Efficiency of the Coriolis µ Air Sampling Device for Fungal Contamination Analysis of Indoor Air: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the House and Moldy Surfaces
2.2. Air Sampling
2.3. Surface Sampling
2.4. DNA Analysis
2.4.1. DNA Extraction
2.4.2. Amplification
3. Results
3.1. Description of Moldy Surfaces and Sampling Locations
3.2. Methodological Adaptation and Validation of Air Sampling
3.3. Identified Fungal Contaminants
3.3.1. Airborne Fungal Contaminants
3.3.2. Fungal Contaminants on the Surfaces
4. Discussion
4.1. Methodological Adaptation of Air Sampling Protocol
4.2. Use of ITS1 and ITS2 for Fungal Contamination Analysis
4.3. Comparison Between Surface and Airborne Fungal Populations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Fungal Genera Identified in Air Samples and Grouped as “Others” in Table 5
- ○
- List of the 50 other genera identified in the air samples using the ITS1 region: Fairmania, Phialophora, Epicoccum, Blumeria, Aureobasidium, Lewia, Debaryomyces, Acremonium, Thermomyces, Stereocaulon, Talaromyces, Torula, Verrucaria, Neosetophoma, Helgardia, Alatospora, Hyphodermella, Stereum, Psathyrella, Fuscoporia, Xylodon, Vuilleminia, Lyomyces, Crepidotus, Sistotrema, Phlebiopsis, Ceriporiopsis, Mycoacia, Vishniacozyma, Ceriporia, Postia, Tubaria, Coniophora, Hymenochaete, Sidera, Lenzites, Filobasidium, Schizophyllum, Skeletocutis, Gloeocystidiellum, Gloeophyllum, Bjerkandera, Udeniomyces, Dioszegia, Antrodia, Malassezia, Rhodosporidiobolus, Clathrus, Tubulicrinis, and Cutaneotrichosporon.
- ○
- List of the 66 other genera identified in the air samples using the ITS2 region: Fairmania, Blastobotrys, Verrucocladosporium, Arthrobotrys, Fusarium, Trichoderma, Cephalotrichum, Pectenia, Rhinocladiella, Paraphoma, Saccharomyces, Mollisia, Thelebolus, Thermomyces, Talaromyces, Devriesia, Verrucaria, Clavariopsis, Cercospora, Neodevriesia, Cadophora, Coprinellus, Cryptococcus, Naganishia, Stereum, Peniophora, Hyphodermella, Dioszegia, Symmetrospora, Xylodon, Gloeophyllum, Ganoderma, Scytinostromella, Cerrena, Sistotrema, Sistotremastrum, Baeospora, Fuscoporia, Corticium, Phlebia, Hymenochaete, Xenasmatella, Antrodiella, Phellinus, Mycoacia, Filobasidium, Cortinarius, Ceriporia, Porostereum, Brevicellicium, Vishniacozyma, Hyphodontia, Myxarium, Byssomerulius, Clathrus, Fomitopsis, Phaeophlebiopsis, Polyporus, Tranzscheliella, Ceriporiopsis, Mycena, Stropharia, Moniliella, Skeletocutis, Lenzites, and Mucor.
Appendix B. Fungal Genera Identified on Surface Samples and Grouped as “Others” in Table 6
- ○
- List of the nine other genera identified on surfaces using the ITS1 region: Penicillium, Acremonium, Naganishia, Sterigmatomyces, Phanerochaete, Steccherinum, Wallemia, Vishniacozyma, and Clathrus.
- ○
- List of the eight other genera identified on surfaces using ITS2 region: Penicillium, Fusarium, Trametes, Wallemia, Sterigmatomyces, Malassezia, Corticium, and Clathrus.
References
- Al Hallak, M.; Verdier, T.; Bertron, A.; Roques, C.; Bailly, J.-D. Fungal Contamination of Building Materials and the Aerosolization of Particles and Toxins in Indoor Air and Their Associated Risks to Health: A Review. Toxins 2023, 15, 175. [Google Scholar] [CrossRef] [PubMed]
- Pyrri, I.; Tripyla, E.; Zalachori, A.; Chrysopoulou, M.; Parmakelis, A.; Kapsanaki-Gotsi, E. Fungal Contaminants of Indoor Air in the National Library of Greece. Aerobiologia 2020, 36, 387–400. [Google Scholar] [CrossRef]
- Niculita-Hirzel, H.; Yang, S.; Hager Jörin, C.; Perret, V.; Licina, D.; Goyette Pernot, J. Fungal Contaminants in Energy Efficient Dwellings: Impact of Ventilation Type and Level of Urbanization. Int. J. Environ. Res. Public Health 2020, 17, 4936. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Espinosa, K.C.; Rojas Flores, T.I.; Davydenko, S.R.; Venero Fernández, S.J.; Almaguer, M. Fungal Populations in the Bedroom Dust of Children in Havana, Cuba, and Its Relationship with Environmental Conditions. Environ. Sci. Pollut. Res. 2021, 28, 53010–53020. [Google Scholar] [CrossRef]
- Li, X.; Zhang, T.; Wang, J.; Wang, S. Aerosolization of Aspergillus Niger Spores from Growing Colonies on a Bare Tube. Atmos. Environ. 2019, 218, 117008. [Google Scholar] [CrossRef]
- Seo, S.-C.; Reponen, T.; Levin, L.; Borchelt, T.; Grinshpun, S.A. Aerosolization of Particulate (1→3)-β-d-Glucan from Moldy Materials. Appl. Environ. Microbiol. 2008, 74, 585–593. [Google Scholar] [CrossRef]
- Green, B.J.; Tovey, E.R.; Sercombe, J.K.; Blachere, F.M.; Beezhold, D.H.; Schmechel, D. Airborne Fungal Fragments and Allergenicity. Med. Mycol. 2006, 44, S245–S255. [Google Scholar] [CrossRef]
- Adams, R.I.; Sylvain, I.; Spilak, M.P.; Taylor, J.W.; Waring, M.S.; Mendell, M.J. Fungal Signature of Moisture Damage in Buildings: Identification by Targeted and Untargeted Approaches with Mycobiome Data. Appl. Environ. Microbiol. 2020, 86, e01047-20. [Google Scholar] [CrossRef]
- Egbuta, M.A.; Mwanza, M.; Babalola, O.O. Health Risks Associated with Exposure to Filamentous Fungi. Int. J. Environ. Res. Public Health 2017, 14, 719. [Google Scholar] [CrossRef]
- Denham, S.T.; Wambaugh, M.A.; Brown, J.C.S. How Environmental Fungi Cause a Range of Clinical Outcomes in Susceptible Hosts. J. Mol. Biol. 2019, 431, 2982–3009. [Google Scholar] [CrossRef]
- Alam, S.; Nisa, S.; Daud, S. Mycotoxins in Environment and Its Health Implications. In Hazardous Environmental Micro-Pollutants, Health Impacts and Allied Treatment Technologies; Ahmed, T., Hashmi, M.Z., Eds.; Springer: Cham, Switzerland, 2022; pp. 289–318. ISBN 978-3-030-96523-5. [Google Scholar]
- De Middeleer, G.; Leys, N.; Sas, B.; De Saeger, S. Fungi and Mycotoxins in Space—A Review. Astrobiology 2019, 19, 915–926. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, K.; Nabi, B.G.; Ansar, S.; Bhat, Z.F.; Aadil, R.M.; Mousavi Khaneghah, A. Mycotoxins and Consumers’ Awareness: Recent Progress and Future Challenges. Toxicon 2023, 232, 107227. [Google Scholar] [CrossRef]
- Smith, D.J.; Gold, J.A.W.; Benedict, K.; Wu, K.; Lyman, M.; Jordan, A.; Medina, N.; Lockhart, S.R.; Sexton, D.J.; Chow, N.A.; et al. Public Health Research Priorities for Fungal Diseases: A Multidisciplinary Approach to Save Lives. J. Fungi 2023, 9, 820. [Google Scholar] [CrossRef]
- Al Hallak, M.; Verdier, T.; Bertron, A.; Castelló Lux, K.; El Atti, O.; Fajerwerg, K.; Fau, P.; Hot, J.; Roques, C.; Bailly, J.-D. Comparison of Photocatalytic Biocidal Activity of TiO2, ZnO and Au/ZnO on Escherichia Coli and on Aspergillus Niger under Light Intensity Close to Real-Life Conditions. Catalysts 2023, 13, 1139. [Google Scholar] [CrossRef]
- The National Institute for Occupational Safety and Health. Guidelines for Air Sampling and Analytical Method Development and Evaluation; Center for Disease Control and Prevention: Cincinnati, OH, USA, 1995. [Google Scholar] [CrossRef]
- Liu, X. ASTM and ASHRAE Standards for the Assessment of Indoor Air Quality. In Handbook of Indoor Air Quality; Zhang, Y., Hopke, P.K., Mandin, C., Eds.; Springer: Singapore, 2021; pp. 1–36. ISBN 978-981-10-5155-5. [Google Scholar]
- Chen, Y.-C.; Wang, I.-J.; Cheng, C.-C.; Wu, Y.-C.; Bai, C.-H.; Yu, K.-P. Effect of Selected Sampling Media, Flow Rate, and Time on the Sampling Efficiency of a Liquid Impinger Packed with Glass Beads for the Collection of Airborne Viruses. Aerobiologia 2021, 37, 243–252. [Google Scholar] [CrossRef]
- Terzieva, S.; Donnelly, J.; Ulevicius, V.; Grinshpun, S.A.; Willeke, K.; Stelma, G.N.; Brenner, K.P. Comparison of Methods for Detection and Enumeration of Airborne Microorganisms Collected by Liquid Impingement. Appl. Environ. Microbiol. 1996, 62, 2264–2272. [Google Scholar] [CrossRef] [PubMed]
- Dillon, K.P.; Tignat-Perrier, R.; Joly, M.; Grogan, S.N.C.M.; Larose, C.; Amato, P.; Mainelis, G. Comparison of Airborne Bacterial Populations Determined by Passive and Active Air Sampling at Puy de Dôme, France. Aerosol Air Qual. Res. 2023, 23, 220403. [Google Scholar] [CrossRef]
- Raynor, P.C.; Adesina, A.; Aboubakr, H.A.; Yang, M.; Torremorell, M.; Goyal, S.M. Raynor Comparison of Samplers Collecting Airborne Influenza Viruses: 1. Primarily Impingers and Cyclones. PLoS ONE 2021, 16, e0244977. [Google Scholar] [CrossRef]
- Levetin, E.; McLoud, J.D.; Pityn, P.; Rorie, A.C. Air Sampling and Analysis of Aeroallergens: Current and Future Approaches. Curr. Allergy Asthma Rep. 2023, 23, 223–236. [Google Scholar] [CrossRef]
- Riemenschneider, L.; Woo, M.-H.; Wu, C.-Y.; Lundgren, D.; Wander, J.; Lee, J.-H.; Li, H.-W.; Heimbuch, B. Characterization of Reaerosolization from Impingers in an Effort to Improve Airborne Virus Sampling. J. Appl. Microbiol. 2010, 108, 315–324. [Google Scholar] [CrossRef]
- Filho, J.P.; Costa, M.A.M.; Cardoso, A.A. A Micro-Impinger Sampling Device for Determination of Atmospheric Nitrogen Dioxide. Aerosol Air Qual. Res. 2019, 19, 2597–2603. [Google Scholar] [CrossRef]
- Harnpicharnchai, P.; Pumkaeo, P.; Siriarchawatana, P.; Likhitrattanapisal, S.; Mayteeworakoon, S.; Ingsrisawang, L.; Boonsin, W.; Eurwilaichitr, L.; Ingsriswang, S. AirDNA Sampler: An Efficient and Simple Device Enabling High-Yield, High-Quality Airborne Environment DNA for Metagenomic Applications. PLoS ONE 2023, 18, e0287567. [Google Scholar] [CrossRef]
- Ferguson, R.M.W.; Garcia-Alcega, S.; Coulon, F.; Dumbrell, A.J.; Whitby, C.; Colbeck, I. Bioaerosol Biomonitoring: Sampling Optimization for Molecular Microbial Ecology. Mol. Ecol. Resour. 2019, 19, 672–690. [Google Scholar] [CrossRef] [PubMed]
- Coriolis Micro—Microbial Air Sampler. Bertin Technologies: Montigny-le-Bretonneux, France. Available online: https://www.bertin-technologies.fr/produits/biocollecteurs-air/coriolis-biocollecteur-air/ (accessed on 13 March 2025).
- Rufino de Sousa, N.; Shen, L.; Silcott, D.; Call, C.J.; Rothfuchs, A.G. Operative and Technical Modifications to the Coriolis® µ Air Sampler That Improve Sample Recovery and Biosafety During Microbiological Air Sampling. Ann. Work. Expo. Health 2020, 64, 852–865. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, E.; Sindt, C.; Verdier, A.; Galan, C.; O’Donoghue, L.; Parks, S.; Thibaudon, M. Performance of the Coriolis Air Sampler, a High-Volume Aerosol-Collection System for Quantification of Airborne Spores and Pollen Grains. Aerobiologia 2008, 24, 191–201. [Google Scholar] [CrossRef]
- Hervé, S.; Cador, C.; Barbier, N.; Gorin, S.; Paboeuf, F.; Rose, N.; Simon, G. Evidence of Airborne Transmission of Swine Influenza a Virus in Experimental Conditions; Bertin Health & Life Sciences: Montigny-le-Bretonneux, France, 2016. [Google Scholar]
- Cador, C.; Hervé, S.; Andraud, M.; Gorin, S.; Paboeuf, F.; Barbier, N.; Quéguiner, S.; Deblanc, C.; Simon, G.; Rose, N. Maternally-Derived Antibodies Do Not Prevent Transmission of Swine Influenza A Virus between Pigs. Vet. Res. 2016, 47, 86. [Google Scholar] [CrossRef]
- Brisebois, E.; Veillette, M.; Dion-Dupont, V.; Lavoie, J.; Corbeil, J.; Culley, A.; Duchaine, C. Human Viral Pathogens Are Pervasive in Wastewater Treatment Center Aerosols. J. Environ. Sci. 2018, 67, 45–53. [Google Scholar] [CrossRef]
- Wösten, H.A.B. Hydrophobins: Multipurpose Proteins. Annu. Rev. Microbiol. 2001, 55, 625–646. [Google Scholar] [CrossRef]
- VAISALA Supplier. Available online: https://www.vaisala.com/fr/search?k=france&content_group=products+and+services (accessed on 23 October 2024).
- Méheust, D.; Le Cann, P.; Reboux, G.; Million, L.; Gangneux, J.-P. Indoor fungal contamination: Health risks and measurement methods in hospitals, homes and workplaces. Crit. Rev. Microbiol. 2014, 40, 248–260. [Google Scholar] [CrossRef]
- Hegarty, B.; Pan, A.; Haverinen-Shaughnessy, U.; Shaughnessy, R.; Peccia, J. DNA Sequence-Based Approach for Classifying the Mold Status of Buildings. Environ. Sci. Technol. 2020, 54, 15968–15975. [Google Scholar] [CrossRef]
- Andersen, B.; Frisvad, J.C.; Dunn, R.R.; Thrane, U. A Pilot Study on Baseline Fungi and Moisture Indicator Fungi in Danish Homes. J. Fungi 2021, 7, 71. [Google Scholar] [CrossRef] [PubMed]
- Theil, S.; Rifa, E. rANOMALY: AmplicoN wOrkflow for Microbial Community AnaLYsis. F1000Research 2021, 10, 7. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Murali, A.; Bhargava, A.; Wright, E.S. IDTAXA: A Novel Approach for Accurate Taxonomic Classification of Microbiome Sequences. Microbiome 2018, 6, 140. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Larsson, K.-H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.; Picard, K.; Glöckner, F.O.; Tedersoo, L.; et al. The UNITE Database for Molecular Identification of Fungi: Handling Dark Taxa and Parallel Taxonomic Classifications. Nucleic Acids Res. 2019, 47, D259–D264. [Google Scholar] [CrossRef] [PubMed]
- Theil, S.; Rifa, E. UTOPIA: An Automatically UpdaTed, cOmPlete and Consistent ITS Reference dAtabase. In Proceedings of the 5. Colloque de Génomique Environnementale, La Rochelle, France, 8–10 October 2019. [Google Scholar]
- Normand, A.-C.; Ranque, S.; Cassagne, C.; Gaudart, J.; Sallah, K.; Charpin, D.-A.; Piarroux, R. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings. Ann. Occup. Hyg. 2016, 60, 161–175. [Google Scholar] [CrossRef]
- Napoli, C.; Marcotrigiano, V.; Montagna, M.T. Air Sampling Procedures to Evaluate Microbial Contamination: A Comparison between Active and Passive Methods in Operating Theatres. BMC Public Health 2012, 12, 594. [Google Scholar] [CrossRef]
- Górny, R.L. Microbial Aerosols: Sources, Properties, Health Effects, Exposure Assessment—A Review. KONA Powder Part. J. 2020, 37, 64–84. [Google Scholar] [CrossRef]
- Chang, C.-W.; Ting, Y.-T.; Horng, Y.-J. Collection Efficiency of Liquid-Based Samplers for Fungi in Indoor Air. Indoor Air 2019, 29, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.-Y. Comparison of Five Membrane Filters to Collect Bioaerosols for Airborne Microbiome Analysis. J. Appl. Microbiol. 2021, 131, 780–790. [Google Scholar] [CrossRef]
- Mbareche, H.; Veillette, M.; Bilodeau, G.; Duchaine, C. Comparison of the Performance of ITS1 and ITS2 as Barcodes in Amplicon-Based Sequencing of Bioaerosols. PeerJ 2020, 8, e8523. [Google Scholar]
- Viegas, C.; Malta-Vacas, J.; Sabino, R.; Viegas, S.; Veríssimo, C. Accessing Indoor Fungal Contamination Using Conventional and Molecular Methods in Portuguese Poultries. Env. Monit. Assess. 2014, 186, 1951–1959. [Google Scholar] [CrossRef]
- ISO 16000-18:2011; Indoor air—Part 18: Detection and Enumeration of Moulds—Sampling by Impaction. ISO: Geneva, Switzerland, 2011.
- Libert, X.; Chasseur, C.; Packeu, A.; Bureau, F.; Roosens, N.H.; De Keersmaecker, S.C.J. Exploiting the Advantages of Molecular Tools for the Monitoring of Fungal Indoor Air Contamination: First Detection of Exophiala Jeanselmei in Indoor Air of Air-Conditioned Offices. Microorganisms 2019, 7, 674. [Google Scholar] [CrossRef]
- Monard, C.; Gantner, S.; Stenlid, J. Utilizing ITS1 and ITS2 to Study Environmental Fungal Diversity Using Pyrosequencing. FEMS Microbiol. Ecol. 2013, 84, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.H.; Su, J.H.; Shang, J.J.; Wu, Y.Y.; Li, Y.; Bao, D.P.; Yao, Y.J. Evaluation of the Ribosomal DNA Internal Transcribed Spacer (ITS), Specifically ITS1 and ITS2, for the Analysis of Fungal Diversity by Deep Sequencing. PLoS ONE 2018, 13, e0206428. [Google Scholar] [CrossRef]
- Blaalid, R.; Kumar, S.; Nilsson, R.H. ITS1 versus ITS2 as DNA Metabarcodes for Fungi. Mol. Ecol. Resour. 2013, 13, 218–224. [Google Scholar] [CrossRef]
- Anna, L. Bazzicalupo Comparison of ITS1 and ITS2 rDNA in 454 Sequencing of Hyperdiverse Fungal Communities. Fungal Ecol. 2013, 6, 102–109. [Google Scholar] [CrossRef]
- Badotti, F.; de Oliveira, F.S.; Garcia, C.F.; Vaz, A.B.M.; Fonseca, P.L.C.; Nahum, L.A.; Oliveira, G.; Góes-Neto, A. Effectiveness of ITS and Sub-Regions as DNA Barcode Markers for the Identification of Basidiomycota (Fungi). BMC Microbiol. 2017, 17, 42. [Google Scholar] [CrossRef]
- Xu, J. Fungal DNA Barcoding. Genome 2016, 59, 913–932. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Suzuki, J.; Sasaki, Y.; Watanabe, A.; Kamei, K. Importance of Accurate Identification and Antifungal Susceptibility Testing of Aspergillus Species in Clinical Settings. Med. Mycol. J. 2023, 64, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Susca, A.; Villani, A.; Moretti, A.; Stea, G.; Logrieco, A. Identification of Toxigenic Fungal Species Associated with Maize Ear Rot: Calmodulin as Single Informative Gene. Int. J. Food Microbiol. 2020, 319, 108491. [Google Scholar] [CrossRef]
- Bellanger, A.-P.; Reboux, G.; Roussel, S.; Grenouillet, F.; Didier-Scherer, E.; Dalphin, J.-C.; Millon, L. Indoor Fungal Contamination of Moisture-Damaged and Allergic Patient Housing Analysed Using Real-Time PCR. Lett. Appl. Microbiol. 2009, 49, 260–266. [Google Scholar] [CrossRef]
- Haas, D.; Galler, H.; Habib, J.; Melkes, A.; Schlacher, R.; Buzina, W.; Friedl, H.; Marth, E.; Reinthaler, F.F. Concentrations of Viable Airborne Fungal Spores and Trichloroanisole in Wine Cellars. Int. J. Food Microbiol. 2010, 144, 126–132. [Google Scholar] [CrossRef]
- Jeżak, K.; Kozajda, A.; Sowiak, M.; Brzeźnicki, S.; Bonczarowska, M.; Szadkowska-Stańczyk, I. The Capability of Fungi Isolated from Moldy Dwellings to Produce Toxins. Int. J. Occup. Med. Environ. Health 2016, 29, 823–836. [Google Scholar] [CrossRef]
- Reboux, G.; Bellanger, A.P.; Roussel, S.; Grenouillet, F.; Sornin, S.; Piarroux, R.; Dalphin, J.C.; Millon, L. Indoor Mold Concentration in Eastern France. Indoor Air 2009, 19, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Andersen, B.; Frisvad, J.C.; Søndergaard, I.; Rasmussen, I.S.; Larsen, L.S. Associations between Fungal Species and Water-Damaged Building Materials. Appl. Env. Microbiol. 2011, 77, 4180–4188. [Google Scholar] [CrossRef]
- Aktas, Y.D.; Altamirano, H.; Ioannou, I.; May, N.; D’Ayala, D. Indoor Mould Testing and Benchmarking: A Public Report; UKCMB—UK Centre for Moisture in Buildings: London, UK, 2018. [Google Scholar]
- Verdier, T.; Bertron, A.; Johansson, P. Overview of Indoor Microbial Growth on Building Materials. In Proceedings of the International RILEM Symposium on the Microorganisms-Cementitious materials Interactions (TC253-MCI), Delft, The Netherlands, 23 June 2016; Volume 23. [Google Scholar]
- Fomicheva, G.M.; Vasilenko, O.V.; Marfenina, O.E. Comparative Morphological, Ecological, and Molecular Studies of Aspergillus Versicolor (Vuill.) Tiraboschi Strains Isolated from Different Ecotopes. Microbiology 2006, 75, 186–191. [Google Scholar] [CrossRef]
- Pasanen, P.; Korpi, A.; Kalliokoski, P.; Pasanen, A.-L. Growth and Volatile Metabolite Production of Aspergillus Versicolor in House Dust. Environ. Int. 1997, 23, 425–432. [Google Scholar] [CrossRef]
- Zalar, P.; de Hoog, G.S.; Schroers, H.-J.; Crous, P.W.; Groenewald, J.Z.; Gunde-Cimerman, N. Phylogeny and Ecology of the Ubiquitous Saprobe Cladosporium Sphaerospermum, with Descriptions of Seven New Species from Hypersaline Environments. Stud. Mycol. 2007, 58, 157–183. [Google Scholar] [CrossRef] [PubMed]
- Hocking, A.D.; Miscamble, B.F.; Pitt, J.I. Water Relations of Alternaria Alternata, Cladosporium Cladosporioides, Cladosporium Sphaerospermum, Curvularia Lunata and Curvularia Pallescens. Mycol. Res. 1994, 98, 91–94. [Google Scholar] [CrossRef]
- Aleksic, B.; Draghi, M.; Ritoux, S.; Bailly, S.; Lacroix, M.; Oswald, I.P.; Bailly, J.-D.; Robine, E. Aerosolization of Mycotoxins after Growth of Toxinogenic Fungi on Wallpaper. Appl. Environ. Microbiol. 2017, 83, e01001-17. [Google Scholar] [CrossRef] [PubMed]
- Magyar, D.; Vass, M.; Li, D.-W. Dispersal Strategies of Microfungi. In Biology of Microfungi; Li, D.-W., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 315–371. ISBN 978-3-319-29137-6. [Google Scholar]
- Kurkela, T. The number of Cladosporium conidia in the air in different weather conditions. Grana 1997, 36, 54–61. [Google Scholar] [CrossRef]
- Zajc, J.; Gunde-Cimerman, N. The Genus Wallemia-From Contamination of Food to Health Threat. Microorganisms 2018, 6, 46. [Google Scholar] [CrossRef]
- de Oliveira, V.F.; Funari, A.P.; Taborda, M.; Magri, A.S.G.K.; Levin, A.S.; Magri, M.M.C. Cutaneous Naganishia Albida (Cryptococcus Albidus) Infection: A Case Report and Literature Review. Rev. Inst. Med. Trop. Sao Paulo 2023, 65, e60. [Google Scholar] [CrossRef]
House Part | Floor Space (m2) | Length (m) | Width (m) | Height (m) | Estimated Moldy Surface (m2) | Volume (m3) |
---|---|---|---|---|---|---|
WC | 1.31 | 1.75 | 0.75 | 2.2 | 4.5 | 3 |
Corridor | 6.63 | 3.9 | 1.7 | 2.55 | 0.7 | 17 |
Airflow Rate (L/min) | Sampling Duration (min) | Air Volume Sampled (m3) | Initial Liquid Volume in Sample (mL) | Remaining Liquid Volume in Sample (mL) |
---|---|---|---|---|
300 | 10 | 3 | 15 | <1 |
250 | 2.5 | 1–2 | ||
200 | 2 | 2 | ||
150 | 1.5 | 3–3.5 | ||
100 | 1 | 4–5 |
Airflow Rate (L/min) | Sampling Duration (min) | Air Volume Sampled (m3) | Initial Liquid Volume in Sample (mL) | Added Volume per Round (mL) | Number of Rounds |
---|---|---|---|---|---|
100 | 50 | 5 | 15 | 10 | 5 |
100 | 10 | 10 | |||
150 | 15 | 15 |
Airflow Rate (L/min) | Sampling Duration (min) | Air Volume Sampled (m3) | Initial Liquid Volume in Sample (mL) | Injection of Liquid from LTM (mL/min) | Volume Injected from LTM (mL) | DNA Concentration (ng/µL) |
---|---|---|---|---|---|---|
200 | 120 | 24 | 15 | 1.2 | 144 | <5 |
180 | 30 | 180 | ≈5 | |||
240 | 36 | 216 | ≥5 |
ITS1 | |||
---|---|---|---|
Phylum | Genus | Relative Abundance in the WC (% of Collected DNA) | Relative Abundance in the Corridor (% of Collected DNA) |
Basidiomycota | Naganishia | 5.39 | 4.73 |
Strobilurus | 5.23 | 4.73 | |
Sterigmatomyces | 5.13 | 4.13 | |
Cerrena | 3.28 | 1.55 | |
Phanerochaete | 2.43 | 2.62 | |
Wallemia | 2.43 | 2.18 | |
Steccherinum | 2.22 | 1.39 | |
Phellinus | 0.51 | 2.15 | |
Trametes | 1.82 | 1.76 | |
Antrodiella | 0.43 | 1.74 | |
Sistotremastrum | 0.15 | 1.59 | |
Coprinellus | nd | 1.45 | |
Phlebia | nd | 1.27 | |
Stereaceaegenera | 1.20 | 0.27 | |
Corticium | 1.09 | nd | |
Scytinostromella | 1 | nd | |
Ascomycota | Aspergillus | 12.03 | 14.98 |
Stemphylium | 3.45 | nd | |
Penicillium | 1.31 | 1.98 | |
Paraphoma | nd | 1.22 | |
Cladosporium | 0.86 | 0.39 | |
Mucoromycota | Mucor | 1.7 | 0.18 |
Others * | 11.10 | 7.96 | |
Unidentified fungal phylum | Unidentified fungal genera | 37.24 | 41.73 |
ITS2 | |||
Phylum | Genus | Relative Abundance in the WC (% of Collected DNA) | Relative Abundance in the Corridor (% of Collected DNA) |
Basidiomycota | Wallemia | 21.46 | 9.42 |
Trametes | 13.19 | 12.57 | |
Sterigmatomyces | 2.56 | 1.85 | |
Steccherinum | 2.49 | 0.22 | |
Malassezia | 0.3 | 2.26 | |
Phanerochaete | 1.38 | 2.22 | |
Strobilurus | 1.81 | 1.08 | |
Ascomycota | Aspergillus | 8.35 | 13.33 |
Cladosporium | 2.5 | 3.65 | |
Penicillium | 1.03 | 1.71 | |
Debaryomyces | 0.78 | 1.17 | |
Others * | 12.88 | 10.67 | |
Unidentified fungal phylum | Unidentified fungal genera | 31.27 | 39.85 |
ITS1 | |||
---|---|---|---|
Phylum | Genus | Relative Abundance in the WC (% of Collected DNA) | Relative Abundance in the Corridor (% of Collected DNA) |
Ascomycota | Aspergillus | 51.03 | 41.14 |
Cladosporium | 26.03 | 30.8 | |
Debaryomyces | 1.81 | 3.27 | |
Others * | 0.35 | 0.91 | |
Unidentified fungal phylum | Unidentified fungal genera | 20.78 | 23.88 |
ITS2 | |||
Phylum | Genus | Relative Abundance in the WC
(% of Collected DNA) | Relative Abundance in the Corridor (% of Collected DNA) |
Ascomycota | Cladosporium | 60.47 | 57.31 |
Aspergillus | 30.69 | 25.98 | |
Debaryomyces | 6.90 | 9.84 | |
Acremonium | 0.45 | 1.87 | |
Others * | 0.13 | 0.16 | |
Unidentified fungal phylum | Unidentified fungal genera | 1.36 | 4.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Hallak, M.; Verdier, T.; Bertron, A.; Mercade, M.; Lepercq, P.; Roques, C.; Bailly, J.-D. Efficiency of the Coriolis µ Air Sampling Device for Fungal Contamination Analysis of Indoor Air: A Case Study. Pathogens 2025, 14, 345. https://doi.org/10.3390/pathogens14040345
Al Hallak M, Verdier T, Bertron A, Mercade M, Lepercq P, Roques C, Bailly J-D. Efficiency of the Coriolis µ Air Sampling Device for Fungal Contamination Analysis of Indoor Air: A Case Study. Pathogens. 2025; 14(4):345. https://doi.org/10.3390/pathogens14040345
Chicago/Turabian StyleAl Hallak, Mohamad, Thomas Verdier, Alexandra Bertron, Myriam Mercade, Pascale Lepercq, Christine Roques, and Jean-Denis Bailly. 2025. "Efficiency of the Coriolis µ Air Sampling Device for Fungal Contamination Analysis of Indoor Air: A Case Study" Pathogens 14, no. 4: 345. https://doi.org/10.3390/pathogens14040345
APA StyleAl Hallak, M., Verdier, T., Bertron, A., Mercade, M., Lepercq, P., Roques, C., & Bailly, J.-D. (2025). Efficiency of the Coriolis µ Air Sampling Device for Fungal Contamination Analysis of Indoor Air: A Case Study. Pathogens, 14(4), 345. https://doi.org/10.3390/pathogens14040345