Rickettsia and Ehrlichia of Veterinary and Public Health Importance in Ticks Collected from Birds in the Great Plains of the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection
2.2. Capturing Birds
2.3. Sampling Ticks
2.4. DNA Extraction
2.5. Screening and Sequencing
3. Results
3.1. Overall Results
3.2. Prevalence of Rickettsia by Tick Species
3.3. Prevalence of Ehrlichia by Tick Species
3.4. Borrelia and Tick-Specific Assays
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reisen, W.K. Landscape epidemiology of vector-borne diseases. Annu. Rev. Entomol. 2010, 55, 461–483. [Google Scholar] [CrossRef] [PubMed]
- Mullen, G.; Durden, L. Medical and Veterinary Entomology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Eisen, R.J.; Paddock, C.D. Tick and tickborne pathogen surveillance as a public health tool in the United States. J. Med. Entomol. 2021, 58, 1490–1502. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Levi, T.; Jolles, A.E.; Martin, L.B.; Hosseini, P.R.; Keesing, F. Life history and demographic drivers of reservoir competence for three tick-borne zoonotic pathogens. PLoS ONE 2014, 9, e107387. [Google Scholar] [CrossRef] [PubMed]
- Eisen, R.J.; Kugeler, K.J.; Eisen, L.; Beard, C.B.; Paddock, C.D. Tick-borne zoonoses in the United States: Persistent and emerging threats to human health. ILAR J. 2017, 58, 319–335. [Google Scholar] [CrossRef] [PubMed]
- Kolonin, G.V. Mammals as hosts of Ixodid ticks (Acarina, Ixodidae). Entomol. Rev. 2007, 87, 401–412. [Google Scholar] [CrossRef]
- Levi, T.; Kilpatrick, A.M.; Mangel, M.; Wilmers, C.C. Deer, predators, and the emergence of Lyme disease. Proc. Natl. Acad. Sci. USA 2012, 109, 10942–10947. [Google Scholar] [CrossRef]
- Hasle, G. Transport of ixodid ticks and tick-borne pathogens by migratory birds. Front. Cell. Infect. Microbiol. 2013, 3, 48. [Google Scholar] [CrossRef]
- Scott, J.D. Birds widely disperse pathogen-infected ticks. In Seabirds and Songbirds, 1st ed.; Mahala, G., Ed.; Nova Publishers: New York, NY, USA, 2015; pp. 1–23. [Google Scholar]
- Loss, S.R.; Noden, B.H.; Hamer, G.L.; Hamer, S.A. A quantitative synthesis of the role of birds in carrying ticks and tick-borne pathogens in North America. Oecologia 2016, 182, 947–959. [Google Scholar] [CrossRef]
- Keve, G.; Sándor, A.D.; Hornok, S. Hard ticks (Acari: Ixodidae) associated with birds in Europe: Review of literature data. Front. Vet. Sci. 2022, 9, 928756. [Google Scholar] [CrossRef]
- Ginsberg, H.S.; Buckley, P.A.; Balmforth, M.G.; Zhioua, E.; Mitra, S.; Buckley, F.G. Reservoir competence of native North American birds for the Lyme disease spirochete, Borrelia burgdorferi. J. Med. Entomol. 2005, 42, 445–449. [Google Scholar] [CrossRef]
- Johnston, E.; Tsao, J.I.; Muñoz, J.D.; Owen, J. Anaplasma phagocytophilum infection in American robins and gray catbirds: An assessment of reservoir competence and disease in captive wildlife. J. Med. Entomol. 2013, 50, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Newman, E.A.; Eisen, L.; Eisen, R.J.; Fedorova, N.; Hasty, J.M.; Vaughn, C.; Lane, R.S. Borrelia burgdorferi sensu lato spirochetes in wild birds in northwestern California: Associations with ecological factors, bird behavior and tick infestation. PLoS ONE 2015, 10, e0118146. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, H.S.; Hickling, G.J.; Burke, R.L.; Ogden, N.H.; Beati, L.; LeBrun, R.A.; Arsnoe, I.M.; Gerhold, R.; Han, S.; Jackson, K.; et al. Why Lyme disease is common in the northern US, but rare in the south: The roles of host choice, host-seeking behavior, and tick density. PLoS Biol. 2021, 19, e3001066. [Google Scholar] [CrossRef] [PubMed]
- Biggs, H.M. Diagnosis and management of tickborne rickettsial diseases: Rocky Mountain spotted fever and other spotted fever group rickettsioses, ehrlichioses, and anaplasmosis—United States. MMWR Recomm. Rep. 2016, 65, 1–44. [Google Scholar] [CrossRef]
- Dahlgren, F.S.; Paddock, C.D.; Springer, Y.P.; Eisen, R.J.; Behravesh, C.B. Expanding range of Amblyomma americanum and simultaneous changes in the epidemiology of spotted fever group rickettsiosis in the United States. Am. J. Trop. Med. Hyg. 2016, 94, 35. [Google Scholar] [CrossRef]
- Springer, Y.P.; Johnson, P.T. Large-scale health disparities associated with Lyme disease and human monocytic ehrlichiosis in the United States, 2007–2013. PLoS ONE 2018, 13, e0204609. [Google Scholar] [CrossRef]
- Scott, J.D.; Fernando, K.; Banerjee, S.N.; Durden, L.A.; Byrne, S.K.; Banerjee, M.; Mann, R.B.; Morshed, M.G. Birds disperse ixodid (Acari: Ixodidae) and Borrelia burgdorferi-infected ticks in Canada. J. Med. Entomol. 2001, 38, 493–500. [Google Scholar] [CrossRef]
- Mukherjee, N.; Beati, L.; Sellers, M.; Burton, L.; Adamson, S.; Robbins, R.G.; Moore, F.; Karim, S. Importation of exotic ticks and tick-borne spotted fever group rickettsiae into the United States by migrating songbirds. Ticks Tick-Borne Dis. 2014, 5, 127–134. [Google Scholar] [CrossRef]
- Cohen, E.B.; Auckland, L.D.; Marra, P.P.; Hamer, S.A. Avian migrants facilitate invasions of neotropical ticks and tick-borne pathogens into the United States. Appl. Environ. Microb. 2015, 81, 8366–8378. [Google Scholar] [CrossRef]
- Becker, D.J.; Byrd, A.; Smiley, T.M.; Marques, M.F.; Nunez, J.V.; Talbott, K.M.; Atwell, J.W.; Volokhov, D.V.; Ketterson, E.D.; Jahn, A.E.; et al. Novel Rickettsia spp. in two common overwintering North American songbirds. Emerg. Microbes Infect. 2022, 11, 2746–2748. [Google Scholar] [CrossRef]
- Karim, S.; Zenzal, T.J., Jr.; Beati, L.; Sen, R.; Adegoke, A.; Kumar, D.; Downs, L.P.; Keko, M.; Nussbaum, A.; Becker, D.J.; et al. Ticks without borders: Microbiome of immature neotropical tick species parasitizing migratory songbirds along northern Gulf of Mexico. Front. Cell. Infect. Microbiol. 2024, 14, 1472598. [Google Scholar] [CrossRef] [PubMed]
- Erwin, J.A.; Fitak, R.R.; Dwyer, J.F.; Morrison, J.L.; Culver, M. Molecular detection of bacteria in the families Rickettsiaceae and Anaplasmataceae in northern crested caracaras (Caracara cheriway). Ticks Tick-borne Dis. 2016, 7, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Roselli, M.A.; Noden, B.H.; Loss, S.R. Tick infestation of birds across a gradient of urbanization intensity in the United States Great Plains. Urban Ecosyst. 2022, 25, 379–391. [Google Scholar] [CrossRef]
- Hornok, S.; Boldogh, S.A.; Takács, N.; Juhász, A.; Kontschán, J.; Földi, D.; Koleszár, B.; Morandini, P.; Gyuranecz, M.; Szekeres, S. Anaplasmataceae closely related to Ehrlichia chaffeensis and Neorickettsia helminthoeca from birds in Central Europe, Hungary. Antonie Van Leeuwenhoek 2020, 113, 1067–1073. [Google Scholar] [CrossRef]
- Vaschalde, P.J.; Flores, F.S.; Tauro, L.B.; Monje, L.D. Wild birds as hosts of ticks (Acari: Ixodidae) and Anaplasmataceae (Rickettsiales) in the Atlantic rainforest ecoregion, Argentina. Med. Vet. Entomol. 2025, 39, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Rataud, A.; Galon, C.; Bournez, L.; Henry, P.Y.; Marsot, M.; Moutailler, S. Diversity of tick-borne pathogens in tick larvae feeding on breeding birds in France. Pathogens 2022, 11, 946. [Google Scholar] [CrossRef]
- Tufts, D.M.; Goethert, H.K.; Diuk-Wasser, M.A. Host-pathogen associations inferred from bloodmeal analyses of Ixodes scapularis ticks in a low biodiversity setting. Appl. Environ. Microbiol. 2024, 90, e00667-24. [Google Scholar] [CrossRef]
- Hauck, D.; Jordan, D.; Springer, A.; Schunack, B.; Pachnicke, S.; Fingerle, V.; Strube, C. Transovarial transmission of Borrelia spp., Rickettsia spp. and Anaplasma phagocytophilum in Ixodes ricinus under field conditions extrapolated from DNA detection in questing larvae. Parasites Vectors 2020, 13, 1–11. [Google Scholar] [CrossRef]
- Ravindran, R.; Hembram, P.K.; Kumar, G.S.; Kumar, K.G.A.; Deepa, C.K.; Varghese, A. Transovarial transmission of pathogenic protozoa and rickettsial organisms in ticks. Parasitol. Res. 2023, 122, 691–704. [Google Scholar] [CrossRef]
- Piesman, J. Experimental acquisition of the Lyme disease spiroehete, Borrelia burgdorferi, by larval Ixodes dammini (Acari: Ixodidae) during partial blood meals. J. Med. Entomol. 1991, 28, 259–262. [Google Scholar] [CrossRef]
- Taylor, T.C.; Propst, J.D.; Noden, B.H.; Loss, S.R. Tick infestation of birds in grasslands experiencing woody plant encroachment in the United States Great Plains. J. Med. Entomol. in press.
- Diamond, D.D.; Elliott, L.F. Oklahoma Ecological Systems Mapping Interpretive Booklet: Methods, Short Type Descriptions, and Summary Results; Oklahoma Department of Wildlife Conservation: Norman, OK, USA, 2015.
- Propst, J. Effect of Woody Plant Encroachment by Eastern Redcedar on the Abundance of Ticks and Prevalence of Tick-Borne Pathogens. Master’s Thesis, Oklahoma State University, Oklahoma, OK, USA, December 2024. [Google Scholar]
- Noden, B.H.; Dubie, T.R.; Henriquez, B.E.; Gilliland, M.; Talley, J.L. Seasonality of ticks and prevalence of Rickettsiae species in Dermacentor variabilis and Amblyomma maculatum across Oklahoma pastures. J. Med. Entomol. 2022, 59, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
- McClung, K.L.; Sundstrom, K.D.; Lineberry, M.W.; Grant, A.N.; Little, S.E. Seasonality of Amblyomma americanum (Acari: Ixodidae) activity and prevalence of infection with tick-borne disease agents in north central Oklahoma. Vector-Borne Zoonot. 2023, 23, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Roselli, M.A.; Cady, S.M.; Lao, S.; Noden, B.H.; Loss, S.R. Variation in tick load among bird body parts: Implications for studying the role of birds in the ecology and epidemiology of tick-borne diseases. J. Med. Entomol. 2020, 57, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Keirans, J.E.; Litwak, T.R. Pictorial key to the adults of hard ticks, family Ixodidae (Ixodida: Ixodoidea), east of the Mississippi River. J. Med. Entomol. 1989, 26, 435–448. [Google Scholar] [CrossRef]
- Keirans, J.E.; Durden, L.A. Illustrated key to nymphs of the tick genus Amblyomma (Acari: Ixodidae) found in the United States. J. Med. Entomol. 1998, 35, 489–495. [Google Scholar] [CrossRef]
- Coley, K. Identification Guide to Larval Stages of Ticks of Medical Importance in the USA. Master’s Thesis, Georgia Southern University, Statesboro, GA, USA, 2015. Available online: https://digitalcommons.georgiasouthern.edu/honors-theses/110 (accessed on 5 May 2025).
- Dubie, T.R.; Grantham, R.; Coburn, L.; Noden, B.H. Pictorial key for identification of immature stages of common ixodid ticks found in pastures in Oklahoma. Southwest. Entomol. 2017, 42, 1–14. [Google Scholar] [CrossRef]
- Schwartz, I.; Varde, S.; Nadelman, R.B.; Wormser, G.P.; Fish, D. Inhibition of efficient polymerase chain reaction amplification of Borrelia burgdorferi DNA in blood-fed ticks. Am. J. Trop. Med. Hyg. 1997, 56, 339–342. [Google Scholar] [CrossRef]
- Goethert, H.K.; Mather, T.N.; O’Callahan, A.; Telford, S.R., III. Host-utilization differences between larval and nymphal deer ticks in northeastern US sites enzootic for Borrelia burgdorferi sensu stricto. Ticks Tick-Borne Dis. 2023, 14, 102230. [Google Scholar] [CrossRef]
- Labruna, M.B.; Whitworth, T.; Bouyer, D.H.; McBride, J.; Camargo, L.M.A.; Camargo, E.P.; Popov, V.; Walker, D.H. Rickettsia bellii and Rickettsia amblyommii in Amblyomma ticks from the state of Rondônia, Western Amazon, Brazil. J. Med. Entomol. 2004, 41, 1073–1081. [Google Scholar] [CrossRef]
- Regnery, R.L.; Spruill, C.L.; Plikaytis, B. Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J. Bacteriol. 1991, 173, 1576–1589. [Google Scholar] [CrossRef]
- Eremeeva, M.; Yu, X.; Raoult, D. Differentiation among spotted fever group rickettsiae species by analysis of restriction fragment length polymorphism of PCR-amplified DNA. J. Clin. Mcrobiol. 1994, 32, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Roux, V.; Fournier, P.E.; Raoult, D. Differentiation of spotted fever group rickettsiae by sequencing and analysis of restriction fragment length polymorphism of PCR-amplified DNA of the gene encoding the protein rOmpA. J. Clin. Microbiol. 1996, 34, 2058–2065. [Google Scholar] [CrossRef] [PubMed]
- Li, J.S.Y.; Chu, F.; Reilly, A.; Winslow, G.M. Antibodies highly effective in SCID mice during infection by the intracellular bacterium Ehrlichia chaffeensis are of picomolar affinity and exhibit preferential epitope and isotype utilization. J. Immunol. 2002, 169, 1419–1425. [Google Scholar] [CrossRef]
- Lado, P.; Luan, B.; Allerdice, M.E.; Paddock, C.D.; Karpathy, S.E.; Klompen, H. Integrating population genetic structure, microbiome, and pathogens presence data in Dermacentor variabilis. PeerJ 2020, 8, e9367. [Google Scholar] [CrossRef]
- Halos, L.; Jamal, T.; Vial, L.; Maillard, R.; Suau, A.; Le Menach, A.; Boulouis, H.J.; Taussat, M.V. Determination of an efficient and reliable method for DNA extraction from ticks. Vet. Res. 2004, 35, 709–713. [Google Scholar] [CrossRef]
- Crowder, C.D.; Rounds, M.A.; Phillipson, C.A.; Picuri, J.M.; Matthews, H.E.; Halverson, J.; Schutzer, S.E.; Ecker, D.J.; Eshoo, M.W. Extraction of total nucleic acids from ticks for the detection of bacterial and viral pathogens. J. Med. Entomol. 2010, 47, 89–94. [Google Scholar] [CrossRef]
- Roux, V.; Raoult, D. Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein rOmpB (ompB). Int. J. Syst. Evol. Micr. 2000, 50, 1449–1455. [Google Scholar] [CrossRef]
- Tabara, K.; Arai, S.; Kawabuchi, T.; Itagaki, A.; Ishihara, C.; Satoh, H.; Okabe, N.; Tsuji, M. Molecular survey of Babesia microti, Ehrlichia species and Candidatus Neoehrlichia mikurensis in wild rodents from Shimane Prefecture, Japan. Microbiol. Immunol. 2007, 51, 359–367. [Google Scholar] [CrossRef]
- Takano, A.; Ando, S.; Kishimoto, T.; Fujita, H.; Kadosaka, T.; Nitta, Y.; Kawabata, H.; Watanabe, H. Presence of a novel Ehrlichia sp. in Ixodes granulatus found in Okinawa, Japan. Microbiol. Immunol. 2009, 53, 101–106. [Google Scholar] [CrossRef]
- Barbour, A.G.; Maupin, G.O.; Teltow, G.J.; Carter, C.J.; Piesman, J. Identification of an uncultivable Borrelia species in the hard tick Amblyomma americanum: Possible agent of a Lyme disease-like illness. J. Infect. Dis. 1996, 173, 403–409. [Google Scholar] [CrossRef]
- Gleim, E.R.; Garrison, L.E.; Vello, M.S.; Savage, M.Y.; Lopez, G.; Berghaus, R.D.; Yabsley, M.J. Factors associated with tick bites and pathogen prevalence in ticks parasitizing humans in Georgia, USA. Parasites Vectors 2016, 9, 125. [Google Scholar] [CrossRef] [PubMed]
- Sayler, K.; Rowland, J.; Boyce, C.; Weeks, E. Borrelia burgdorferi DNA absent, multiple Rickettsia spp. DNA present in ticks collected from a teaching forest in North Central Florida. Ticks Tick-Borne Dis. 2017, 8, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Hodo, C.L.; Forgacs, D.; Auckland, L.D.; Bass, K.; Lindsay, C.; Bingaman, M.; Sani, T.; Colwell, K.; Hamer, G.L.; Hamer, S.A. Presence of diverse Rickettsia spp. and absence of Borrelia burgdorferi sensu lato in ticks in an East Texas forest with reduced tick density associated with controlled burns. Ticks Tick-Borne Dis. 2020, 11, 101310. [Google Scholar] [CrossRef] [PubMed]
- Barrett, A.W.; Little, S.E. Vector-borne infections in tornado-displaced and owner-relinquished dogs in Oklahoma, USA. Vector-Borne Zoonot. 2016, 16, 428–430. [Google Scholar] [CrossRef]
- Richardson, E.A.; Roe, R.M.; Apperson, C.S.; Ponnusamy, L. Rickettsia amblyommatis in ticks: A review of distribution, pathogenicity, and diversity. Microorganisms 2023, 11, 493. [Google Scholar] [CrossRef]
- Long, S.W.; Zhang, X.; Zhang, J.; Ruble, R.P.; Teel, P.; Yu, X.J. Evaluation of transovarial transmission and transmissibility of Ehrlichia chaffeensis (Rickettsiales: Anaplasmataceae) in Amblyomma americanum (Acari: Ixodidae). J. Med. Entomol. 2003, 40, 1000–1004. [Google Scholar] [CrossRef]
- Hamer, S.A.; Hickling, G.J.; Keith, R.; Sidge, J.L.; Walker, E.D.; Tsao, J.I. Associations of passerine birds, rabbits, and ticks with Borrelia miyamotoi and Borrelia andersonii in Michigan, USA. Parasite Vector 2012, 5, 231. [Google Scholar] [CrossRef]
- Hamer, S.A.; Lehrer, E.; Magle, S.B. Wild birds as sentinels for multiple zoonotic pathogens along an urban to rural gradient in greater Chicago, Illinois. Zoonoses Public Health 2012, 59, 355–364. [Google Scholar] [CrossRef]
- Cumbie, A.N.; Heller, E.L.; Bement, Z.J.; Phan, A.; Walters, E.L.; Hynes, W.L.; Gaff, H.D. Passerine birds as hosts for Ixodes ticks infected with Borrelia burgdorferi sensu stricto in southeastern Virginia. Ticks Tick Borne Dis. 2021, 12, 101650. [Google Scholar] [CrossRef]
- Mead, P.S. Epidemiology of Lyme disease. Inf. Dis. Clin. 2015, 29, 187–210. [Google Scholar] [CrossRef]
- Defaye, B.; Moutailler, S.; Vollot, B.; Galon, C.; Gonzalez, G.; Moraes, R.A.; Leoncini, A.S.; Rataud, A.; Le Guillou, G.; Pasqualini, V.; et al. Detection of pathogens and ticks on sedentary and migratory birds in two Corsican Wetlands (France, Mediterranean Area). Microorganisms 2023, 11, 869. [Google Scholar] [CrossRef] [PubMed]
- Alabí Córdova, A.S.; Fecchio, A.; Calchi, A.C.; Dias, C.M.; Mongruel, A.C.B.; das Neves, L.F.; Lee, D.A.B.; Machado, R.Z.; André, M.R. Novel tick-borne Anaplasmataceae genotypes in tropical birds from the Brazilian Pantanal Wetland. Microorganisms 2024, 12, 962. [Google Scholar] [CrossRef] [PubMed]
- Paddock, C.D.; Yabsley, M.J. Ecological havoc, the rise of white-tailed deer, and the emergence of Amblyomma americanum-associated zoonoses in the United States. Curr. Top. Microbiol. Immunol. 2007, 315, 289–324. [Google Scholar]
- Lockhart, J.M.; Davidson, W.R.; Stallknecht, D.E.; Dawson, J.E.; Howerth, E.W. Isolation of Ehrlichia chaffeensis from wild white-tailed deer (Odocoileus virginianus) confirms their role as natural reservoir hosts. J. Clin. Microbiol. 1997, 35, 1681–1686. [Google Scholar] [CrossRef]
- Gonzalez, J.; Conway, M.; Hamer, S.A. Bird-tick and human-tick encounters in the Rio Grande Valley (Texas, USA): Ecological associations and pathogen detections. Parasit Vectors 2025, 18, 95. [Google Scholar] [CrossRef]
- Stromdahl, E.Y.; Vince, M.A.; Billingsley, P.M.; Dobbs, N.A.; Williamson, P.C. Rickettsia amblyommii infecting Amblyomma americanum larvae. Vector-Borne Zoonot. 2008, 8, 15–24. [Google Scholar] [CrossRef]
- Noden, B.H.; Gilliland, M.; Propst, J.; Slater, K.; Karpathy, S.E.; Paddock, C.D. Rickettsia tillamookensis (Rickettsiales: Rickettsiaceae) in Ixodes scapularis (Acari: Ixodidae) in Oklahoma. J. Med. Entomol. 2024, 61, 257–260. [Google Scholar] [CrossRef]
- Mascarelli, P.E.; McQuillan, M.; Harms, C.A.; Harms, R.V.; Breitschwerdt, E.B. Bartonella henselae and B. koehlerae DNA in birds. J. Emerg. Infect. Dis. 2014, 20, 491. [Google Scholar] [CrossRef]
- Garvin, S.D.; Noden, B.H.; Dillwith, J.W.; Fox, S.F.; Payton, M.E.; Barker, R.W. Sylvatic Infestation of Oklahoma Reptiles with Immature Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 2015, 52, 873–878. [Google Scholar] [CrossRef]
- Eddy, G.W. Notes on the seasonal History of the Rabbit Tick, Haemaphysalis leporispalustris, in Oklahoma. Proc. Entomol. Soc. Wash. 1942, 44, 145–149. [Google Scholar]
- Kollars, T.M.; Oliver, J.H. Host associations and seasonal occurrence of Haemaphysalis leporispalustris, Ixodes brunneus, I. cookei, I. dentatus, and I. texanus (Acari: Ixodidae) in southeastern Missouri. J. Med. Entomol. 2003, 40, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, A.I.; van Duijvendijk, G.L.; Swart, A.; Heylen, D.; Jaarsma, R.I.; Jacobs, F.H.; Fonville, M.; Sprong, H.; Takken, W. Effect of rodent density on tick and tick-borne pathogen populations: Consequences for infectious disease risk. Parasite Vector 2020, 13, 34. [Google Scholar] [CrossRef] [PubMed]
- Elias, S.P.; Gardner, A.M.; Maasch, K.A.; Birkel, S.D.; Anderson, N.T.; Rand, P.W.; Lubelczyk, C.B.; Smith, R.P., Jr. A generalized additive model correlating blacklegged ticks with white-tailed deer density, temperature, and humidity in Maine, USA, 1990–2013. J. Med. Entomol. 2021, 58, 125–138. [Google Scholar] [CrossRef]
Bird Species | Total Birds Captured/w Ticks | Total Birds w Micro-Organisms in Ticks | Tick Species | Tick Lifestage | Total Ticks Tested | Rickettsia (%) | Ehrlichia (%) |
---|---|---|---|---|---|---|---|
Brown Thrasher (Toxostoma rufum) | 1/1 | 0 | Aa | N | 5 | 0 | 0 |
Carolina Wren (Thryothorus ludovicianus) | 5/3 | 3 | Aa | N | 4 | 0 | 0 |
Is | L | 3 | 3 (100.0) | 0 | |||
N | 1 | 1 (100.0) | 0 | ||||
Common Grackle (Quiscalus quiscula) | 6/1 | 0 | Aa | L | 1 | 0 | 0 |
Indigo Bunting (Passerina cyanea) | 4/2 | 1 | Aa | N | 2 | 1 (50.0) | 0 |
Northern Cardinal (Cardinalis cardinalis) | 53/26 | 8 | Aa | L | 1 | 1 (100.0) | 0 |
N | 35 | 6 (17.1) | 2 (5.7) | ||||
Hl | L | 30 | 0 | 1 (3.3) | |||
N | 2 | 0 | 0 | ||||
Painted Bunting (Passerina ciris) | 11/2 | 2 | Aa | N | 2 | 1 (50.0) | 1 (50) |
Am | L | 1 | 1 (100.0) | 0 | |||
Is | N | 1 | 1 (100.0) | 0 | |||
Summer Tanager (Piranga rubra) | 2/1 | 1 | Aa | N | 1 | 1 (100.0) | 0 |
Swainson’s Thrush (Catharus ustulatus) | 1/0 | 0 | Aa | N | 1 | 0 | 0 |
Other bird species without ticks ** | 57/0 | 0 | |||||
Total | 140/36 | 15 | 90 | 16 (17.8) | 4 (4.4) |
Bird Species | Collection Location * | Collection Date | Tick Species ^ | Tick Lifestage X | # Other Ticks Same Bird | Rickettsia sp. ‡ (NCBI #) | Ehrlichia sp. ‡ (NCBI #) |
---|---|---|---|---|---|---|---|
Carolina Wren 1 | CB | 22 June 2023 | Is | L | 2 uninfected | R. buchneri (PV296324) | |
2 | FW | 26 June 2023 | Is | L | 1 uninfected | R. buchneri | |
3 | FE | 27 June 2023 | Is | L | 1 uninfected | R. buchneri | |
N | R. buchneri | ||||||
Indigo Bunting 1 | FW | 1 September 2023 | Aa | N | 1 uninfected | R. ambly. (PV296326) | |
Northern Cardinal 1 | BS | 7 September 2023 | Aa | L | 0 | R. ambly. | |
2 | FE | 30 May 2023 | Aa | N | 1 uninfected | E, chaff. (PV274862) | |
3 | CB | 22 June 2023 | Aa | N | 4 uninfected | E. ewingii (PV274861) | |
4 | RR | 21 May 2023 | Aa | N | 2 uninfected | R. ambly. | |
5 | RR | 21 May 2023 | Aa | N | 1 uninfected | R. ambly. | |
6 | CA | 14 July 2023 | Aa | N | 0 | R. ambly. | |
N | R. ambly. | ||||||
7 | FE | 2 September 2023 | Aa | N | 0 | R. ambly. | |
N | R. ambly. | ||||||
8 | CA | 7 October 2023 | Hl | L | 3 uninfected | E. chaff. | |
Painted Bunting 1 | CA | 14 July 2023 | Aa | N | 1 uninfected | R. ambly. | E. chaff. |
Am | L | ‘Can.’ R. andeanae (PV296325) | |||||
2 | RR | 23 June 2023 | Is | N | 0 | Unknown Rickettsia (PV296327) | |
Summer Tanager 1 | CB | 23 May 2023 | Aa | N | 0 | R. ambly. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, T.; Loss, S.R.; Noden, B.H. Rickettsia and Ehrlichia of Veterinary and Public Health Importance in Ticks Collected from Birds in the Great Plains of the United States. Pathogens 2025, 14, 461. https://doi.org/10.3390/pathogens14050461
Taylor T, Loss SR, Noden BH. Rickettsia and Ehrlichia of Veterinary and Public Health Importance in Ticks Collected from Birds in the Great Plains of the United States. Pathogens. 2025; 14(5):461. https://doi.org/10.3390/pathogens14050461
Chicago/Turabian StyleTaylor, Tucker, Scott R. Loss, and Bruce H. Noden. 2025. "Rickettsia and Ehrlichia of Veterinary and Public Health Importance in Ticks Collected from Birds in the Great Plains of the United States" Pathogens 14, no. 5: 461. https://doi.org/10.3390/pathogens14050461
APA StyleTaylor, T., Loss, S. R., & Noden, B. H. (2025). Rickettsia and Ehrlichia of Veterinary and Public Health Importance in Ticks Collected from Birds in the Great Plains of the United States. Pathogens, 14(5), 461. https://doi.org/10.3390/pathogens14050461