of liquid egg white exposed to UV-C irradiation. Intern. J. Food Microbiol. 2010, 142, 341–347. [Google Scholar] [CrossRef]
- Pala, C.U.; Toklucu, A.K. Effect of UV-C on anthocyanin content and other quality parameters of pomegranate juice. J. Food Comp. Analysis 2011, 24, 790–795. [Google Scholar] [CrossRef]
- Guerrero–Beltrán, J.A.; Velti–Chanes, J.; Barbosa–Cávanos, G.V. Ultraviolet-C light processing of grape, cranberry and grapefruit juices to inactivate Saccharomyces cerevisiae. J. Food Process Eng. 2009, 32, 916–932. [Google Scholar] [CrossRef]
- Vasuja, S.; Kumar, V. Ultra violet irradiation and its application in food processing industries: A Review. Intern. J. Trend Res. Develop. 2018, 5, 343–346. [Google Scholar]
- McDowell, R.H.; Sands, E.M.; Friedman, H. Bacillus cereus; StatPearls: Treasure Island, FL, USA. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459121/ (accessed on 20 January 2021).
- Battcock, M.; Azam-Ali, S. Fermented Frutis and Vegetables. A Global Perspective. In FAO Agricultural Services Bulletin; FAO: Rome, Italy, 1998; 96p, ISBN 92-5-104226-8. [Google Scholar]
- Sionek, B.; Szydłowska, A.; Küçükgöz, K.; Kołożyn-Krajewska, D. Traditional and New Microorganisms in Lactic Acid Fermentation of Food. Fermentation 2023, 9, 1019. [Google Scholar] [CrossRef]
- Ranaei, V.; Pilevar, Z.; Khaneghah, A.M.; Hossein, H. Propionic Acid: Method of Production, Current State and Perspectives. FTB Food Technol. Biotechnol. 2020, 58, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Antone, U.; Ciprovica, I.; Zolovs, M.; Scerbaka, R.; Liepins, J. Propionic Acid Fermentation—Study of Substrates, Strains, and Antimicrobial Properties. Fermentation 2023, 9, 26. [Google Scholar] [CrossRef]
- Khouryieh, H.K. Novel and emerging technologies used by the U.S. food processing industry. Innovative Food Sci. Emerg. Technol. 2021, 67, 102559. [Google Scholar] [CrossRef]
- Balthazar, C.F.; Santillo, A.; Guimarães, J.T.; Bevilacqua, A.; Corbo, M.R.; Caroprese, M.; Marino, R.; Esmerino, E.A.; Silva, M.C.; Raices, R.S.L.; et al. Ultrasound processing of fresh and frozen semi-skimmed sheep milk and its effects on microbiological and physical-chemical quality. Ultrasonics Sonochem. 2019, 51, 241–248. [Google Scholar] [CrossRef]
- Bauer, A.; Ni, Y.; Bauer, S.; Paulsen, P.; Modic, M.; Walsh, J.L.; Smulders, F.J.M. The effects of atmospheric pressure cold plasma treatment on microbiological, physical-chemical and sensory characteristics of vacuum packaged beef loin. Meat Sci. 2017, 128, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Roh, S.H.; Oh, Y.J.; Lee, S.Y.; Kang, J.H.; Min, S.C. Inactivation of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in processed chicken breast via atmospheric in-package cold plasma treatment. LWT 2020, 127, 109429. [Google Scholar] [CrossRef]
- Los, A.; Ziuzina, D.; Boehm, D.; Bourke, P. Effects of cold plasma on wheat grain microbiome and antimicrobial efficacy against challenge pathogens and their resistance. Inter. J. Food Microbiol. 2020, 335, 108889. [Google Scholar] [CrossRef]
- Alirezalu, K.; Munekata, P.E.S.; Parniakov, O.; Barba, F.J.; Witt, J.; Toepfl, S.; Wiktor, A.; Lorenzo, J.M. Pulsed electric field and mild heating for milk processing: A review on recent advances. J. Sci. Food Agri. 2020, 100, 16–24. [Google Scholar] [CrossRef]
- Balasubramaniam, V.M.; Martínez-Monteagudo, S.I.; Gupta, R. Principles and Application of High Pressure–Based Technologies in the Food Industry. Annu. Rev. Food Sci. Technol. 2015, 6, 435–462. [Google Scholar] [CrossRef]
- Astráin-Redín, L.; Alejandre, M.; Raso, J.; Cebrián, G.; Álvarez, I. Direct contact ultrasound in food processing: Impact on food quality. Front. Nutr. 2021, 8, 633070. [Google Scholar] [CrossRef] [PubMed]
- Mahendran, R.; Ratish Ramanan, K.; Barba, F.J.; Lorenzo, J.M.; López-Fernández, O.; Munekata, P.E.S.; Roohinejad, S.; Sant’Ana, A.S.; Tiwari, B.K. Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends Food Sci. Technol. 2019, 88, 67–79. [Google Scholar] [CrossRef]
- Dewan, F.; Shams, S.N.U. Thermal treatment of food preservation. Method 2020, 1–15. [Google Scholar] [CrossRef]
- Singh, V.P. Recent approaches in food bio-preservation—A review. Open Vet J. 2018, 8, 104–111. [Google Scholar] [CrossRef]
- Pérez-Díaz, I.M.; Altuntas, E.G.; Juneja, V.K. Microbial Fermentation in Food Preservation. In Microbial Control and Food Preservation. Food Microbiology and Food Safety; Juneja, V., Dwivedi, H., Sofos, J., Eds.; Springer: New York, NY, USA, 2017; pp. 281–298. ISBN 978-1-4939-7556-3. [Google Scholar] [CrossRef]
- Mani, A. Food preservation by fermentation and fermented food products. Intern. J. Acad. Res. Develop. 2018, 1, 51–57. [Google Scholar]
- Friis, R.H. Essentials of Environmental Health, 2nd ed.; Jones & Bartlett Publishers: Burlington, NJ, USA, 2012; p. 442. ISBN 978-1284026337. [Google Scholar]
- European Commission. Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC. Off. J. Eur. Union 2019, 43–167. [Google Scholar]
- de Melo, A.G.; Levesque, S.; Moineau, S. Phages as friends and enemies in food processing. Curr. Opin. Biotechnol. 2018, 49, 185–190. [Google Scholar] [CrossRef]
- Alomari, M.M.M.; Dec, M.; Urban-Chmiel, R. Bacteriophages as an alternative method for control of zoonotic and foodborne pathogens. Viruses 2021, 13, 2348. [Google Scholar] [CrossRef]
- Dec, M.; Wernicki, A.; Urban-Chmiel, R. Efficacy of experimental phage therapies in livestock. Anim. Health Res. Rev. 2020, 21, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Wittebole, X.; De Roock, S.; Opal, S.M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 2014, 5, 226–235. [Google Scholar] [CrossRef]
- Wessels, K.; Rop, D.; Goues, P. Salmonella in Chicken Meat: Consumption, outbreaks, characteristics, current control methods and the potential of bacteriophage use. Foods 2021, 10, 1742. [Google Scholar] [CrossRef] [PubMed]
- Połaska, M.; Sokołowska, B. Bacteriophages-a new hope or a huge problem in the food industry. AIMS Microbiol. 2019, 5, 324–346. [Google Scholar] [CrossRef]
- Kiani, A.K.; Anpilogov, K.; Dautaj, A.; Marceddu, G.; Sonna, W.N.; Percio, M.; Dundar, M.; Beccari, T.; Bertelli, M. Bacteriophages in food supplements obtained from natural sources. Acta Biomed. 2020, 91 (Suppl. S13), e2020025. [Google Scholar]
- Francino, M. Antibiotics and the human gut microbiome: Dysbioses and accumulation of resistances. Front. Microbiol. 2016, 6, 164577. [Google Scholar] [CrossRef]
- Duerkop, B.A.; Clements, C.V.; Rollins, D.; Rodrigues, J.L.; Hooper, L.V. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc. Nat. Acad. Sci. USA 2012, 109, 17621–17626. [Google Scholar] [CrossRef]
- Vicram, A.; Tokman, J.I.; Woolston, J.; Sulakvelidze, A. Phage biocontrol improves food safety by significantly reducing the level and prevalence of Escherichia coli O157:H7 in various foods. J. Food Prot. 2020, 83, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Vikram, A.; Callahan, M.T.L.; Woolston, J.W.; Sharma, M.; Sulakvelidze, A. Phage biocontrol for reducing bacterial foodborne pathogens in produce and other foods. Curr. Opin. Biotechnol. 2022, 78, 102805. [Google Scholar] [CrossRef] [PubMed]
- Tolen, T.N.Y.; Xie, T.B.; Hairgrove, J.J.; Gill, T.M. Taylor Evaluation of commercial prototype bacteriophage intervention designed for reducing O157 and non-O157 shiga-toxigenic Escherichia coli (STEC) on beef cattle hide. Foods 2018, 7, 114. [Google Scholar] [CrossRef] [PubMed]
- Abuladze, T.; Li, M.; Menetrez, M.Y.; Dean, T.; Senecal, A.; Sulakvelidze, A. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl. Environ. Microbiol. 2008, 74, 6230–6238. [Google Scholar] [CrossRef]
- Phageguard Website. Available online: https://www.phageguard.com/ (accessed on 20 November 2021).
- Li, S.; Konoval, H.M.; Marecek, S.; Lathrop, A.A.; Feng, S.; Pokharel, S. Control of Escherichia coli O157:H7 using lytic bacteriophage and lactic acid on marinated and tenderized raw pork loins. Meat Sci. 2023, 196, 109030. [Google Scholar] [CrossRef]
- Moye, Z.D.; Woolston, J.; Sulakvelidze, A. Bacteriophage applications for food production and processing. Viruses 2018, 10, 205. [Google Scholar] [CrossRef]
- Waturangi, D.E.; Kasriady, C.P.; Guntama, G.; Sahulata, A.M.; Lestari, D.; Magdalena, S. Application of bacteriophage as food preservative to control enteropathogenic Escherichia coli (EPEC). BMC Res. Notes 2021, 14, 336. [Google Scholar] [CrossRef]
- Grygorcewicz, B.; Grudziński, M.; Wasak, A.; Augustyniak, A.; Pietruszka, A.; Nawrotek, P. Bacteriophage-mediated reduction of Salmonella enteritidis in swine slurry. Appl. Soil Ecol. 2017, 119, 179–182. [Google Scholar] [CrossRef]
- Leverentz, B.; Conway, W.S.; Alavidze, Z. Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: A model study. J. Food Prot. 2001, 64, 1116–1121. [Google Scholar] [CrossRef]
- Islam, M.Z.; Fokine, A.; Mahalingam, M.; Zhang, Z.; Garcia-Doval, C.; van Raaij, M.J.; Rossmann, M.G.; Rao, V.B. Molecular anatomy of the receptor binding module of a bacteriophage long tail fiber. PLoS Pathog. 2019, 15, e1008193. [Google Scholar] [CrossRef]
- Bai, J.; Jeon, B.; Ryu, S. Effective inhibition of Salmonella Typhimurium in fresh produce by a phage cocktail targeting multiple host receptors. Food Microbiol. 2019, 77, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, H.J.; Jung, S.J.; Mizan, M.F.R.; Park, S.H.; Ha, S.D. Characterization of Salmonella spp.–specific bacteriophages and their biocontrol application in chicken breast meat. J. Food Sci. 2020, 85, 526–534. [Google Scholar] [CrossRef]
- Liu, A.; Liu, Y.; Penga, L.; Caia, X.; Shena, L.; Duana, M.; Ninga, Y.; Liua, S.; Lia, C.; Liuab, Y.; et al. Characterization of the narrow-spectrum bacteriophage LSE7621 towards Salmonella enteritidis and its biocontrol potential on lettuce and tofu. LWT-Food Sci. Technol. 2020, 118, 108791. [Google Scholar] [CrossRef]
- Magnone, J.P.; Marek, P.J.; Sulakvelidze, A.; Senecal, A.G. Additive approach for inactivation of Escherichia coli O157:H7, Salmonella, and Shigella spp. on contaminated fresh fruits and vegetables using bacteriophage cocktail and produce wash. J. Food Protect. 2013, 76, 1336–1341. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Niu, Y.D.; Nan, Y.; Stanford, K.; Holley, R.; McAllister, T.; Narváez-Bravo, C. SalmoFresh™ effectiveness in controlling Salmonella on romaine lettuce, mung bean sprouts and seeds. Int. J. Food Microbiol. 2019, 305, 108250. [Google Scholar] [CrossRef]
- Heyse, S.; Hanna, L.F.; Woolston, J.; Sulakvelidze, A.; Charbonneau, D. Bacteriophage cocktail for biocontrol of Salmonella in dried pet food. J. Food Protect. 2015, 78, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Shahin, K.; Bouzari, M. Bacteriophage application for biocontrolling Shigella flexneri in contaminated foods. J. Food Sci. Technol. 2018, 55, 550–559. [Google Scholar] [CrossRef]
- Soffer, N.; Woolston, J.; Li, M.; Das, C.; Sulakvelidze, A. Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods. PLoS ONE 2017, 12, e0175256. [Google Scholar] [CrossRef]
- Zampara, A.; Martine, C.; Holst-Sørensen, M.C.; Elsser-Gravesen, A.A.; Brøndsted, L. Significance of phage-host interactions for biocontrol of Campylobacter jejuni in food. Food Control 2017, 73, 1169–1175. [Google Scholar] [CrossRef]
- Bigwood, T.; Hudson, J.A.; Billington, C.; Carey-Smith, G.V.; Heinemann, J.A. Phage inactivation of foodborne pathogens on cooked and raw meat. Food Microbiol. 2008, 25, 400–406. [Google Scholar] [CrossRef]
- Mohammadi, N.T.; Shen, C.; Li, Y.; Zayda, M.G.; Sato, J.; Masuda, Y.; Honjoh, K.I.; Miyamoto, T. Characterization of Clostridium perfringens bacteriophages and their application in chicken meat and milk. Intern. J. Food Microbiol. 2022, 361, 109446. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, W.; Zhang, Z.; Gu, Y.; Huang, A.; Wang, J.; Hao, H. Phage Products for Fighting Antimicrobial Resistance. Microorganisms 2022, 10, 1324. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Fu, S.; Guo, H.; Hu, M.; Xu, Z.; Zhou, X.; Chen, X.; Jiao, X. Application and challenge of bacteriophage in the food protection. Int. J. Food Microbiol. 2022, 380, 109872. [Google Scholar] [CrossRef] [PubMed]
Classification of Method | Conditions | Type of Foods | Effect | References |
---|---|---|---|---|
Physical | ||||
Non-thermal | ||||
UV irradiation | UV 1–400 mJ/cm2 | Fresh fruits, vegetables; fruit juices—apple, orange, pineapple, grape, cranberry, pomegranate | Antimicrobial activity Inhibition of food decomposition, preservation | [38] |
Ionizing radiation (IOR) | Radioactive cobalt-60 or high-penetrating cesium-137; X-ray 5 MeV; high-energy electron accelerators ≤10 MeV | Surface of agri-foods, equipment packaging, work surfaces in food production | Inactivation of microbes | [44] |
Cold plasma (non-thermal plasma) | Combination of ions, UV photons, electrons, reactive species, and charged elements | Milk and dairy products, beef, poultry, wheat grain | Inactivation of microbes through destruction of structural elements of cells | [45,46,47,48] |
Pulsed electric field (PEF) | 10–80 kV/cm/s | Juices—apple, orange, tomato, carrot; applesauce, salad dressing, pea soup, eggs, milk and dairy products | Enhancement of physicochemical, rheological, and antioxidant properties | [49] |
High-pressure processing (HPP) | 100–800 MPa/temp. <20 °C for a few seconds to 1 min | Fruits, meat, vegetables, milk and their products, drinks, seafood, fish | Inactivation of a variety of pathogenic and spoilage vegetative bacteria, yeasts, molds, viruses, and spores; prevention of sensory changes | [50] |
Ultrasound technology | 16–100 kHz 100 kHz–10 MHz | Milk and dairy products, apples, potatoes | Microbicidal effect Unfavorable changes in the structure of products | [51] |
Pulsed light (PL) | 200–1000 nm | Processing of liquid and solid food, e.g., fish, vegetables, fruit, and meat | Inactivation of microbes Change in the conformation of food allergens due to protein aggregation | [52] |
Thermal Refrigeration (cooling/chilling) | 2 °C | Plant products, dairy products, eggs | Inhibition of microbial development and enzyme activity; extension of shelf life | [53] |
−2 °C | Meat products, coffee | Inhibition of multiplication of microorganisms | [22] | |
−1 to 8 °C | Dairy products, vegetables, fruits, meat, fish, ready-to-eat dishes | Slowing down decomposition, extension of shelf life | ||
Freezing | −18 °C to −30 °C | Vegetables, fruits, mushrooms, meat, fish | Inhibition of multiplication rate, extension of shelf life | [53] |
Pasteurization | 65 °C for 30 min; 77 °C for 1 min; 80 °C for 10–60 s | Fruit juice, milk products, beer, liquid eggs | Destruction of vegetative forms of microorganisms, inactivation of bacterial enzymes causing food spoilage | [22] |
Blanching | 70–100 °C/1–15 min | Fruits and vegetables | Destruction of enzymes contributing to food decomposition | [53] |
Heat sterilization | >100–150 °C | Milk, ready-to-eat processed meat and vegetable products | Destruction of microbes, inactivation of enzymes causing decomposition, extension of shelf life | [22,25] |
Drying | 45–70 °C 30–70 °C 4–70 °C 80 °C | Fruits Vegetables Fish Meat Instant coffee, tea | Inhibition of bacterial and fungal growth | [22] |
Biological | ||||
Fermentation Homofermentative (30–40 °C) and heterofermentative (15–22 °C) strains | Bread, wine, beer, vinegar, cocoa, coffee Yogurt, cheese, sauerkraut | Inhibition of multiplication of bacteria and fungi | [54,55] | |
Lactic acid bacteria: Lactococcus, Streptococcus, Lactobacillus, Pediococcus, Leuconostoc, Enterococcus, Carnobacterium, Aerococcus, Oenococcus, Tetragenococcus, Vagococcus, and Weisella Acetobacter spp. | Lactic acid Ethanol, Acetic acid, ethanol, and carbon dioxide | Dairy products; cream or yogurt-based products, cheese, meat, fruits, and vegetables, including sauerkraut Cereals, and fruits and vegetablesBeer, wine, vegetables, sourdough bread Yogurt, cheese, vinegar, and sauerkraut | Control of pH, increased competition through multiplication of probiotic strains | [56] |
Pediococcus cerevisiae | Lactic and acetic acid | Vegetables: cucumbers, bell pepper, olives; salami | Inhibition of mold, some yeasts and Gram-negative bacteria | [43,54,56] |
Propionibacterium spp. Acidipropionibacterium spp., Yeast: Saccharomyces cerevisiae | Propionic acid fermentation Alcohol fermentation | Cheese, dairy by-products Bread, wine, beer, vinegar, cocoa, coffee | ||
Chemical | ||||
pH control | 6.0–6.8 4.1–5.3 4.0–4.4 4.4–4.6 2.8–3.5 4.0–5.8 4.5–5.0 2.5–5.5 4.6–6.4 | Milk, cheese, fruit yogurts, plain yogurt, wine, baked bread, marmalades, syrups, fresh fruit, vegetables | [22] | |
Natural preservatives: salt, sugar, vinegar, rosemary extract | - | Fish, vegetables, jams, confitures, vegetables, oils, and fats | Inhibition of decomposition processes; extension of shelf life | [22] |
Artificial preservatives | Sulfates, nitrites and benzoates; emulsifers, stabilizers and thickeners; anticaking agents; preservatives; leavening agents; flavoring agents; coloring agents; fat replacers | Wine, beer, dried fruits | [22,57] | |
Ozone treatment | Combined sp2 and 2p2 orbitals, which brings about dual 9-molecular orbitals | Disinfection of fruit and vegetable surfaces Disinfection of drinking water Sewage treatment Processing of meat and seafood Control of insects/fungi in grain storage | Inactivation of microbes by destroying the structure of protein and genetic material; food preservation | [19] |
Other Vacuum packaging |
| Meat, milk, processed foods | Reduction in microbial contamination; extension of shelf life | [19] |
Foodborne Pathogens | Type of Phage Cocktail | Food Product | Company or Experimental Product; Certification | Results | References |
---|---|---|---|---|---|
Salmonella spp., E. coli, Listeria monocytogenes, Shigella spp. | Ecolicide PX™ | Beef, poultry, fruits, vegetables, dairy products (including cheese), fish, other seafood | Intralytix, Inc.; (Baltimore, MD, USA) GRAS (GRN No. 000834) | Significant reduction (3 log10 CFU/g) in E. coli O157:H7 on the skin of living animals | [68,69] |
E. coli O157:H7 O45:H2 O103:H2 O111:H- O121:H19 | Cocktail of four phages specific for STEC | Beef | Experimental phage cocktail | Reduction in the number of E. coli bacteria by 0.4–0.7 log10 CFU/cm2 on pieces of cowhide Variation was shown in the susceptibility of E. coli to the phages used | [70] |
E. coli O157:H7 STEC | EcoShield™ (ECP-100); Phage cocktail | Vegetables | Intralytix, Inc.; FDA | Reduction by 1–3 log10 CFU/g or below the limit of detection on tomatoes, broccoli or spinach | [71] |
EcoShield PX™ Phage cocktail | Poultry and beef products, fish, cheese, vegetables | Intralytix, Inc.; FDA, FCN No. 1018 |
| [69] | |
E. coli O157 | PhageGuard E | Meat and poultry, sprayed on whole heads or packaged leafy vegetables—cut green salads, lettuce; pet food | PhageGuard; FDA and USDA, the Netherlands |
| [72,73] |
E. coli | Secure Shield E1 | Beef products, turkey, and other foods | FINK TEC; GmbH (GER) FDA/GRN 724, USDA, FSIS Directive 7120.1 | [74] | |
EPEC E. coli Nmr-2 | Cocktail with five phages: K EPEC, BI EPEC, BL EPEC, CI EPEC, and CS EPEC 106 CFU/m | Shrimp, chicken meat, milk, lettuce, tofu | Experimental phage cocktails | Reduction in the number of EPEC by 0.24 log10 CFU on lettuce and 1.84 log10 in milk No reduction in bacteria in tofu, chicken meat or shrimp | [75] |
Salmonella spp. | PhageGuard S Salmonella phages S16 and FO1a | Ground and coarse beef and poultry meat; pet food | PhageGuard.com; FDA, EU, Canada, Australia, New Zealand, Switzerland, Israel | Reduction in Salmonella of about > 1–2.4 log Kill of Salmonella (90–99.6%), log10 CFU | [72] |
Salmonella Enteritidis | Phage solution sall_v01 approx. 107 PFU/mL | Pig slurry | Application of phage sall_v01 | Significant reduction in S. enteritidis bacteria by 3.8 log10 CFU/mL in pig slurry | [76] |
Salmonella Enteritidis | Phage mixture (SCPLX-1) of four phages titer 3 × 108 PFU/mL | Fresh melon | Experimental solution of Salmonella phage SCPLX-1 | Reduction by 2.5 log10 CFU at 20 °C and 3.5 log10 CFU at 10 °C from melon | [77] |
Salmonella enterica ser. Typhimurium; Enteritidis; Pullorum; Dublin | LPSTLL, LPST94, LPST153 phage cocktail MOI of 1000 (add 10 µL of 8 log10 PFU/mL phage to reach a final titer of 6 log10 PFU/mL) or 10,000 (add 10 µL of 9 log10 PFU/mL phage to reach a final titer of 7 log10 PFU/mL) in milk Phage cocktail was added with an MOI of 1000 (spot 10 µL of 8 log10 PFU/mL phage to reach a final titer of 6 log10 PFU/cm2) or MOI of 10,000 (spot 10 µL of 9 log10 PFU/mL phage for a final titer of 7 log10 PFU/cm2) by pipette transferring the lysate followed by spreading the lysate with a sterile spreader on surface of chicken breast samples | Chicken, meat, milk | 3.0 log reduction in Salmonella inoculum to below detectable limits on chicken breast and in milk Phage LPST153 lysed 50–100% strains of nine Salmonella serovars (except two serovars; Newport and Kentucky) Phage cocktail was effective against Salmonella biofilm grown for 72 h on microtiter plates and steel chips, resulting in >5.23 log reduction in Salmonella viable cells | [4,78] | |
Salmonella enterica ser. Typhymurium Typhi Ty 2-b Paratyphi | Cocktail of three phages, BSPM4, BSP101, BSP22A at titer ~1 × 108 PFU/mL | Lettuce and cucumber | Reduction of 3.9 log10 CFU of S. Typhimurium numbers on lettuce and 2.8 log reduction on cucumber after 4 h incubation at 25 °C | [79] | |
Salmonella Enteritidis, Typhimurium, Paratyphi A, San Diego, and Typhi | Cocktail of four Salmonella phages (CAU-SEP-1, CAU-SEP-2, CAU-SEP-3, and CAU-SEP-4) titer 108 PFU/mL | Chicken breast meat | Experimental phage cocktail | Decrease in the bacteria count up to 3.12 log CFU/mL after 6 h treatment | [80] |
Salmonella Enteritidis | Bacteriophage LSE7621 titer (~108 PFU/mL) | Lettuce, tofu | Experimental phage solution | For tofu—significantly reduced bacteria by 3.55 log10 CFU/mL For lettuce—reduction by 1.02 log10 CFU/mL | [81] |
Salmonella enterica ser. Typhimurium, Enteritidis, Heidelberg, Newport, Hadar, Kentucky, Thompson, Georgia, Agona, Grampian, Senftenberg, Alachua, Infantis, Reading, and Schwarzengrund | SalmoFresh™ |
| Bacteriophage cocktail concentrations of ≥108 PFU/mL; GRN No. 435,Canada |
| [82,83,84] |
Shigella flexneri | Bacteriophage vB_SflS-ISF001 (108 PFU/g) | Cooked and raw chicken breast | Experimental phage cocktail | Reduction ~2 logs10 CFU/mL of Shigella numbers within the first 24 h in cooked and raw chicken breast | [85] |
Shigella spp., including S. sonnei | ShigaShield™ (2 × 107 or 9 × 107 PFU/g) | Deli meat, smoked salmon, pre-cooked chicken, melons, lettuce, yogurt | Five-phage GRAS-affirmed cocktail(GRN 672) | Reduced levels of Shigella by approx. 1 log10 CFU/mL | [86] |
Campylobacter jejuni | Cocktail of two Campylobacter phages (F356, F357) | Chicken meat and skin | Experimental phage cocktail | Reduction in Campylobacter strains 0.55–0.79 log10 CFU/mL | [87] |
Campylobacter jejuni | Phage Cj6 titer 104 PFU/g-cm2 |
| Experimental phage | Significant bacteria inactivation—3 log10 cm−2 at 5 °C and 45.9 log10 cm−2 in beef products | [88] |
Campylobacter spp. (C. jejuni. C. coli) | Raw red meat (including whole carcasses, primal and subprimal cuts, trimmings, and organs), and raw poultry; raw beef slices | FDA: GRN 966 USA | Reduction in Campylobacter spp. 1–3 log10 CFU/mL on artificially contaminated cooked and raw beef slices Reduction in bacterial content about 0.7 log10 CFU/mL on chicken skin | [69] | |
Listeria spp. | PhageGuard L. | Ready-to-eat meats (fermented pork sausage, dry cured ham); cooked turkey and roast beef; fresh or frozen fruits and vegetables | PhageGuard; FDA |
| [72] |
Clostridium perfringens | Phage cocktail C. perfringens JCM1290 | Chicken meat, milk | Experimental phage C. perfringens JCM1290T suspension (5 × 107 PFU/mL) |
| [89] |
R. anatipestifer | PhagePharm (CHN) | Aquaculture environments | JiangYanQing; FDA, FSIS China |
| [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urban-Chmiel, R.; Osek, J.; Wieczorek, K. Methods of Controlling Microbial Contamination of Food. Pathogens 2025, 14, 492. https://doi.org/10.3390/pathogens14050492
Urban-Chmiel R, Osek J, Wieczorek K. Methods of Controlling Microbial Contamination of Food. Pathogens. 2025; 14(5):492. https://doi.org/10.3390/pathogens14050492
Chicago/Turabian StyleUrban-Chmiel, Renata, Jacek Osek, and Kinga Wieczorek. 2025. "Methods of Controlling Microbial Contamination of Food" Pathogens 14, no. 5: 492. https://doi.org/10.3390/pathogens14050492
APA StyleUrban-Chmiel, R., Osek, J., & Wieczorek, K. (2025). Methods of Controlling Microbial Contamination of Food. Pathogens, 14(5), 492. https://doi.org/10.3390/pathogens14050492