Isolation, Identification, and In Vitro Fungicide Screening of the Pathogen Associated with Pear Dry Blight
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Pathogen Isolation
2.2. Pathogen Morphology
2.3. DNA Isolation, PCR and Phylogeny
2.4. Pathogenicity Tests
2.5. In Vitro Efficacy of Fungicides Against LGKB-1 Strain
2.6. Data Analysis
3. Results
3.1. Symptoms
3.2. Morphological Characterisation
3.3. Molecular Characterisation and Phylogenetic Analysis
3.4. Pathogenicity Tests Using LGKB-1 Strain
3.5. Antifungal Effects of Different Fungicides Against LGKB-1 Strain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teng, Y. The pear industry and research in China. Acta Hortic. 2011, 909, 161–170. [Google Scholar] [CrossRef]
- Sun, P.; Wang, W. Production, market and trade of apples, pears, grapes, peaches and cherries in the world in 2016 to 2017. China Fruits 2017, 2, 91–100. [Google Scholar]
- Zhao, Y.Q.; Tian, Y.L.; Wang, L.M.; Geng, G.M.; Zhao, W.J.; Hu, B.S.; Zhao, Y.F. Fire blight disease, a fast-approaching threat to apple and pear production in China. J. Integr. Agric. 2019, 18, 815–820. [Google Scholar] [CrossRef]
- Reiland, H.; Slavin, J. Systematic review of pears and health. Nutr. Today 2015, 50, 301–305. [Google Scholar] [CrossRef]
- Huang, S.B. Agroclimatology of the major fruit production in China: A review of current practice. Agric. For. Meteorol. 1990, 53, 125–142. [Google Scholar] [CrossRef]
- Wang, Y. Pear breeding in China. Plant Breed. Abstr. 1990, 60, 8. [Google Scholar]
- Li, J.; Zhang, M.; Li, X.; Khan, A.; Kumar, S.; Allan, A.C.; Lin-Wang, K.; Espley, R.V.; Wang, C.; Wang, R.; et al. Pear genetics: Recent advances, new prospects, and a roadmap for the future. Hortic. Res. 2022, 9, uhab040. [Google Scholar] [CrossRef]
- Liu, M.; Yang, X.; Yin, Y.; Hu, J. Climate characteristics and forecast of relative humidity in Wuwei City. Arid Zone Res. 2012, 29, 655–659. [Google Scholar]
- Dong, Z.; Chen, M.; Srivastava, A.K.; Mahmood, U.H.; Ishfaq, M.; Shi, X.; Zhang, Y.; Moussa, M.G.; Li, X.; Hu, C.; et al. Climate changes altered the citrus fruit quality: A 9-year case study in China. Sci. Total Environ. 2024, 923, 171406. [Google Scholar] [CrossRef]
- Jones, R.A.; Barbetti, M.J. Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. CABI Rev. 2012, 2012, 1–33. [Google Scholar] [CrossRef]
- Wang, H.Y.; Han, Y.F.; Guo, J.J.; Jin, Y.W. Causes of severe occurrence of pear trunk blight and comprehensive control techniques. Acta Hortic. Sin. 2011, 7, 164–165. [Google Scholar]
- Ding, L.H.; Zhao, C.H.; Zou, L.R. Tree trunk blight and control in cold regions. North. Hortic. 2006, 4, 179–185. [Google Scholar]
- Guo, Y.S.; Bai, Q.; Hong, N.; Wang, G.P. Comparison of pathogens of dry pear disease of sand pear, white pear and western pear. In Proceedings of the Annual Academic Meeting of the Chinese Society of Plant Pathology, Tai’an, China, 25–29 July 2017. [Google Scholar]
- Huang, Y.J.; Zhou, X.H.; Tong, Z.X. Occurrence and control techniques of pear dry blight. Southwest Agric. J. 1999, 27, 25–27. [Google Scholar]
- Zeng, X. An overview of official and private agricultural books through Chinese history. In The High Tide of Science and Technology Development in China; 2021; Volume 3, pp. 53–123. [Google Scholar]
- Huang, D.H.; Zhou, C.H.; Xu, L.; Xie, J. Occurrence status and integrated control strategy for early-maturity pear’ diseases and pests in Jiangxi province. Biol. Disaster Sci. 2015, 38, 22–26. [Google Scholar]
- Kanematsu, S.; Kobayashi, T.; Kudo, A.; Ohtsu, Y. Conidial morphology, pathogenicity and culture characteristics of Phomopsis isolates from peach, Japanese pear and apple in Japan. Jpn. J. Phytopathol. 1999, 65, 264–273. [Google Scholar] [CrossRef]
- Nasu, H.; Kanadani, G.; Hatamoto, M. Control of Pear (Pyrus pyrifolia) Fruit Rot Caused by Phomopsis fukushii; Bulletin of the Okayama Prefectural Agricultural Experiment Station: Okayama, Japan, 1994. [Google Scholar]
- Far, D.; Rossman, A. Fungal Database. US National Fungal Collections; The Agricultural Research Service (ARS), the United States Department of Agriculture (USDA): Washington, DC, USA, 2021. Available online: https://fungi.ars.usda.gov/ (accessed on 14 August 2021).
- Bai, Q.; Zhai, L.; Chen, X.; Hong, N.; Xu, W.; Wang, G. Biological and molecular characterization of five Phomopsis species associated with pear shoot canker in China. Plant Dis. 2015, 99, 1704–1712. [Google Scholar] [CrossRef]
- Sharma, R.; Verma, S. Environment-pathogen interaction in plant diseases. Agric. Rev. 2019, 40, 192–199. [Google Scholar] [CrossRef]
- Mareri, L.; Parrotta, L.; Cai, G. Environmental stress and plants. Int. J. Mol. Sci. 2022, 23, 5416. [Google Scholar] [CrossRef]
- Guo, Y.; Crous, P.W.; Bai, Q.; Fu, M.; Yang, M.; Wang, X.; Du, Y.; Hong, N.; Xu, W.; Wang, G. High diversity of Diaporthe species associated with pear shoot canker in China. Persoonia-Mol. Phylogeny Evol. Fungi 2020, 45, 132–162. [Google Scholar] [CrossRef]
- Choi, I.Y.; Joa, J.H.; Cho, S.W.; Lee, W.H.; Galea, V.; Shin, H.D. Occurrence of stem and shoot cankers caused by Phomopsis fukushii on mango. Australas. Plant Dis. Notes 2017, 12, 56. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Qu, H.X.; Luo, S.C.; Yi, K.X.; Xie, B.Y.; Chen, G.Y. Advances in research on the biology and pathogenic mechanisms of diseases caused by Phomopsis in major crops. Chin. Agric. Sci. Bull. 2013, 33, 327–332. [Google Scholar]
- Bai, Y.; Lin, L.; Pan, M.; Fan, X. Studies of Diaporthe (Diaporthaceae, Diaporthales) species associated with plant cankers in Beijing, China, with three new species described. MycoKeys 2023, 98, 59. [Google Scholar] [CrossRef]
- Hilário, S.; Gonçalves, M.F. Mechanisms underlying the pathogenic and endophytic lifestyles in Diaporthe: An omics-based approach. Horticulturae 2023, 9, 423. [Google Scholar] [CrossRef]
- Zakaria, L. Fungal and oomycete diseases of minor tropical fruit crops. Horticulturae 2022, 8, 323. [Google Scholar] [CrossRef]
- Lawrence, D.P.; Travadon, R.; Baumgartner, K. Diversity of Diaporthe species associated with wood cankers of fruit and nut crops in northern California. Mycologia 2015, 107, 926–940. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, Y.; Zheng, F.; Xiong, T.; Zeng, Y.; Wang, W.; Zheng, X.; Wu, Q.; Xu, J.; Crous, P.W.; et al. High species diversity in Diaporthe associated with citrus diseases in China. Persoonia-Mol. Phylogeny Evol. Fungi 2023, 51, 229–256. [Google Scholar] [CrossRef]
- Liang, Z. Flora Fungorum Sinicorum, Phomopsis; Science Press: Beijing, China, 2007; Volume 34. [Google Scholar]
- Zhou, Y.; Zhang, W.; Abeywickrama, P.D.; He, Z.; Zhang, Z.; Li, Y.; Li, S.; Fan, Z.; Yan, J. Diversity and Virulence of Diaporthe Species Associated with Peach Trunk Diseases in China. Plants 2024, 13, 3238. [Google Scholar] [CrossRef]
- Guarnaccia, V.; Crous, P.W. Emerging citrus diseases in Europe caused by species of Diaporthe. IMA Fungus 2017, 8, 317–334. [Google Scholar] [CrossRef]
- Iyer, P.; Makris, S. Developmental and reproductive toxicology of pesticides. In Hayes’ Handbook of Pesticide Toxicology; Elsevier: Amsterdam, The Netherlands, 2010; pp. 381–440. [Google Scholar]
- Keller, P.; Müller, C.; Engelhardt, I.; Hiller, E.; Lemuth, K.; Eickhoff, H.; Wiesmüller, K.H.; Burger-Kentischer, A.; Bracher, F.; Rupp, S. An antifungal benzimidazole derivative inhibits ergosterol biosynthesis and reveals novel sterols. Antimicrob. Agents Chemother. 2015, 59, 6296–6307. [Google Scholar] [CrossRef]
- Mohan, K.; Barnes, S.; Rasuleva, D.; Mukaila, T.; Allen, T.; Bergstrom, G.C.; Bissonnette, K.; Bonkowski, J.; Bradley, C.A.; Buck, J. Sensitivity of soybean (Glycine max L.) pathogens Diaporthe aspalathi, D. caulivora, and D. longicolla to Difenoconazole and Fluopyram fungicides. Plant Health Prog. 2024, 26, 62–69. [Google Scholar] [CrossRef]
- Gi, S.; Kim, W.; Yang, K.Y. Emergence of multiple Diaporthe species causing kiwifruit rot and occurrence of resistance to a methyl benzimidazole carbamate fungicide in South Korea. Crop Prot. 2022, 158, 106016. [Google Scholar] [CrossRef]
- Batzer, J.C.; Mueller, D.S. Soybean fungal endophytes Alternaria and Diaporthe spp. are differentially impacted by fungicide application. Plant Dis. 2020, 104, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Akgül, D.S.; Awan, Q.N. Characterization of Diaporthe ampelina isolates and their Sensitivity to Hot-Water Treatments and Fungicides in in vitro. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Derg. 2022, 25, 1378–1389. [Google Scholar] [CrossRef]
- Brunner, J.F. Integrated pest management in tree fruit crops. Food Rev. Int. 1994, 10, 135–157. [Google Scholar] [CrossRef]
- Weber, R.W.; Børve, J. Infection biology as the basis of integrated control of apple canker (Neonectria ditissima) in Northern Europe. CABI Agric. Biosci. 2021, 2, 5. [Google Scholar] [CrossRef]
- Sardella, D.; Muscat, A.; Brincat, J.P.; Gatt, R.; Decelis, S.; Valdramidis, V. A comprehensive review of the pear fungal diseases. Int. J. Fruit Sci. 2016, 16, 351–377. [Google Scholar] [CrossRef]
Fungicide Name | Concentrations Tested (µg/mL) | Type/Chemical Class | Mode of Action | Manufacturer/Source |
---|---|---|---|---|
Carbendazim (25%) | 0.01, 0.1, 1, 10, 100 | Systemic/Benzimidazole | Inhibits fungal mitosis | Sichuan Runer Technology Co., Ltd., Chengdu, China. |
Chloroisobromine cyanuric acid (50%) | 0.01, 0.1, 1, 10, 100 | Contact/Halogenated Isocyanurate | Oxidising agent damaging fungal cells | Qingdao Taiyuan Technology Development Co., Ltd. Qingdao, China. |
Difenoconazole + Propiconazole (30%) | 0.01, 0.05, 0.1, 1, 10 | Systemic/Triazole | Disrupts ergosterol biosynthesis | Hebei Guanlong Agrochemical Co., Ltd., Hengshui, China |
Mancozeb (70%) | 0.01, 0.1, 1, 10, 100 | Contact/Dithiocarbamate | Disrupts cell membrane integrity and interferes with enzymes | Sichuan Guoguang Agrochemical Co., Ltd., Chengdu, China. |
Metalaxyl-Hymexazol (30%) | 0.01, 0.1, 1, 10, 100 | Systemic + Contact/Phenylamide + Pyrimidine | Inhibits protein synthesis and disrupts cell division | Changchun Changshuang Pesticide Co., Ltd., Changchun, China |
Metalaxyl-mancozeb (58%) | 0.01, 0.1, 1, 10, 100 | Systemic + Contact/Phenylamide + Dithiocarbamate | Inhibits protein synthesis and disrupts membranes | Shandong Libang Agrochemical Co., Ltd., Heze, China. |
Thiophanate-methyl (70%) | 0.01, 0.05, 0.1, 1, 10 | Systemic/Benzimidazole | Inhibits fungal mitosis | Shandong Zouping Pesticide Co., Ltd., Zouping, China. |
Dimethomorph (10%) | 0.01, 0.1, 1, 10, 100 | Systemic/morpholine derivative | Inhibits fungal cell wall synthesis. | Hebei Zhongbao Green Crop Technology Co., Ltd., Langfang, China. |
Fungicide | Concentrations Tested (µg/mL) | Regression Equation | Correlation Coefficient | EC50 (μg/mL) |
---|---|---|---|---|
Carbendazim (25%) | 0.01, 0.1, 1, 10, 100 | y = 5.0112 + 1.0459x | 0.9942 | 0.98 |
Chloroisobromine cyanuric acid (50%) | 0.01, 0.1, 1, 10, 100 | y = 4.0216 + 0.6014x | 0.9605 | 42.36 |
Difenoconazole + Propiconazole (30%) | 0.01, 0.05, 0.1, 1, 10 | y = 5.5025 + 1.1274x | 0.9928 | 0.36 |
Mancozeb (70%) | 0.01, 0.1, 1, 10, 100 | y = 4.9810 + 1.1091x | 0.9978 | 1.04 |
Metalaxyl-Hymexazol (30%) | 0.01, 0.1, 1, 10, 100 | y = 4.1422 + 0.7096x | 0.9921 | 16.17 |
Metalaxyl-Mancozeb (58%) | 0.01, 0.1, 1, 10, 100 | y = 4.8024 + 1.1031x | 0.9927 | 1.51 |
Thiophanate-Methyl (70%) | 0.01, 0.05, 0.1, 1, 10 | y = 5.7143 + 1.2018x | 0.9982 | 0.25 |
Dimethomorph (10%) | 0.01, 0.1, 1, 10, 100 | y = 4.1444 + 0.6746x | 0.9859 | 18.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; He, C.; Zhang, P.; Zhao, L.; Liu, W.; Jin, N.; Guo, Y. Isolation, Identification, and In Vitro Fungicide Screening of the Pathogen Associated with Pear Dry Blight. Pathogens 2025, 14, 432. https://doi.org/10.3390/pathogens14050432
Wang X, He C, Zhang P, Zhao L, Liu W, Jin N, Guo Y. Isolation, Identification, and In Vitro Fungicide Screening of the Pathogen Associated with Pear Dry Blight. Pathogens. 2025; 14(5):432. https://doi.org/10.3390/pathogens14050432
Chicago/Turabian StyleWang, Xin, Cai He, Peng Zhang, Lianxin Zhao, Wei Liu, Na Jin, and Yanlan Guo. 2025. "Isolation, Identification, and In Vitro Fungicide Screening of the Pathogen Associated with Pear Dry Blight" Pathogens 14, no. 5: 432. https://doi.org/10.3390/pathogens14050432
APA StyleWang, X., He, C., Zhang, P., Zhao, L., Liu, W., Jin, N., & Guo, Y. (2025). Isolation, Identification, and In Vitro Fungicide Screening of the Pathogen Associated with Pear Dry Blight. Pathogens, 14(5), 432. https://doi.org/10.3390/pathogens14050432