Synergistic Antibacterial Effects of Plant Extracts and Essential Oils Against Drug-Resistant Bacteria of Clinical Interest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Extraction of Plant Materials
2.2. Antibiotics
2.3. Bacterial Strains
2.4. Determination of Minimum Inhibitory Concentration (MIC)
2.5. Synergistic Effect of Essential Oils and Antibiotics
2.6. Fractional Inhibitory Concentration Index (FICI) Analysis
2.7. Statistical Analysis
2.8. Chemical Analysis
3. Results
3.1. Antibacterial Activity of the Essential Oils
3.2. Antibacterial Activity of the Crude Extracts
3.3. Effect of Associating Levofloxacin and Amikacin with M. barbata, J. excelsa, and E. globulus
3.4. Effect of Associating AMC with J. excelsa, M. barbata, and E. globulus
3.5. Effect of Associating Tetracycline, Gentamicin, and Ciprofloxacin with S. officinalis, J. excelsa, and M. barbata
3.6. Effect of Associating Cefepime and Ciprofloxacin with M. barbata, J. excelsa, and E. globulus
3.7. Chemical Composition of the Essential Oils Tested in This Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Baran, A.; Kwiatkowska, A.; Potocki, L. Antibiotics and Bacterial Resistance—A Short Story of an Endless Arms Race. Int. J. Mol. Sci. 2023, 24, 5777. [Google Scholar] [CrossRef]
- Goldman, E. Antibiotic Abuse in Animal Agriculture: Exacerbating Drug Resistance in Human Pathogens. Hum. Ecol. Risk Assess. 2004, 10, 121–134. [Google Scholar] [CrossRef]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4, 481–511. [Google Scholar] [CrossRef]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.R.M.; Mitra, S.; Emran, T.B.; Dhama, K.; Ripon, M.K.H.; Gajdács, M.; Sahibzada, M.U.K.; et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-H.; Hsieh, Y.-H.; Powers, Z.M.; Kao, C.-Y. Defeating Antibiotic-Resistant Bacteria: Exploring Alternative Therapies for a Post-Antibiotic Era. Int. J. Mol. Sci. 2020, 21, 1061. [Google Scholar] [CrossRef] [PubMed]
- Ayoub Moubareck, C.; Hammoudi Halat, D. Insights into Acinetobacter baumannii: A Review of Microbiological, Virulence, and Resistance Traits in a Threatening Nosocomial Pathogen. Antibiotics 2020, 9, 119. [Google Scholar] [CrossRef]
- Whelan, S.; Lucey, B.; Finn, K. Uropathogenic Escherichia coli (UPEC)-Associated Urinary Tract Infections: The Molecular Basis for Challenges to Effective Treatment. Microorganisms 2023, 11, 2169. [Google Scholar] [CrossRef]
- Nasr, J.; Abdessamad, H.; Mina, J.; Haykal, T.; Jamil, Y.; Abboud, E.; Mahdi, A.; Asmar, R.; Abi Assaad, R.; Alameddine, D.; et al. The epidemiology of gram-negative bacteremia in Lebanon: A study in four hospitals. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 90. [Google Scholar] [CrossRef]
- Portes, A.B.; Panzenhagen, P.; dos Santos, A.M.P.; Junior, C.A.C. Antibiotic Resistance in Campylobacter: A Systematic Review of South American Isolates. Antibiotics 2023, 12, 548. [Google Scholar] [CrossRef]
- Yaqub, M.O.; Joseph, C.E.; Jain, A.; Edison, L.K. Resistome Mapping in Foodborne Pathogens: Understanding Role in the Transmission Dynamics of Resistance Genes. Appl. Microbiol. 2024, 4, 1476–1492. [Google Scholar] [CrossRef]
- Schwartz, B.; Klamer, K.; Zimmerman, J.; Kale-Pradhan, P.B.; Bhargava, A. Multidrug Resistant Pseudomonas aeruginosa in Clinical Settings: A Review of Resistance Mechanisms and Treatment Strategies. Pathogens 2024, 13, 975. [Google Scholar] [CrossRef]
- Glen, K.A.; Lamont, I.L. β-lactam Resistance in Pseudomonas aeruginosa: Current Status, Future Prospects. Pathogens 2021, 10, 1638. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, D.; Kollef, M. The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs 2021, 81, 2117. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021–2022. EFSA J. 2024, 22, e8583. [Google Scholar] [CrossRef]
- Jubeh, B.; Breijyeh, Z.; Karaman, R. Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. Molecules 2020, 25, 2888. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Luo, J.; Deng, F.; Huang, Y.; Zhou, H. Antibiotic Combination Therapy: A Strategy to Overcome Bacterial Resistance to Aminoglycoside Antibiotics. Front. Pharmacol. 2022, 13, 839808. [Google Scholar]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction Techniques, Pharmaceutical And Therapeutic Potential—A Review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef]
- Sobhy, M.; Abdelkarim, E.A.; Hussein, M.A.; Aziz, T.; Al-Asmari, F.; Alabbosh, K.F.; Cui, H.; Lin, L. Essential oils as antibacterials against multidrug-resistant foodborne pathogens: Mechanisms, recent advances, and legal considerations. Food Biosci. 2025, 64, 105937. [Google Scholar] [CrossRef]
- Khwaza, V.; Aderibigbe, B.A. Antibacterial Activity of Selected Essential Oil Components and Their Derivatives: A Review. Antibiotics 2025, 14, 68. [Google Scholar] [CrossRef] [PubMed]
- Barbarossa, A.; Rosato, A.; Carrieri, A.; Tardugno, R.; Corbo, F.; Clodoveo, M.L.; Fracchiolla, G.; Carocci, A. Antifungal Biofilm Inhibitory Effects of Combinations of Diclofenac and Essential Oils. Antibiotics 2023, 12, 1673. [Google Scholar] [CrossRef]
- Lewis, K. Antibiotics: Recover the lost art of drug discovery. Nature 2012, 485, 439–440. [Google Scholar] [CrossRef] [PubMed]
- Zein, S.; Awada, S.; Rachidi, S.; Hajje, A.H.; Krivoruschko, E.; Kanaan, H. Chemical analysis of essential oil from Lebanese wild and cultivated Origanum syriacum L. (Lamiaceae) before and after flowering. J. Med. Plants Res. 2011, 5, 379–387. [Google Scholar]
- Chedraoui, S.; Abi-Rizk, A.; El-Beyrouthy, M.; Chalak, L.; Ouaini, N.; Rajjou, L. Capparis spinosa L. in A Systematic Review: A Xerophilous Species of Multi Values and Promising Potentialities for Agrosystems under the Threat of Global Warming. Front. Plant Sci. 2017, 8, 1845. [Google Scholar] [CrossRef]
- Kulisic-Bilusic, T.; Schmöller, I.; Schnäbele, K.; Siracusa, L.; Ruberto, G. The anticarcinogenic potential of essential oil and aqueous infusion from caper (Capparis spinosa L.). Food Chem. 2012, 132, 261–267. [Google Scholar] [CrossRef]
- Özkalp, B.; Sevgi, F.; Özcan, M.; Özcan, M. The antibacterial activity of essential oil of oregano (Origanum vulgare L.). J. Food Agric. Environ. 2010, 8, 272–274. [Google Scholar]
- Bakkour, Y.; Alwan, S.; Soufi, H.; El Achi, N.; Tabcheh, M.; El Omar, F. Chemical composition of essential oil extracted from Micromeria Barbata growing in Lebanon and their antimicrobial and antioxidant properties. J. Nat. Prod. 2012, 5, 116–120. [Google Scholar]
- Pavić, V.; Jakovljević, M.; Molnar, M.; Jokić, S. Extraction of Carnosic Acid and Carnosol from Sage (Salvia officinalis L.) Leaves by Supercritical Fluid Extraction and Their Antioxidant and Antibacterial Activity. Plants 2019, 8, 16. [Google Scholar] [CrossRef]
- Bommer, S.; Klein, P.; Suter, A. First time proof of sage’s tolerability and efficacy in menopausal women with hot flushes. Adv. Ther. 2011, 28, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Loyen, G.; Boukef, M.K. Les Plantes Dans la Médecine Traditionnelle Tunisienne; Agence de Coopération Culturelle et Technique: Paris, France, 1986. [Google Scholar]
- Emami, S.A.; Abedindo, B.F.; Hassanzadeh-Khayyat, M. Antioxidant Activity of the Essential Oils of Different Parts of Juniperus excelsa M. Bieb. subsp. excelsa and J. excelsa M. Bieb. subsp. polycarpos (K. Koch) Takhtajan (Cupressaceae). Iran. J. Pharm. Res. IJPR 2011, 10, 799–810. [Google Scholar]
- Oreopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Chapter 15—Extraction of Polyphenols From Aromatic and Medicinal Plants: An Overview of the Methods and the Effect of Extraction Parameters. In Polyphenols in Plants, 2nd ed.; Watson, R.R., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 243–259. ISBN 978-0-12-813768-0. [Google Scholar]
- Shami, A.-M.M.; Philip, K.; Muniandy, S. Synergy of antibacterial and antioxidant activities from crude extracts and peptides of selected plant mixture. BMC Complement. Altern. Med. 2013, 13, 360. [Google Scholar] [CrossRef]
- El Amri, N.; Errachidi, F.; Bour, A.; Bouhaddaoui, S.; Chabir, R. Morphological and Nutritional Properties of Moroccan Capparis spinosa Seeds. Sci. World J. 2019, 2019, 8594820. [Google Scholar] [CrossRef]
- Weinstein, M.P.; Lewis, J.S. The Clinical and Laboratory Standards Institute Subcommittee on Antimicrobial Susceptibility Testing: Background, Organization, Functions, and Processes. J. Clin. Microbiol. 2020, 58, e01864-19. [Google Scholar] [CrossRef]
- Diniz, A.F.; Santos, B.; Nóbrega, L.M.M.O.; Santos, V.R.L.; Mariz, W.S.; Cruz, P.S.C.; Nóbrega, R.O.; Silva, R.L.; Paula, A.F.R.; Santos, J.R.D.A.; et al. Antibacterial activity of Thymus vulgaris (thyme) essential oil against strains of Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus saprophyticus isolated from meat product. Braz. J. Biol. Rev. Brasleira Biol. 2023, 83, e275306. [Google Scholar] [CrossRef]
- Golus, J.; Sawicki, R.; Widelski, J.; Ginalska, G. The agar microdilution method—A new method for antimicrobial susceptibility testing for essential oils and plant extracts. J. Appl. Microbiol. 2016, 121, 1291–1299. [Google Scholar] [CrossRef]
- Meletiadis, J.; Pournaras, S.; Roilides, E.; Walsh, T.J. Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungal drug combinations against Aspergillus fumigatus. Antimicrob. Agents Chemother. 2010, 54, 602–609. [Google Scholar] [CrossRef]
- Van, N.T.B.; Vi, O.T.; Yen, N.T.P.; Nhung, N.T.; Cuong, N.V.; Kiet, B.T.; Hoang, N.V.; Hien, V.B.; Thwaites, G.; Campell, J.; et al. Minimum inhibitory concentrations of commercial essential oils against common chicken pathogenic bacteria and their relationship with antibiotic resistance. J. Appl. Microbiol. 2022, 132, 1025–1035. [Google Scholar] [CrossRef]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef]
- Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health 2017, 10, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Trifan, A.; Luca, S.V.; Greige-Gerges, H.; Miron, A.; Gille, E.; Aprotosoaie, A.C. Recent advances in tackling microbial multidrug resistance with essential oils: Combinatorial and nano-based strategies. Crit. Rev. Microbiol. 2020, 46, 338–357. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Cui, P.; Shi, W.; Zhang, Y. Identification of Essential Oils with Strong Activity Against Stationary Phase Uropathogenic Escherichia coli. Discov. Med. 2019, 28, 179–188. [Google Scholar]
- Nakas, A.; Giannarelli, G.; Fotopoulos, I.; Chainoglou, E.; Peperidou, A.; Kontogiannopoulos, K.N.; Tsiaprazi-Stamou, A.; Varsamis, V.; Gika, H.; Hadjipavlou-Litina, D.; et al. Optimizing the Distillation of Greek Oregano—Do Process Parameters Affect Bioactive Aroma Constituents and In Vitro Antioxidant Activity? Molecules 2023, 28, 971. [Google Scholar] [CrossRef] [PubMed]
- Pinto, L.; Cervellieri, S.; Netti, T.; Lippolis, V.; Baruzzi, F. Antibacterial Activity of Oregano (Origanum vulgare L.) Essential Oil Vapors against Microbial Contaminants of Food-Contact Surfaces. Antibiotics 2024, 13, 371. [Google Scholar] [CrossRef]
- Al-Mariri, A.; Safi, M. The Antibacterial Activity of Selected Labiatae (Lamiaceae) Essential Oils against Brucella melitensis. Iran. J. Med. Sci. 2013, 38, 44–50. [Google Scholar]
- Adwan, G.M.; Omar, G.I. Evaluation of Antimicrobial activity and Genotoxic Potential of Capparis spinosa (L.) Plant Extracts. Microbiol. Res. J. Int. 2021, 31, 48–57. [Google Scholar] [CrossRef]
- Gull, T.; Sultana, B.; Bhatti, I.; Jamil, A. Antibacterial Potential of Capparis spinosa and Capparis decidua Extracts. Int. J. Agric. Biol. 2015, 17, 727–733. [Google Scholar] [CrossRef]
- Al-Khafagi, M.F.J.; Mohammed, D.Y. Study Antibacterial Activity of Crude Capparis spinosa L. Extracts Against Helicobacter pylori Infection and Determine Their Bioactive Compounds. Iraqi J. Sci. 2023, 64, 503–512. [Google Scholar] [CrossRef]
- Abu-Shama, H. Effect of Caper (Capparis spinosa) Extracts as a Natural Antimicrobial Agent. J. Food Dairy Sci. 2019, 10, 209–216. [Google Scholar] [CrossRef]
- Iseppi, R.; Condò, C.; Messi, P. Synergistic Inhibition of Methicillin-Resistant Staphylococcus aureus (MRSA) by Melaleuca alternifolia Chell (Tea Tree) and Eucalyptus globulus Labill. Essential Oils in Association with Oxacillin. Antibiotics 2023, 12, 846. [Google Scholar] [CrossRef] [PubMed]
- Ilić, B.S.; Kocić, B.D.; Ćirić, V.M.; Cvetković, O.G.; Miladinović, D.L. An In Vitro Synergistic Interaction of Combinations of Thymus glabrescens Essential Oil and Its Main Constituents with Chloramphenicol. Sci. World J. 2014, 2014, 826219. [Google Scholar] [CrossRef]
- Santos, B.; Farias, J.H.A.; Simões, M.M.; Medeiros, M.A.A.; Alves, M.S.; Diniz, A.F.; Soares, A.P.O.; Cavalcante, A.P.T.M.; Silva, B.J.N.; Almeida, J.C.S.; et al. Evaluation of the antimicrobial activity of Eucalyptus radiata essential oil against Escherichia coli strains isolated from meat products. Braz. J. Biol. Rev. Brasleira Biol. 2024, 84, e281361. [Google Scholar] [CrossRef]
- El Omari, K.; Hamze, M.; Alwan, S.; Osman, M.; Jama, C.; Chihib, N.-E. In-vitro evaluation of the antibacterial activity of the essential oils of Micromeria barbata, Eucalyptus globulus and Juniperus excelsa against strains of Mycobacterium tuberculosis (including MDR), Mycobacterium kansasii and Mycobacterium gordonae. J. Infect. Public Health 2019, 12, 615–618. [Google Scholar] [CrossRef]
- Alwan, S.; El Omari, K.; Soufi, H.; Zreika, S.; Soukarieh, I.; Chihib, N.E.; Jama, C.; Hamze, M. Evaluation of the Antibacterial Activity of Micromeria barbata in Lebanon. J. Essent. Oil Bear. Plants 2016, 19, 321–327. [Google Scholar] [CrossRef]
- Chehade, S.; Kobeissy, M.; Kanaan, H.; Haddad, M. Comparison Between the Chemical Compositions and the in-Vitro Antidiabetic and Anti-Inflammatory Activities Of Salvia Libanotica’ And Salvia Officinalis’ Leaves Essential Oils. Eur. J. Pharm. Med. Res. 2022, 9, 34–43. [Google Scholar]
- Silva, D.M.; Costa, P.A.D.; Ribon, A.O.B.; Purgato, G.A.; Gaspar, D.-M.; Diaz, M.A.N. Plant Extracts Display Synergism with Different Classes of Antibiotics. An. Acad. Bras. Cienc. 2019, 91, e20180117. [Google Scholar] [CrossRef]
Bacterial Strain | Microbial Collection of the Lebanese University | Antimicrobial Resistance Profile | Phenotypic Profile |
---|---|---|---|
Pseudomonas aeruginosa | CMUL 122 | TIC, TCC, PIP, TZP, GEN, AMI, TOB, CEF, OFL, MER, IMI, CIP, CAZ | Extensively drug-resistant (XDR) clinical strain |
Pseudomonas aeruginosa | CMUL 120 | TIC, TCC, PIP, TZP, GEN, AMI, NET, TOB, CEF, AZT, OFL, MER, IMI, CIP, CAZ | XDR clinical strain |
Acinetobacter baumannii | CMUL 291 | AMP, AMC, TIC, TCC, PIP, TZP, GEN, AMI, NET, TOB, CEF, AZT, MER, IMI, LEX, CXM, FOX, CFM, CTX, CAZ, ERT, TET | XDR clinical strain |
Salmonella spp. | CMUL 216 | AMP, AMC, TIC, PIP, CEF, CF, CRO, AZT, CXM, FOX, CTX, CAZ, TET, MIN | Extended-spectrum β-lactamase (ESBL)-producing clinical strain |
Campylobacter coli | AX 031 | AMP, AMC, CIP, TET | Multidrug-resistant (MDR) clinical strain |
Escherichia coli | CMUL 260 | AMP, AMC, TIC, TCC, PIP, TZP, GEN, TOB, CEF, AZT, CIP, LEX, CXM, FOX, CFM, CTX, CAZ, SXT | XDR clinical strain |
Escherichia coli | CMUL 096 | AMC, AMX, TIC, PIP, TZP, TOB, CEF, AZT, OFL, CXM, FOX, CTX, CAZ, NAL | XDR clinical strain |
Listeria monocytogenes | AL 004 | - | Wild-type clinical strain |
Brucella melitensis | CMUL 057 | SXT | Non-MDR clinical strain |
Bacterial Strains | Positive Control | Negative Control | Essential Oils (%) | Mean ± SD (%) | |||
---|---|---|---|---|---|---|---|
S. officinalis | E. globulus | O. vulgare | J. excelsa | ||||
Escherichia coli CMUL 260 | + | − | 6.25 | 1.56 | 0.10 | ND | 2.64 ± 3.21 |
Escherichia coli CMUL 096 | + | − | 3.13 | 25.00 | 0.20 | >50.00 | 32.08 ± 46.61 |
Salmonella spp. CMUL 216 | + | − | 12.50 | 1.56 | 0.10 | ND | 4.72 ± 6.78 |
Listeria monocytogenes AL 004 | + | − | 25.00 | 0.78 | 0.10 | ND | 8.63 ± 14.18 |
Pseudomonas aeruginosa CMUL 122 | + | − | 50.00 | 50.00 | 25.00 | ND | 41.67 ± 14.43 |
Brucella melitensis CMUL 057 | + | − | >50.00 | 12.50 | 0.20 | 6.25 | 29.74 ± 47.11 |
Mean ± SD (%) | 32.81 ± 37.07 | 15.23 ± 19.46 | 4.28 ± 10.15 | 53.13 ± 66.29 |
MIC of M. barbata (mg/L) | MIC of Amikacin (mg/L) | MIC of M. barbata Combined with Amikacin (mg/L) | MIC of Amikacin Combined with M. barbata (mg/L) | FICI |
---|---|---|---|---|
>1,000,000 | >8 | 45,000 | 8 | 1.45 |
4 | 0.95 | |||
2 | 0.70 | |||
35,000 | 8 | 1.35 | ||
4 | 0.85 |
(A) | |||
Levofloxacin (mg/L) | 1 | 0.5 | 0.25 |
E. globulus or J. excelsa EO (mg/L) | |||
45,000 | 1.45 | 0.95 | 0.70 |
35,000 | 1.35 | 0.85 | 0.60 |
25,000 | 1.25 | 0.75 | 0.50 |
(B) | |||
Amikacin (mg/L) | 8 | 4 | 2 |
J. excelsa EO (mg/L) | |||
45,000 | 1.45 | 0.95 | 0.70 |
35,000 | 1.35 | 0.85 | 0.60 |
25,000 | 1.25 | 0.75 | 0.50 |
(C) | |||
Amikacin (mg/L) | 2 | ||
E. globulus EO (mg/L) | |||
45,000 | 0.70 | ||
35,000 | 0.60 | ||
25,000 | 0.50 | ||
(D) | |||
Levofloxacin (mg/L) | 0.5 | ||
M. barbata EO (mg/L) | |||
3900 | 0.50 | ||
1000 | 0.50 |
MIC of M. barbata or E. globulus EO (mg/L) | MIC of Amoxicillin–Clavulanic Acid (mg/L) | MIC of M. barbata EO Combined with Amoxicillin–Clavulanic acid (mg/L) | MIC of Amoxicillin–Clavulanic Acid Combined with M. barbata EO (mg/L) | FICI | MIC of Amoxicillin–Clavulanic Acid Combined with E. globulus EO (mg/L) | FICI |
---|---|---|---|---|---|---|
>1,000,000 | >8 | 450,000 | 2 | 0.70 | 8 | 1.45 |
4 | 0.90 | |||||
2 | 0.70 | |||||
350,000 | 8 | 1.35 | 8 | 1.35 | ||
4 | 0.85 | 4 | 0.85 | |||
2 | 0.60 | 2 | 0.60 | |||
250,000 | 2 | 0.50 | 8 | 1.25 |
(A) | |||
Ciprofloxacin (mg/L) | 0.5 | 0.25 | 0.125 |
J. excelsa, or M. barbata, or S. officinalis EOs (mg/L) | |||
45,000 | 1.45 | 0.90 | 0.70 |
35,000 | 1.35 | 0.80 | 0.60 |
25,000 | 1.25 | 0.70 | 0.50 |
(B) | |||
Gentamicin or Tetracycline (mg/L) | 2 | 1 | 0.5 |
J. excelsa, or M. barbata, or S. officinalis EOs (mg/L) | |||
45,000 | 1.45 | 0.90 | 0.70 |
35,000 | 1.35 | 0.80 | 0.60 |
25,000 | 1.25 | 0.70 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahin, H.H.; Baroudi, M.; Dabboussi, F.; Ismail, B.; Salma, R.; Osman, M.; El Omari, K. Synergistic Antibacterial Effects of Plant Extracts and Essential Oils Against Drug-Resistant Bacteria of Clinical Interest. Pathogens 2025, 14, 348. https://doi.org/10.3390/pathogens14040348
Shahin HH, Baroudi M, Dabboussi F, Ismail B, Salma R, Osman M, El Omari K. Synergistic Antibacterial Effects of Plant Extracts and Essential Oils Against Drug-Resistant Bacteria of Clinical Interest. Pathogens. 2025; 14(4):348. https://doi.org/10.3390/pathogens14040348
Chicago/Turabian StyleShahin, Hoda Helene, Moomen Baroudi, Fouad Dabboussi, Bassel Ismail, Rayane Salma, Marwan Osman, and Khaled El Omari. 2025. "Synergistic Antibacterial Effects of Plant Extracts and Essential Oils Against Drug-Resistant Bacteria of Clinical Interest" Pathogens 14, no. 4: 348. https://doi.org/10.3390/pathogens14040348
APA StyleShahin, H. H., Baroudi, M., Dabboussi, F., Ismail, B., Salma, R., Osman, M., & El Omari, K. (2025). Synergistic Antibacterial Effects of Plant Extracts and Essential Oils Against Drug-Resistant Bacteria of Clinical Interest. Pathogens, 14(4), 348. https://doi.org/10.3390/pathogens14040348