Characteristics of the Mare-Uterine-Culture-Based Bacterial Composition Using Practical Clinical Evaluation Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Reproductive Examination and Sample Collection
2.3. Cytology
2.4. Microbiology (Culture)
2.5. Histopathology
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Amorim, M.D.; Gartley, C.J.; Foster, R.A.; Hill, A.; Scholtz, E.L.; Hayes, A.; Chenier, T.S. Comparison of Clinical Signs, Endometrial Culture, Endometrial Cytology, Uterine Low Volume Lavage, and Uterine Biopsy, and Combinations in the Diagnosis of Equine Endometritis. J. Equine Vet. Sci. 2016, 44, 54–61. [Google Scholar] [CrossRef]
- Leblanc, M.M.; Magsig, J.; Stromberg, A.J. Use of a Low-Volume Uterine Flush for Diagnosing Endometritis in Chronically Infertile Mares. Theriogenology 2007, 68, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Bohn, A.A.; Ferris, R.A.; Mccue, P.M. Comparison of Equine Endometrial Cytology Samples Collected with Uterine Swab, Uterine Brush, and Low-Volume Lavage from Healthy Mares. Vet. Clin. Pathol. 2014, 43/44, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Christoffersen, M.; Brandis, L.; Samuelsson, J.; Bojesen, A.M. Diagnostic Double-Guarded Low-Volume Uterine Lavage in Mares. Theriogenology 2015, 83, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.M. Endometritis in the Mare: A Diagnostic Study Comparing Cultures from Swab and Biopsy. Theriogenology 2005, 64, 510–518. [Google Scholar] [CrossRef]
- Díaz-bertrana, M.L.; Deleuze, S.; Rios, L.P.; Yeste, M.; Fariña, I.M.; Del Alamo, M.M.R. Microbial Prevalence and Antimicrobial Sensitivity in Equine Endometritis in Field Conditions. Animals 2021, 11, 1476. [Google Scholar] [CrossRef]
- Benko, T.; Boldizar, M.; Novotny, F.; Hura, V.; Valocky, I.; Dudrikova, K.; Karamanova, M.; Petrovic, V. Incidence of Bacterial Pathogens in Equine Uterine Swabs, Their Antibiotic Resistance Patterns, and Selected Reproductive Indices in English Thoroughbred Mares during the Foal Heat Cycle. Vet. Med. 2015, 60, 613–620. [Google Scholar] [CrossRef]
- Mahtab, T.; Jyoti, A.; Khusro, A.; Redwan, B.M.; Zidan, M.; Mitra, S.; Bin, T.; Dhama, K.; Hossain, K.; Gajdács, M.; et al. Antibiotic Resistance in Microbes: History, Mechanisms, Therapeutic Strategies and Future Prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef]
- Malaluang, P.; Wilén, E.; Lindahl, J.; Hansson, I.; Morrell, J.M. Antimicrobial Resistance in Equine Reproduction. Animals 2021, 11, 3035. [Google Scholar] [CrossRef]
- Brinsko, S.; Blanchard, T.; Varner, D.; Schumacher, J.; Love, C.; Hinrichs, K.; Hartman, D. Manual of Equine Reproduction, 3rd ed.; Mosby Elsevier: Maryland Heights, MO, USA, 2011. [Google Scholar]
- Overbeck, W.; Witte, T.S.; Heuwieser, W. Comparison of Three Diagnostic Methods to Identify Subclinical Endometritis in Mares. Theriogenology 2011, 75, 1311–1318. [Google Scholar] [CrossRef]
- Teixeira-Soares, C.; Viana, A.; Ribeiro, I.; Silva, K.; Sancler-Silva, Y.; Machado-Neves, M. Comparison Between Gynecological Examination Methods and Sample Collection Techniques for the Diagnosis of Endometritis in Subfertile Mares. J. Equine Vet. Sci. 2022, 119, 104147. [Google Scholar] [CrossRef] [PubMed]
- Card, C. Post-Breeding Inflammation and Endometrial Cytology in Mares. Theriogenology 2005, 64, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Markey, B.; Leonard, F.; Archambault, M.; Cullinane, A.; Maguire, D. Clinical Veterinary Microbiology, 2nd ed.; Mosby Ltd.: London, UK, 2013. [Google Scholar]
- Rivas, R.; Velázquez, E.; Valverde, A.; Mateos, P.F.; Martínez-Molina, E. A Two Primers Random Amplified Polymorphic DNA Procedure to Obtain Polymerase Chain Reaction. Electrophoresis 2001, 22, 1086–1089. [Google Scholar] [CrossRef]
- Young, J.P.W.; Downer, H.L.; Eardly, B.D. Phylogeny of the Phototrophic Rhizobium Strain BTAil by Polymerase Chain Reaction-Based Sequencing of a 16S RRNA Gene Segment. J. Bacteriol. 1991, 173, 2271–2277. [Google Scholar] [CrossRef] [PubMed]
- Laranjo, M.; Machado, J.; Young, J.P.W.; Oliveira, S. High Diversity of Chickpea Mesorhizobium Species Isolated in a Portuguese Agricultural Region. FEMS Microbiol. Ecol. 2004, 48, 101–107. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 7th ed.; CLSI supplement VET01S; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2024. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Breakpoint Tables for Interpretation of MICs and Zone Diameters. 2024, Version 14. Available online: https://www.eucast.org (accessed on 25 February 2025).
- Kenney, R.; Doig, P. Equine Endometrial Biopsy. In Current Therapy in Theriogenology: Diagnosis, Treatment and Prevention of Reproductive Diseases in Small and Large Animals; Saunders: Philadelphia, PA, USA, 1986; pp. 723–729. [Google Scholar]
- Rasmussen, C.; Petersen, M.; Bojesen, A.; Pederson, H.; Lehn-Jensen, H.; Christoffersen, M. Equine Infectious Endometritis—Clinical and Subclinical Cases. J. Equine Vet. Sci. 2015, 35, 95–104. [Google Scholar] [CrossRef]
- Nielsen, J.M.; Troedsson, M.H.; Pedersen, M.R.; Bojesen, M.; Lehn-jensen, H.; Zent, W.W. Diagnosis of Endometritis in the Mare Based on Bacteriological and Cytological Examinations of the Endometrium: Comparison of Results Obtained by Swabs and Biopsies. J. Equine Vet. Sci. 2010, 30, 27–30. [Google Scholar] [CrossRef]
- Ravaioli, V.; Raffini, E.; Tamburini, M.; Galletti, G.; Frasnelli, M. Infectious Endometritis in Mares: Microbiological Findings in Field Samples. J. Equine Vet. Sci. 2022, 112, 103913. [Google Scholar] [CrossRef]
- Riddle, W.T.; LeBlanc, M.M.; Stromberg, A.J. Relationships between Uterine Culture, Cytology and Pregnancy Rates in a Thoroughbred Practice. Theriogenology 2007, 68, 395–402. [Google Scholar] [CrossRef]
- Burleson, M.D.; LeBlanc, M.M.; Riddle, W.T.; Hendricks, K.E.M. Endometrial Microbial Isolates Are Associated with Different Ultrasonographic and Endometrial Cytology Findings in Thoroughbred Mares. Anim. Reprod. Sci. 2010, 121, 103. [Google Scholar] [CrossRef]
- Reygaert, W.C. An Overview of the Antimicrobial Resistance Mechanisms of Bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Beyer, A.; Baumann, S.; Scherz, G.; Stahl, J.; von Bergen, M.; Friese, A.; Roesler, U.; Kietzmann, M.; Honscha, W. Effects of Ceftiofur Treatment on the Susceptibility of Commensal Porcine E. coli—Comparison between Treated and Untreated Animals Housed in the Same Stable. BMC Vet. Res. 2015, 11, 265. [Google Scholar] [CrossRef]
- Smet, A.; Martel, A.; Persoons, D.; Dewulf, J.; Heyndrickx, M.; Catry, B.; Herman, L.; Haesebrouck, F.; Butaye, P. Diversity of Extended-Spectrum β-Lactamases and Class C β-Lactamases among Cloacal Escherichia Coli Isolates in Belgian Broiler Farms. Antimicrob. Agents Chemother. 2008, 52, 1238–1243. [Google Scholar] [CrossRef] [PubMed]
- Lobanovska, M.; Pilla, G. Penicillin’ s Discovery and Antibiotic Resistance: Lessons for the Future? Yale J. Biol. Med. 2017, 90, 135–145. [Google Scholar]
- WHO. WHO’s List of Medically Important Antimicrobials: A Risk Management Tool for Mitigating Antimicrobial Resistance Due to Non-Human Use; WHO: Geneva, Switzerland, 2024; ISBN 9789240084612. [Google Scholar]
- Heil, B.A.; Paccamonti, D.L.; Sones, J.L. Role for the Mammalian Female Reproductive Tract Microbiome in Pregnancy Outcomes. Physiol. Genom. 2021, 51, 390–399. [Google Scholar] [CrossRef]
- Kozdrowski, R.; Sikora, M.; Buczkowska, J.; Nowak, M.; Dzi, M. Effects of Cycle Stage and Sampling Procedure on Interpretation of Endometrial Cytology in Mares. Anim. Reprod. Sci. 2015, 154, 56–62. [Google Scholar] [CrossRef]
- Woodward, E.M.; Christoffersen, M.; Campos, J.; Squires, E.L.; Troedsson, M.H.T. Susceptibility to Persistent Breeding-Induced Endometritis in the Mare: Relationship to Endometrial Biopsy Score and Age, and Variations between Seasons. Theriogenology 2012, 78, 495–501. [Google Scholar] [CrossRef]
- Morris, L.H.A.; Allen, W.R. Reproductive Efficiency of Intensively Managed Thoroughbred Mares in Newmarket. Equine Vet. J. 2002, 34, 51–60. [Google Scholar] [CrossRef]
Group | Reproductive Status | No. of Animals |
---|---|---|
Estrus mares | Mares with endometrial oedema and a follicle >25 mm diameter by ultrasound, and a flaccid uterus | 61 |
Foal heat mares | Mares in estrus in the first cycle immediately after parturition | 11 |
Diestrus mares | Mares with visual identification of corpus luteum (CL) by ultrasound, lack of uterine oedema and presence of uterine tone | 16 |
Transition mares | Mares with multifollicular ovaries, shaped as a ‘grape cluster’ | 11 |
Inactive mares | Mares with small inactive ovaries | 7 |
TOTAL | 106 |
Sampling Method | Inflammation | Culture | ||||
---|---|---|---|---|---|---|
Positive | Negative | Frequency (%) | Positive | Negative | Frequency (%) | |
LVL | 25/52 | 27/52 | 48.1% | 37/58 | 21/58 | 63.8% |
Biopsy | 10/30 | 20/30 | 33.3% | 24/33 | 9/33 | 72.7% |
Swab | 0/1 | 1/1 | 0% | 7/13 | 6/13 | 53.9% |
Total | 35/83 | 48/83 | 68/104 | 36/104 | ||
Frequency | 42.2% | 65.4% |
Isolates | Frequency | Antimicrobial Resistance | |||||||
---|---|---|---|---|---|---|---|---|---|
n | % | CN | SXT | P | TE | EFT | ENR | DO | |
Gram-positive | |||||||||
Actinomyces/Streptomyces | 1 | 0.8% | 0/1 | 0/1 | 1/1 | 0/1 | 1/1 | 0/1 | − |
Corynebacterium spp. 1 | 2 | 1.6% | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | − |
Enterococcus avium | 1 | 0.8% | 0/1 | - | 1/1 | 1/1 | 0/1 | − | 0/1 |
Kocuria rhizophila | 1 | 0.8% | 0/1 | 0/1 | 1/1 | 0/1 | 1/1 | 0/1 | 0/1 |
Arthrobacter sp. | 1 | 0.8% | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | − |
Coagulase negative Staphylococcus | 15 | 12.1% | 0/14 | 0/11 | 1/14 | 2/14 | 2/11 | 0/13 | 6/10 |
Staphylococcus aureus | 2 | 1.6% | 0/2 | 0/2 | 0/2 | 0/2 | 0/2 | 0/2 | 0/2 |
Staphylococcus pseudintermedius | 1 | 0.8% | 0/1 | 0/1 | 0/1 | 1/1 | 1/1 | 0/1 | 1/1 |
Streptococcus spp. | 49 | 39.5% | 0/20 | 0/20 | 15/36 | 16/42 | 18/42 | 4/25 | 17/17 |
Gram-negative | |||||||||
Aeromonas spp. 2 | 3 | 2.4% | 0/3 | 2/3 | − | 0/3 | 1/3 | 0/1 | 0/1 |
Brucella gallinifaecis | 1 | 0.8% | 0/1 | 0/1 | − | 0/1 | 0/1 | 0/1 | − |
Enterobacter spp. 3 | 3 | 2.4% | 0/1 | 0/1 | − | 0/2 | 1/2 | 0/2 | 01 |
Escherichia coli 4 | 33 | 26.8% | 0/24 | 2/22 | − | 5/ 24 | 1/24 | 1/22 | 13/ 22 |
Pasteurella aerogenes | 3 | 2.4% | − | − | − | − | 2/3 | 0/3 | − |
Pseudomonas aeruginosa | 3 | 2.4% | 1/3 | 0/1 | − | 1/2 | 3/3 | 1/3 | 0/1 |
Serratia marcescens | 1 | 0.8% | 0/1 | 1/1 | − | 1/1 | 0/1 | 0/1 | 1/1 |
Sphingomonas paucimobilis | 2 | 1.6% | 0/2 | 0/2 | − | 0/2 | 0/2 | 0/2 | 0/1 |
Isolates | Frequency | Antimicrobials Resistance | |||||||
---|---|---|---|---|---|---|---|---|---|
n | % | CN | SXT | P | TE | EFT | ENR | DO | |
Streptococcus agalactiae | 1 | 0.8% | − | − | 0/1 | 0/1 | 0/1 | − | − |
Streptococcus alactolyticus | 3 | 2.4% | − | 0/1 | 0/3 | 2/3 | 0/3 | − | − |
Streptococcus dysgalactiae 5 | 3 | 2.4% | − | − | 0/2 | 0/3 | 0/3 | 0/1 | − |
Streptococcus equi subsp. zooepidemicus | 12 | 9.8% | 0/10 | 0/8 | 6/12 | 7/12 | 9/12 | 2/10 | 7/7 |
Streptococcus equinus | 12 | 9.8% | 0/5 | 0/5 | 4/7 | 4/8 | 4/8 | 0/5 | 5/5 |
Streptococcus gallolyticus subsp. gallolyticus | 5 | 4.1% | 0/2 | 0/2 | 2/5 | 1/5 | 2/5 | 1/2 | 2/2 |
Streptococcus iniae | 1 | 0.8% | − | − | − | 0/1 | 0/1 | 0/1 | − |
Streptococcus infantarius subsp. coli | 1 | 0.8% | − | 0/1 | 0/1 | 0/1 | 0/1 | − | − |
Streptococcus mutans | 1 | 0.8% | − | − | − | 0/1 | 0/1 | 0/1 | − |
Streptococcus pluranimalium | 1 | 0.8% | − | − | − | 0/1 | 0/1 | 0/1 | − |
Streptococcus salivarius subsp. salivarius | 1 | 0.8% | − | − | 0/1 | 0/1 | 0/1 | − | − |
Streptococcus thoraltensis | 5 | 4.1% | 0/2 | 0/2 | 2/2 | 1/3 | 2/3 | 0/3 | 2/2 |
Streptococcus uberis | 3 | 2.4% | 0/1 | 0/1 | 1/2 | 1/2 | 1/2 | 1/1 | 1/1 |
Isolates | Frequency | Antimicrobials Resistance | |||||||
---|---|---|---|---|---|---|---|---|---|
n | % | CN | SXT | P | TE | EFT | ENR | DO | |
Staphylococcus capitis | 1 | 0.8% | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 |
Staphylococcus chromogenes | 3 | 2.4% | 0/2 | 0/1 | 0/2 | 0/2 | 0/1 | 0/1 | 0/1 |
Staphylococcus epidermidis | 2 | 1.6% | 0/1 | − | 1/1 | 0/1 | − | − | − |
Staphylococcus haemolyticus | 2 | 1.6% | 0/2 | 0/2 | 0/2 | 0/2 | 1/2 | 0/2 | 1/2 |
Staphylococcus hyicus | 1 | 0.8% | 0/1 | 0/1 | 0/1 | 0/1 | 1/1 | 0/1 | 0/1 |
Staphylococcus saprophyticus | 1 | 0.8% | − | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 1/1 |
Staphylococcus vitulinus | 1 | 0.8% | − | − | − | − | − | − | − |
Staphylococcus xylosus | 4 | 3.3% | 0/4 | 0/4 | 0/4 | 2/4 | 0/4 | 0/4 | 4/4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, I.B.; Branco, S.; Laranjo, M.; Queiroga, M.C.; Bettencourt, E. Characteristics of the Mare-Uterine-Culture-Based Bacterial Composition Using Practical Clinical Evaluation Methods. Pathogens 2025, 14, 357. https://doi.org/10.3390/pathogens14040357
Carvalho IB, Branco S, Laranjo M, Queiroga MC, Bettencourt E. Characteristics of the Mare-Uterine-Culture-Based Bacterial Composition Using Practical Clinical Evaluation Methods. Pathogens. 2025; 14(4):357. https://doi.org/10.3390/pathogens14040357
Chicago/Turabian StyleCarvalho, Inês B., Sandra Branco, Marta Laranjo, Maria Cristina Queiroga, and Elisa Bettencourt. 2025. "Characteristics of the Mare-Uterine-Culture-Based Bacterial Composition Using Practical Clinical Evaluation Methods" Pathogens 14, no. 4: 357. https://doi.org/10.3390/pathogens14040357
APA StyleCarvalho, I. B., Branco, S., Laranjo, M., Queiroga, M. C., & Bettencourt, E. (2025). Characteristics of the Mare-Uterine-Culture-Based Bacterial Composition Using Practical Clinical Evaluation Methods. Pathogens, 14(4), 357. https://doi.org/10.3390/pathogens14040357