The Dual-Edged Sword: Risks and Benefits of JAK Inhibitors in Infections
Abstract
:1. Introduction
2. Janus Kinase and Its Inhibition
2.1. JAK: Mechanism of Action
Cytokine | JAKs | Primary STATs | Main Function |
---|---|---|---|
Il-2 | JAK1, JAK3 | STAT5A/B, STAT3, STAT1 | T-cell proliferation, NK-cell boosting [21]. |
IL-4 | JAK1, JAK3 | STAT6 | Th2 differentiation [22]. |
IL-6 | JAK1, JAK2, TYK2 | STAT1, STAT3 | Acute phase response, myeloid cell stimulation, lymphoid differentiation [16]. |
IL-7 | JAK1, JAK3 | STAT5, STAT3, STAT1 | Lymphocyte survival and proliferation [23]. |
IL-10 | JAK1, TYK2 | STAT3 | Anti-inflammatory through inhibition of monocytes, DCs, inhibition of proinflammatory cytokine production [24]. |
IL-12 | JAK2, TYK2 | STAT4 | Promotes Th1 response in Th-cells. Stimulates production of IFN-ɣ. [25] |
IL-15 | JAK1, JAK3 | STAT3, STAT5 | Stimulates T-cell and NK-cell response [26]. |
IL-21 | JAK1, JAK3 | STAT3, STAT1, STAT5 | Th-cell differentiation, activity of follicular Th-cells, B-cell regulation [27]. |
IL-23 | JAK2, TYK2 | STAT3, STAT4 | Promotes Th17 differentiation [25]. |
GM-CSF | JAK2 | STAT5A/B | Myeloid cell proliferation, macrophage maturation [18]. |
EPO | JAK2 | STAT5 | Stimulation of erythropoiesis [19] |
GH | JAK2 | STAT1, STAT3, STAT5 | Stimulates bone and muscle growth, affects fat and protein metabolism, glucose homeostasis [28]. |
TPO | JAK2 | STAT5, STAT3 | Haematopoietic stem cell survival, megakaryocyte proliferation [29]. |
IFN-α IFN-β | JAK1, TYK2 | STAT1, STAT2 | Antiviral, promotes antigen presentation, antiproliferative [14]. |
IFN-ɣ | JAK1, JAK2 | STAT1, STAT3, STAT5 | Antiviral, antitumoral, stimulates T-cells and NK-cells, primes macrophages [15]. |
2.2. Janus Kinase Inhibitors
3. Dual Effects JAKi in Experimental Infection Models
3.1. Impact of JAKis in Infection Models
3.1.1. JAK/STAT Pathway Mutants
3.1.2. JAK/STAT Pathway Inhibition in Infection Models
3.2. Detrimental Effects of JAKi in Infection Models
4. JAK Inhibitors and Human Infectious Disease
4.1. Tofacitinib (Xeljans)
4.2. Comparisons of JAKis for Treatment of RA
4.3. Baricitinib (Olumiant)
4.4. Upadacitinib (Rinvoq)
4.5. Filgotinib (Jyseleca)
4.6. Ruxolitinib (Jakavi)
4.7. Abrocitinib (Cibinqo)
4.8. Ritlecitinib (Litfulo)
4.9. Delgotinib (Anzupgo)
4.10. Deucravacitinib (Sotyktu)
4.11. Fedratinib (Inrebic)
4.12. Tuberculosis
4.13. Hepatitis B
4.14. Herpes Simplex Virus
4.15. Lessons from COVID-19
5. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Giamarellos-Bourboulis, E.J.; Aschenbrenner, A.C.; Bauer, M.; Bock, C.; Calandra, T.; Gat-Viks, I.; Kyriazopoulou, E.; Lupse, M.; Monneret, G.; Pickkers, P.; et al. The pathophysiology of sepsis and precision-medicine-based immunotherapy. Nat. Immunol. 2024, 25, 19–28. [Google Scholar] [CrossRef]
- Rosenblum, M.D.; Remedios, K.A.; Abbas, A.K. Mechanisms of human autoimmunity. J. Clin. Investig. 2015, 125, 2228–2233. [Google Scholar]
- Brown, P.; Pratt, A.G.; Hyrich, K.L. Therapeutic advances in rheumatoid arthritis. BMJ 2024, 384, e070856. [Google Scholar] [CrossRef]
- Hoffman, G.S.; Kerr, G.S.; Leavitt, R.Y.; Hallahan, C.W.; Lebovics, R.S.; Travis, W.D.; Rottem, M.; Fauci, A.S. Wegener granulomatosis: An analysis of 158 patients. Ann. Intern. Med. 1992, 116, 488–498. [Google Scholar] [CrossRef]
- Sen, R.; Nayak, L.; De, R.K. A review on host-pathogen interactions: Classification and prediction. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1581–1599. [Google Scholar] [PubMed]
- Stark, G.R.; Darnell, J.E., Jr. The JAK-STAT pathway at twenty. Immunity 2012, 36, 503–514. [Google Scholar] [PubMed]
- Philips, R.L.; Wang, Y.; Cheon, H.; Kanno, Y.; Gadina, M.; Sartorelli, V.; Horvath, C.M.; Darnell, J.E., Jr.; Stark, G.R.; O′Shea, J.J. The JAK-STAT pathway at 30: Much learned, much more to do. Cell 2022, 185, 3857–3876. [Google Scholar]
- Dhillon, S. Tofacitinib: A Review in Rheumatoid Arthritis. Drugs 2017, 77, 1987–2001. [Google Scholar] [PubMed]
- Glassman, C.R.; Tsutsumi, N.; Saxton, R.A.; Lupardus, P.J.; Jude, K.M.; Garcia, K.C. Structure of a Janus kinase cytokine receptor complex reveals the basis for dimeric activation. Science 2022, 376, 163–169. [Google Scholar] [CrossRef]
- Ivashkiv, L.B.; Hu, X. Signaling by STATs. Arthritis Res. Ther. 2004, 6, 159–168. [Google Scholar] [CrossRef]
- Xue, C.; Yao, Q.; Gu, X.; Shi, Q.; Yuan, X.; Chu, Q.; Bao, Z.; Lu, J.; Li, L. Evolving cognition of the JAK-STAT signaling pathway: Autoimmune disorders and cancer. Signal Transduct. Target. Ther. 2023, 8, 204. [Google Scholar] [PubMed]
- O′Shea, J.J.; Holland, S.M.; Staudt, L.M. JAKs and STATs in immunity, immunodeficiency, and cancer. N. Engl. J. Med. 2013, 368, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Minegishi, Y.; Saito, M.; Morio, T.; Watanabe, K.; Agematsu, K.; Tsuchiya, S.; Takada, H.; Hara, T.; Kawamura, N.; Ariga, T.; et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 2006, 25, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Pestka, S.; Krause, C.D.; Walter, M.R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 2004, 202, 8–32. [Google Scholar] [CrossRef]
- Kak, G.; Raza, M.; Tiwari, B.K. Interferon-gamma (IFN-gamma): Exploring its implications in infectious diseases. Biomol. Concepts 2018, 9, 64–79. [Google Scholar]
- Hunter, C.A.; Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 2015, 16, 448–457. [Google Scholar] [CrossRef]
- Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 2003, 3, 133–146. [Google Scholar] [CrossRef]
- Dougan, M.; Dranoff, G.; Dougan, S.K. GM-CSF, IL-3, and IL-5 Family of Cytokines: Regulators of Inflammation. Immunity 2019, 50, 796–811. [Google Scholar] [CrossRef]
- Jelkmann, W.; Bohlius, J.; Hallek, M.; Sytkowski, A.J. The erythropoietin receptor in normal and cancer tissues. Crit. Rev. Oncol. Hematol. 2008, 67, 39–61. [Google Scholar] [CrossRef]
- Leonard, W.J.; Lin, J.X.; O′Shea, J.J. The γ(c) Family of Cytokines: Basic Biology to Therapeutic Ramifications. Immunity 2019, 50, 832–850. [Google Scholar] [CrossRef]
- Spolski, R.; Li, P.; Leonard, W.J. Biology and regulation of IL-2: From molecular mechanisms to human therapy. Nat. Rev. Immunol. 2018, 18, 648–659. [Google Scholar]
- Zhu, J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine 2015, 75, 14–24. [Google Scholar] [PubMed]
- Winer, H.; Rodrigues, G.O.L.; Hixon, J.A.; Aiello, F.B.; Hsu, T.C.; Wachter, B.T.; Li, W.; Durum, S.K. IL-7: Comprehensive review. Cytokine 2022, 160, 156049. [Google Scholar] [PubMed]
- Carlini, V.; Noonan, D.M.; Abdalalem, E.; Goletti, D.; Sansone, C.; Calabrone, L.; Albini, A. The multifaceted nature of IL-10: Regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front. Immunol. 2023, 14, 1161067. [Google Scholar]
- Vignali, D.A.; Kuchroo, V.K. IL-12 family cytokines: Immunological playmakers. Nat. Immunol. 2012, 13, 722–728. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, J. Interleukin-2 family cytokines: An overview of genes, expression, signaling and functional roles in teleost. Dev. Comp. Immunol. 2023, 141, 104645. [Google Scholar]
- Long, D.; Chen, Y.; Wu, H.; Zhao, M.; Lu, Q. Clinical significance and immunobiology of IL-21 in autoimmunity. J. Autoimmun. 2019, 99, 1–14. [Google Scholar]
- Lu, M.; Flanagan, J.U.; Langley, R.J.; Hay, M.P.; Perry, J.K. Targeting growth hormone function: Strategies and therapeutic applications. Signal Transduct. Target. Ther. 2019, 4, 3. [Google Scholar]
- Geddis, A.E.; Linden, H.M.; Kaushansky, K. Thrombopoietin: A pan-hematopoietic cytokine. Cytokine Growth Factor. Rev. 2002, 13, 61–73. [Google Scholar] [CrossRef]
- Bonelli, M.; Kerschbaumer, A.; Kastrati, K.; Ghoreschi, K.; Gadina, M.; Heinz, L.X.; Smolen, J.S.; Aletaha, D.; O′Shea, J.; Laurence, A. Selectivity, efficacy and safety of JAKinibs: New evidence for a still evolving story. Ann. Rheum. Dis. 2024, 83, 139–160. [Google Scholar]
- Shawky, A.M.; Almalki, F.A.; Abdalla, A.N.; Abdelazeem, A.H.; Gouda, A.M. A Comprehensive Overview of Globally Approved JAK Inhibitors. Pharmaceutics 2022, 14, 1001. [Google Scholar] [CrossRef] [PubMed]
- Imafuku, S.; Tada, Y.; Hippeli, L.; Banerjee, S.; Morita, A.; Ohtsuki, M. Efficacy and safety of the selective TYK2 inhibitor, deucravacitinib, in Japanese patients with moderate to severe plaque psoriasis: Subgroup analysis of a randomized, double-blind, placebo-controlled, global phase 3 trial. J. Dermatol. 2023, 50, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, R.; Kremer, J.; Cush, J.; Schulze-Koops, H.; Connell, C.A.; Bradley, J.D.; Gruben, D.; Wallenstein, G.V.; Zwillich, S.H.; Kanik, K.S.; et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 2012, 367, 495–507. [Google Scholar] [CrossRef]
- Lee, E.B.; Fleischmann, R.; Hall, S.; Wilkinson, B.; Bradley, J.D.; Gruben, D.; Koncz, T.; Krishnaswami, S.; Wallenstein, G.V.; Zang, C.; et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N. Engl. J. Med. 2014, 370, 2377–2386. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, R.M.; Huizinga, T.W.; Kavanaugh, A.F.; Wilkinson, B.; Kwok, K.; DeMasi, R.; van Vollenhoven, R.F. Efficacy of tofacitinib monotherapy in methotrexate-naive patients with early or established rheumatoid arthritis. RMD Open 2016, 2, e000262. [Google Scholar] [CrossRef]
- van Vollenhoven, R.F.; Fleischmann, R.; Cohen, S.; Lee, E.B.; García Meijide, J.A.; Wagner, S.; Forejtova, S.; Zwillich, S.H.; Gruben, D.; Koncz, T.; et al. Tofacitinib or Adalimumab versus Placebo in Rheumatoid Arthritis. New Engl. J. Med. 2012, 367, 508–519. [Google Scholar] [CrossRef]
- Fleischmann, R.; Mysler, E.; Hall, S.; Kivitz, A.J.; Moots, R.J.; Luo, Z.; DeMasi, R.; Soma, K.; Zhang, R.; Takiya, L.; et al. Efficacy and safety of tofacitinib monotherapy, tofacitinib with methotrexate, and adalimumab with methotrexate in patients with rheumatoid arthritis (ORAL Strategy): A phase 3b/4, double-blind, head-to-head, randomised controlled trial. Lancet 2017, 390, 457–468. [Google Scholar] [CrossRef]
- Meyer, D.M.; Jesson, M.I.; Li, X.; Elrick, M.M.; Funckes-Shippy, C.L.; Warner, J.D.; Gross, C.J.; Dowty, M.E.; Ramaiah, S.K.; Hirsch, J.L.; et al. Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J. Inflamm. 2010, 7, 41. [Google Scholar] [CrossRef]
- Boyle, D.L.; Soma, K.; Hodge, J.; Kavanaugh, A.; Mandel, D.; Mease, P.; Shurmur, R.; Singhal, A.K.; Wei, N.; Rosengren, S.; et al. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis. Ann. Rheum. Dis. 2015, 74, 1311–1316. [Google Scholar] [CrossRef]
- Ghoreschi, K.; Jesson, M.I.; Li, X.; Lee, J.L.; Ghosh, S.; Alsup, J.W.; Warner, J.D.; Tanaka, M.; Steward-Tharp, S.M.; Gadina, M.; et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J. Immunol. 2011, 186, 4234–4243. [Google Scholar] [CrossRef]
- Kubo, S.; Yamaoka, K.; Kondo, M.; Yamagata, K.; Zhao, J.; Iwata, S.; Tanaka, Y. The JAK inhibitor, tofacitinib, reduces the T cell stimulatory capacity of human monocyte-derived dendritic cells. Ann. Rheum. Dis. 2014, 73, 2192–2198. [Google Scholar] [PubMed]
- Ytterberg, S.R.; Bhatt, D.L.; Mikuls, T.R.; Koch, G.G.; Fleischmann, R.; Rivas, J.L.; Germino, R.; Menon, S.; Sun, Y.; Wang, C.; et al. Cardiovascular and Cancer Risk with Tofacitinib in Rheumatoid Arthritis. N. Engl. J. Med. 2022, 386, 316–326. [Google Scholar] [PubMed]
- Cai, B.; Cai, J.P.; Luo, Y.L.; Chen, C.; Zhang, S. The Specific Roles of JAK/STAT Signaling Pathway in Sepsis. Inflammation 2015, 38, 1599–1608. [Google Scholar]
- Xia, T.; Zhang, M.; Lei, W.; Yang, R.; Fu, S.; Fan, Z.; Yang, Y.; Zhang, T. Advances in the role of STAT3 in macrophage polarization. Front. Immunol. 2023, 14, 1160719. [Google Scholar] [CrossRef]
- Herzig, D.; Fang, G.; Toliver-Kinsky, T.E.; Guo, Y.; Bohannon, J.; Sherwood, E.R. STAT1-deficient mice are resistant to cecal ligation and puncture-induced septic shock. Shock 2012, 38, 395–402. [Google Scholar]
- Matsukawa, A.; Takeda, K.; Kudo, S.; Maeda, T.; Kagayama, M.; Akira, S. Aberrant inflammation and lethality to septic peritonitis in mice lacking STAT3 in macrophages and neutrophils. J. Immunol. 2003, 171, 6198–6205. [Google Scholar]
- Matsukawa, A.; Kaplan, M.H.; Hogaboam, C.M.; Lukacs, N.W.; Kunkel, S.L. Pivotal role of signal transducer and activator of transcription (Stat)4 and Stat6 in the innate immune response during sepsis. J. Exp. Med. 2001, 193, 679–688. [Google Scholar]
- Kamezaki, K. The role of Tyk2, Stat1 and Stat4 in LPS-induced endotoxin signals. Int. Immunol. 2004, 16, 1173–1179. [Google Scholar] [PubMed]
- Alazawi, W.; Heath, H.; Waters, J.A.; Woodfin, A.; O′Brien, A.J.; Scarzello, A.J.; Ma, B.; Lopez-Otalora, Y.; Jacobs, M.; Petts, G.; et al. Stat2 loss leads to cytokine-independent, cell-mediated lethality in LPS-induced sepsis. Proc. Natl. Acad. Sci. USA 2013, 110, 8656–8661. [Google Scholar]
- Takeda, K.; Clausen, B.E.; Kaisho, T.; Tsujimura, T.; Terada, N.; Förster, I.; Akira, S. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 1999, 10, 39–49. [Google Scholar]
- Lentsch, A.B.; Kato, A.; Davis, B.; Wang, W.; Chao, C.; Edwards, M.J. STAT4 and STAT6 regulate systemic inflammation and protect against lethal endotoxemia. J. Clin. Investig. 2001, 108, 1475–1482. [Google Scholar] [CrossRef]
- Mishra, S.K.; Choudhury, S. Experimental Protocol for Cecal Ligation and Puncture Model of Polymicrobial Sepsis and Assessment of Vascular Functions in Mice. Methods Mol. Biol. 2018, 1717, 161–187. [Google Scholar]
- Jin, T. Exploring the role of bacterial virulence factors and host elements in septic arthritis: Insights from animal models for innovative therapies. Front. Microbiol. 2024, 15, 1356982. [Google Scholar] [CrossRef] [PubMed]
- Drummond, C.W.; Eglin, R.P.; Esiri, M.M. Herpes simplex virus encephalitis in a mouse model: PCR evidence for CNS latency following acute infection. J. Neurol. Sci. 1994, 127, 159–163. [Google Scholar] [CrossRef]
- Spellberg, B.; Ibrahim, A.S.; Edwards, J.E., Jr.; Filler, S.G. Mice with disseminated candidiasis die of progressive sepsis. J. Infect. Dis. 2005, 192, 336–343. [Google Scholar] [CrossRef]
- Buras, J.A.; Holzmann, B.; Sitkovsky, M. Animal models of sepsis: Setting the stage. Nat. Rev. Drug Discov. 2005, 4, 854–865. [Google Scholar] [CrossRef]
- Kłak, M.; Anäkkälä, N.; Wang, W.; Lange, S.; Jonsson, I.M.; Tarkowski, A.; Jin, T. Tranexamic acid, an inhibitor of plasminogen activation, aggravates staphylococcal septic arthritis and sepsis. Scand. J. Infect. Dis. 2010, 42, 351–358. [Google Scholar] [CrossRef]
- Hui, L.; Yao, Y.; Wang, S.; Yu, Y.; Dong, N.; Li, H.; Sheng, Z. Inhibition of Janus kinase 2 and signal transduction and activator of transcription 3 protect against cecal ligation and puncture-induced multiple organ damage and mortality. J. Trauma. 2009, 66, 859–865. [Google Scholar] [CrossRef]
- Peña, G.; Cai, B.; Deitch, E.A.; Ulloa, L. JAK2 inhibition prevents innate immune responses and rescues animals from sepsis. J. Mol. Med. 2010, 88, 851–859. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Sun, L.; Gao, G.; Li, Y. Tofacitinib reduces acute lung injury and improves survival in a rat model of sepsis by inhibiting the JAK-STAT/NF-kappaB pathway. J. Inflamm. 2023, 20, 5. [Google Scholar] [CrossRef]
- Li, L.; He, X.; Wang, X.; Sun, Y.; Wu, G.; Fang, H.; Wang, C.; Luo, P.; Xia, Z. Ruxolitinib protects lipopolysaccharide (LPS)-induced sepsis through inhibition of nitric oxide production in mice. Ann. Transl. Med. 2020, 8, 546. [Google Scholar] [PubMed]
- Yun, Y.; Chen, J.; Wang, X.; Li, Y.; Hu, Z.; Yang, P.; Qin, L. Tofacitinib Ameliorates Lipopolysaccharide-Induced Acute Kidney Injury by Blocking the JAK-STAT1/STAT3 Signaling Pathway. Biomed. Res. Int. 2021, 2021, 8877056. [Google Scholar]
- Tsirigotis, P.; Papanikolaou, N.; Elefanti, A.; Konstantinou, P.; Gkirkas, K.; Rontogianni, D.; Siafakas, N.; Karakitsos, P.; Roilides, E.; Dimitriadis, G.; et al. Treatment of Experimental Candida Sepsis with a Janus Kinase Inhibitor Controls Inflammation and Prolongs Survival. Antimicrob. Agents Chemother. 2015, 59, 7367–7373. [Google Scholar] [PubMed]
- Jarneborn, A.; Mohammad, M.; Engdahl, C.; Hu, Z.; Na, M.; Ali, A.; Jin, T. Tofacitinib treatment aggravates Staphylococcus aureus septic arthritis, but attenuates sepsis and enterotoxin induced shock in mice. Sci. Rep. 2020, 10, 10891. [Google Scholar]
- Jarneborn, A.; Hu, Z.; Deshmukh, M.; Kopparapu, P.K.; Jin, T. Tofacitinib Treatment Suppresses CD4+ T-Cell Activation and Th1 Response, Contributing to Protection against Staphylococcal Toxic Shock. Int. J. Mol. Sci. 2024, 25, 7456. [Google Scholar] [CrossRef]
- Krzyzowska, M.; Jarneborn, A.; Thorn, K.; Eriksson, K.; Jin, T. Tofacitinib Treatment in Primary Herpes Simplex Encephalitis Interferes With Antiviral Response. J. Infect. Dis. 2022, 225, 1545–1553. [Google Scholar] [PubMed]
- Singh, V.; Joshi, K.; Chatterjee, S.; Qureshi, S.; Siddh, S.; Nunia, V. Evaluation of the Efficacy of Tofacitinib, a JAK Inhibitor, in Alleviating Sepsis-Induced Multiple Organ Dysfunction Syndrome. Drug Res. 2024, 74, 394–404. [Google Scholar]
- Blank, C.; Luz, A.; Bendigs, S.; Erdmann, A.; Wagner, H.; Heeg, K. Superantigen and endotoxin synergize in the induction of lethal shock. Eur. J. Immunol. 1997, 27, 825–833. [Google Scholar]
- Dinges, M.M.; Schlievert, P.M. Role of T cells and gamma interferon during induction of hypersensitivity to lipopolysaccharide by toxic shock syndrome toxin 1 in mice. Infect. Immun. 2001, 69, 1256–1264. [Google Scholar]
- Zhao, Y.X.; Tarkowski, A. Impact of interferon-gamma receptor deficiency on experimental Staphylococcus aureus septicemia and arthritis. J. Immunol. 1995, 155, 5736–5742. [Google Scholar]
- Patrycy, M.; Chodkowski, M.; Krzyzowska, M. Role of Microglia in Herpesvirus-Related Neuroinflammation and Neurodegeneration. Pathogens 2022, 11, 809. [Google Scholar] [CrossRef]
- Szekanecz, Z.; Buch, M.H.; Charles-Schoeman, C.; Galloway, J.; Karpouzas, G.A.; Kristensen, L.E.; Ytterberg, S.R.; Hamar, A.; Fleischmann, R. Efficacy and safety of JAK inhibitors in rheumatoid arthritis: Update for the practising clinician. Nat. Rev. Rheumatol. 2024, 20, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Sunzini, F.; McInnes, I.; Siebert, S. JAK inhibitors and infections risk: Focus on herpes zoster. Ther. Adv. Musculoskelet. Dis. 2020, 12, 1759720X20936059. [Google Scholar] [CrossRef] [PubMed]
- Morand, E.F.; Furie, R.; Tanaka, Y.; Bruce, I.N.; Askanase, A.D.; Richez, C.; Bae, S.C.; Brohawn, P.Z.; Pineda, L.; Berglind, A.; et al. Trial of Anifrolumab in Active Systemic Lupus Erythematosus. N. Engl. J. Med. 2020, 382, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Curtis, J.R.; Xie, F.; Yun, H.; Bernatsky, S.; Winthrop, K.L. Real-world comparative risks of herpes virus infections in tofacitinib and biologic-treated patients with rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 1843–1847. [Google Scholar] [CrossRef]
- Cohen, S.B.; Tanaka, Y.; Mariette, X.; Curtis, J.R.; Lee, E.B.; Nash, P.; Winthrop, K.L.; Charles-Schoeman, C.; Wang, L.; Chen, C.; et al. Long-term safety of tofacitinib up to 9.5 years: A comprehensive integrated analysis of the rheumatoid arthritis clinical development programme. RMD Open 2020, 6, e001395. [Google Scholar] [CrossRef]
- Bechman, K.; Subesinghe, S.; Norton, S.; Atzeni, F.; Galli, M.; Cope, A.P.; Winthrop, K.L.; Galloway, J.B. A systematic review and meta-analysis of infection risk with small molecule JAK inhibitors in rheumatoid arthritis. Rheumatology 2019, 58, 1755–1766. [Google Scholar] [CrossRef]
- Bertoldi, I.; Caporali, R. Tofacitinib: Real-World Data and Treatment Persistence in Rheumatoid Arthritis. Open Access Rheumatol. Res. Rev. 2021, 13, 221–237. [Google Scholar] [CrossRef]
- Kremer, J.M.; Bingham, C.O., 3rd; Cappelli, L.C.; Greenberg, J.D.; Madsen, A.M.; Geier, J.; Rivas, J.L.; Onofrei, A.M.; Barr, C.J.; Pappas, D.A.; et al. Postapproval Comparative Safety Study of Tofacitinib and Biological Disease-Modifying Antirheumatic Drugs: 5-Year Results from a United States-Based Rheumatoid Arthritis Registry. ACR Open Rheumatol. 2021, 3, 173–184. [Google Scholar] [CrossRef]
- Frisell, T.; Bower, H.; Morin, M.; Baecklund, E.; Di Giuseppe, D.; Delcoigne, B.; Feltelius, N.; Forsblad-d′Elia, H.; Lindqvist, E.; Lindstrom, U.; et al. Safety of biological and targeted synthetic disease-modifying antirheumatic drugs for rheumatoid arthritis as used in clinical practice: Results from the ARTIS programme. Ann. Rheum. Dis. 2023, 82, 601–610. [Google Scholar] [CrossRef]
- Balanescu, A.R.; Citera, G.; Pascual-Ramos, V.; Bhatt, D.L.; Connell, C.A.; Gold, D.; Chen, A.S.; Sawyerr, G.; Shapiro, A.B.; Pope, J.E.; et al. Infections in patients with rheumatoid arthritis receiving tofacitinib versus tumour necrosis factor inhibitors: Results from the open-label, randomised controlled ORAL Surveillance trial. Ann. Rheum. Dis. 2022, 81, 1491–1503. [Google Scholar] [PubMed]
- Taxonera, C.; Olivares, D.; Alba, C. Real-World Effectiveness and Safety of Tofacitinib in Patients With Ulcerative Colitis: Systematic Review With Meta-Analysis. Inflamm. Bowel Dis. 2022, 28, 32–40. [Google Scholar] [CrossRef]
- Chen, L.; Su, C.; Ding, H.; Mei, Q. Small molecules for inflammatory bowel disease and the risk of infection and malignancy: A systematic review and meta-Analysis. Dig. Liver Dis. 2024, 56, 1828–1838. [Google Scholar] [PubMed]
- Nash, P.; Coates, L.C.; Kivitz, A.J.; Mease, P.J.; Gladman, D.D.; Covarrubias-Cobos, J.A.; FitzGerald, O.; Fleishaker, D.; Wang, C.; Wu, J.; et al. Safety and Efficacy of Tofacitinib in Patients with Active Psoriatic Arthritis: Interim Analysis of OPAL Balance, an Open-Label, Long-Term Extension Study. Rheumatol. Ther. 2020, 7, 553–580. [Google Scholar] [PubMed]
- Deodhar, A.; Sliwinska-Stanczyk, P.; Xu, H.; Baraliakos, X.; Gensler, L.S.; Fleishaker, D.; Wang, L.; Wu, J.; Menon, S.; Wang, C.; et al. Tofacitinib for the treatment of ankylosing spondylitis: A phase III, randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. 2021, 80, 1004–1013. [Google Scholar] [PubMed]
- Ruperto, N.; Brunner, H.I.; Synoverska, O.; Ting, T.V.; Mendoza, C.A.; Spindler, A.; Vyzhga, Y.; Marzan, K.; Grebenkina, L.; Tirosh, I.; et al. Tofacitinib in juvenile idiopathic arthritis: A double-blind, placebo-controlled, withdrawal phase 3 randomised trial. Lancet 2021, 398, 1984–1996. [Google Scholar]
- Taylor, P.C.; Takeuchi, T.; Burmester, G.R.; Durez, P.; Smolen, J.S.; Deberdt, W.; Issa, M.; Terres, J.R.; Bello, N.; Winthrop, K.L. Safety of baricitinib for the treatment of rheumatoid arthritis over a median of 4.6 and up to 9.3 years of treatment: Final results from long-term extension study and integrated database. Ann. Rheum. Dis. 2022, 81, 335–343. [Google Scholar]
- Bieber, T.; Katoh, N.; Simpson, E.L.; de Bruin-Weller, M.; Thaci, D.; Torrelo, A.; Sontag, A.; Grond, S.; Issa, M.; Lu, X.; et al. Safety of baricitinib for the treatment of atopic dermatitis over a median of 1.6 years and up to 3.9 years of treatment: An updated integrated analysis of eight clinical trials. J. Dermatol. Treat. 2023, 34, 2161812. [Google Scholar]
- Wan, J.; Shin, D.B.; Syed, M.N.; Abuabara, K.; Lemeshow, A.R.; Gelfand, J.M. Risk of herpesvirus, serious and opportunistic infections in atopic dermatitis: A population-based cohort study. Br. J. Dermatol. 2022, 186, 664–672. [Google Scholar]
- Cohen, S.B.; van Vollenhoven, R.F.; Winthrop, K.L.; Zerbini, C.A.F.; Tanaka, Y.; Bessette, L.; Zhang, Y.; Khan, N.; Hendrickson, B.; Enejosa, J.V.; et al. Safety profile of upadacitinib in rheumatoid arthritis: Integrated analysis from the SELECT phase III clinical programme. Ann. Rheum. Dis. 2021, 80, 304–311. [Google Scholar] [PubMed]
- van der Heijde, D.; Baraliakos, X.; Sieper, J.; Deodhar, A.; Inman, R.D.; Kameda, H.; Zeng, X.; Sui, Y.; Bu, X.; Pangan, A.L.; et al. Efficacy and safety of upadacitinib for active ankylosing spondylitis refractory to biological therapy: A double-blind, randomised, placebo-controlled phase 3 trial. Ann. Rheum. Dis. 2022, 81, 1515–1523. [Google Scholar]
- Burmester, G.R.; Cohen, S.B.; Winthrop, K.L.; Nash, P.; Irvine, A.D.; Deodhar, A.; Mysler, E.; Tanaka, Y.; Liu, J.; Lacerda, A.P.; et al. Safety profile of upadacitinib over 15 000 patient-years across rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis and atopic dermatitis. RMD Open 2023, 9, e002735. [Google Scholar] [PubMed]
- Reich, K.; Teixeira, H.D.; de Bruin-Weller, M.; Bieber, T.; Soong, W.; Kabashima, K.; Werfel, T.; Zeng, J.; Huang, X.; Hu, X.; et al. Safety and efficacy of upadacitinib in combination with topical corticosteroids in adolescents and adults with moderate-to-severe atopic dermatitis (AD Up): Results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2021, 397, 2169–2181. [Google Scholar] [PubMed]
- Burmester, G.R.; Gottenberg, J.E.; Caporali, R.; Winthrop, K.L.; Tanaka, Y.; Ekoka Omoruyi, E.V.; Rajendran, V.; Van Hoek, P.; Van Beneden, K.; Takeuchi, T.; et al. Integrated safety analysis of filgotinib in patients with moderate-to-severe rheumatoid arthritis over a treatment duration of up to 8.3 years. Ann. Rheum. Dis. 2024, 83, 1110–1117. [Google Scholar] [PubMed]
- Luo, Q.; Xiao, Z.; Peng, L. Effects of ruxolitinib on infection in patients with myeloproliferative neoplasm: A meta-analysis. Hematology 2021, 26, 663–669. [Google Scholar]
- Simpson, E.L.; Silverberg, J.I.; Nosbaum, A.; Winthrop, K.L.; Guttman-Yassky, E.; Hoffmeister, K.M.; Egeberg, A.; Valdez, H.; Zhang, M.; Farooqui, S.A.; et al. Integrated Safety Analysis of Abrocitinib for the Treatment of Moderate-to-Severe Atopic Dermatitis From the Phase II and Phase III Clinical Trial Program. Am. J. Clin. Dermatol. 2021, 22, 693–707. [Google Scholar]
- Kamphuis, E.; Boesjes, C.M.; Loman, L.; Kamsteeg, M.; Haeck, I.; Van Lynden-van Nes, A.M.T.; Politiek, K.; Van der Gang, L.F.; De Graaf, M.; De Bruin-Weller, M.S.; et al. Real-world Experience of Abrocitinib Treatment in Patients with Atopic Dermatitis and Hand Eczema: Up to 28-week Results from the BioDay Registry. Acta Derm. Venereol. 2024, 104, adv19454. [Google Scholar]
- King, B.; Soung, J.; Tziotzios, C.; Rudnicka, L.; Joly, P.; Gooderham, M.; Sinclair, R.; Mesinkovska, N.A.; Paul, C.; Gong, Y.; et al. Integrated Safety Analysis of Ritlecitinib, an Oral JAK3/TEC Family Kinase Inhibitor, for the Treatment of Alopecia Areata from the ALLEGRO Clinical Trial Program. Am. J. Clin. Dermatol. 2024, 25, 299–314. [Google Scholar]
- Gooderham, M.; Molin, S.; Bissonnette, R.; Worm, M.; Crépy, M.N.; Stingeni, L.; Warren, R.B.; Schliemann, S.; Schuttelaar, M.L.; Ferrucci, S.; et al. Long-term safety and efficacy of delgocitinib cream for up to 52 weeks in adults with Chronic Hand Eczema: Results of the phase 3 open-label extension DELTA 3 trial following the DELTA 1 and 2 trials. J. Am. Acad. Dermatol. 2025; in press. [Google Scholar]
- Fukuie, T.; Toyama, H.; Tanaka, M.; Ohashi-Doi, K.; Kabashima, K. Post-hoc safety/efficacy analyses from pediatric delgocitinib atopic dermatitis trials. Pediatr. Int. 2024, 66, e15798. [Google Scholar] [PubMed]
- Armstrong, A.W.; Lebwohl, M.; Warren, R.B.; Sofen, H.; Morita, A.; Paul, C.; Papp, K.A.; Colombo, M.J.; Scotto, J.; Vaile, J.; et al. Deucravacitinib in plaque psoriasis: Four-year safety and efficacy results from the Phase 3 POETYK PSO-1, PSO-2 and long-term extension trials. J. Eur. Acad. Dermatol. Venereol. 2025; early view. [Google Scholar]
- Hagino, T.; Saeki, H.; Fujimoto, E.; Kanda, N. Effectiveness and safety of deucravacitinib treatment for moderate-to-severe psoriasis in real-world clinical practice in Japan. J. Dermatol. Treat. 2024, 35, 2307489. [Google Scholar]
- Talpaz, M.; Kiladjian, J.J. Fedratinib, a newly approved treatment for patients with myeloproliferative neoplasm-associated myelofibrosis. Leukemia 2021, 35, 1–17. [Google Scholar] [PubMed]
- Adas, M.A.; Alveyn, E.; Cook, E.; Dey, M.; Galloway, J.B.; Bechman, K. The infection risks of JAK inhibition. Expert. Rev. Clin. Immunol. 2022, 18, 253–261. [Google Scholar] [PubMed]
- Winthrop, K.L.; Park, S.H.; Gul, A.; Cardiel, M.H.; Gomez-Reino, J.J.; Tanaka, Y.; Kwok, K.; Lukic, T.; Mortensen, E.; Ponce de Leon, D.; et al. Tuberculosis and other opportunistic infections in tofacitinib-treated patients with rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 1133–1138. [Google Scholar]
- Wang, S.T.; Tseng, C.W.; Hsu, C.W.; Tung, C.H.; Huang, K.Y.; Lu, M.C.; Lai, N.S. Reactivation of hepatitis B virus infection in patients with rheumatoid arthritis receiving tofacitinib. Int. J. Rheum. Dis. 2021, 24, 1362–1369. [Google Scholar]
- Fragoulis, G.E.; Nikiphorou, E.; Dey, M.; Zhao, S.S.; Courvoisier, D.S.; Arnaud, L.; Atzeni, F.; Behrens, G.M.; Bijlsma, J.W.; Bohm, P.; et al. 2022 EULAR recommendations for screening and prophylaxis of chronic and opportunistic infections in adults with autoimmune inflammatory rheumatic diseases. Ann. Rheum. Dis. 2023, 82, 742–753. [Google Scholar]
- Ireland, P.A.; Verheyden, M.; Jansson, N.; Sebaratnam, D.; Sullivan, J. Infection risk with JAK inhibitors in dermatoses: A meta-analysis. Int. J. Dermatol. 2025, 64, 24–36. [Google Scholar]
- Tsai, S.Y.; Phipatanakul, W.; Hawryluk, E.B.; Oyoshi, M.K.; Schneider, L.C.; Ma, K.S. Comparative safety of oral Janus kinase inhibitors versus dupilumab in patients with atopic dermatitis: A population-based cohort study. J. Allergy Clin. Immunol. 2024, 154, 1195–1203.e1193. [Google Scholar]
- Channappanavar, R.; Perlman, S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017, 39, 529–539. [Google Scholar]
- Hamdy, A.; Leonardi, A. Superantigens and SARS-CoV-2. Pathogens 2022, 11, 390. [Google Scholar] [CrossRef]
- Yang, L.; Liu, S.; Liu, J.; Zhang, Z.; Wan, X.; Huang, B.; Chen, Y.; Zhang, Y. COVID-19: Immunopathogenesis and Immunotherapeutics. Signal Transduct. Target. Ther. 2020, 5, 128. [Google Scholar] [CrossRef] [PubMed]
- Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; et al. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [PubMed]
- Investigators, R.-C.; Gordon, A.C.; Mouncey, P.R.; Al-Beidh, F.; Rowan, K.M.; Nichol, A.D.; Arabi, Y.M.; Annane, D.; Beane, A.; van Bentum-Puijk, W.; et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N. Engl. J. Med. 2021, 384, 1491–1502. [Google Scholar] [CrossRef]
- RECOVERY_Collaborative_Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 397, 1637–1645. [Google Scholar]
- Jain, N.K.; Tailang, M.; Jain, H.K.; Chandrasekaran, B.; Sahoo, B.M.; Subramanian, A.; Thangavel, N.; Aldahish, A.; Chidambaram, K.; Alagusundaram, M.; et al. Therapeutic implications of current Janus kinase inhibitors as anti-COVID agents: A review. Front. Pharmacol. 2023, 14, 1135145. [Google Scholar] [CrossRef]
- Marconi, V.C.; Ramanan, A.V.; de Bono, S.; Kartman, C.E.; Krishnan, V.; Liao, R.; Piruzeli, M.L.B.; Goldman, J.D.; Alatorre-Alexander, J.; de Cassia Pellegrini, R.; et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): A randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir. Med. 2021, 9, 1407–1418. [Google Scholar] [PubMed]
- Kalil, A.C.; Patterson, T.F.; Mehta, A.K.; Tomashek, K.M.; Wolfe, C.R.; Ghazaryan, V.; Marconi, V.C.; Ruiz-Palacios, G.M.; Hsieh, L.; Kline, S.; et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N. Engl. J. Med. 2021, 384, 795–807. [Google Scholar] [CrossRef]
- Ferrarini, A.; Vacca, A.; Solimando, A.G.; Tavio, M.; Acquaviva, R.; Rocchi, M.; Nitti, C.; Salvi, A.; Menditto, V.; Luchetti Gentiloni, M.M.; et al. Early administration of tofacitinib in COVID-19 pneumonitis: An open randomised controlled trial. Eur. J. Clin. Investig. 2023, 53, e13898. [Google Scholar] [CrossRef]
- Guimarães, P.O.; Quirk, D.; Furtado, R.H.; Maia, L.N.; Saraiva, J.F.; Antunes, M.O.; Kalil Filho, R.; Junior, V.M.; Soeiro, A.M.; Tognon, A.P.; et al. Tofacitinib in Patients Hospitalized with Covid-19 Pneumonia. N. Engl. J. Med. 2021, 385, 406–415. [Google Scholar] [CrossRef]
- Agarwal, A.; Hunt, B.; Stegemann, M.; Rochwerg, B.; Lamontagne, F.; Siemieniuk, R.A.; Agoritsas, T.; Askie, L.; Lytvyn, L.; Leo, Y.S.; et al. A living WHO guideline on drugs for COVID-19. BMJ 2020, 370, m3379. [Google Scholar] [CrossRef]
Drug | Target | Indication |
---|---|---|
Tofacitinib (Xeljans®) | JAK3, JAK1, JAK2 | RA, UC, PsA, AS, JIA |
Baricitinib (Olumiant®) | JAK1, JAK2 | RA, AD, AA |
Upadacitinib (Rinvoq®) | JAK1 | RA, PsA, AS, nr-axSpa, AD, UC, CD |
Filgotinib (Jyseleca®) | JAK1 | RA, UC |
Ruxolitinib (Jakavi®) | JAK1, JAK2 | MPN, GVHD |
Abrocitinib (Cibinqo®) | JAK1 | AD |
Deucravacitinib (Sotyktu®) | TYK2 | PsO |
Fedratinib (Inrebic®) | JAK2 | MPN |
Ritlecitinib (Litfulo®) | JAK3 | AA |
Delgotinib (Anzupgo®) | All 4 JAKs | AD |
Infection Models in Genetically Modified Mice | Survival | Bacterial Load | Ref. | |
---|---|---|---|---|
CLP model | STAT1−/− | + | − | [45] |
TYK2−/− | +/− | +/− | [45] | |
STAT3−/− | − | +/− | [46] | |
STAT4−/− | + | +/− | [47] | |
STAT6−/− | + | − | [47] | |
LPS−induced shock | STAT1−/− | + | NA | [48] |
STAT2−/− | − | NA | [49] | |
STAT3−/− | − | NA | [50] | |
STAT4−/− | * | NA | [48,51] | |
TYK2−/− | + | NA | [48,49] | |
STAT6−/− | − | NA | [51] |
Infection Models in JAK/STAT Inhibition | Survival | Bacterial/Viral Load | Ref. | |
---|---|---|---|---|
CLP model | STAT3 inhibition (Rapamycin) | + | NA | [58] |
AG490 (JAK2 inhibition) | + | NA | [58,59] | |
Tofacitinib (JAK3, JAK1, JAK2 inhibition) | +and less organ damage. | NA | [60] | |
LPS shock model | Ruxolitinib (JAK1/JAK2) | + | NA | [61] |
AG490 | + | NA | [59] | |
Tofacitinib | Less organ damage. | NA | [62] | |
Candida sepsis model | Ruxolitinib | Dose-dependent effect. | Dose dep. | [63] |
S. aureus septic arthritis | Tofacitinib | More severe bone erosion. | +/− | [64] |
S. aureus sepsis | Tofacitinib | + | NA | [64] |
S. aureus enterotoxin-induced shock model | Tofacitinib | + | NA | [64,65] |
HSV-1 encephalitis model | Tofacitinib | − | + | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarneborn, A.; Kopparapu, P.K.; Jin, T. The Dual-Edged Sword: Risks and Benefits of JAK Inhibitors in Infections. Pathogens 2025, 14, 324. https://doi.org/10.3390/pathogens14040324
Jarneborn A, Kopparapu PK, Jin T. The Dual-Edged Sword: Risks and Benefits of JAK Inhibitors in Infections. Pathogens. 2025; 14(4):324. https://doi.org/10.3390/pathogens14040324
Chicago/Turabian StyleJarneborn, Anders, Pradeep Kumar Kopparapu, and Tao Jin. 2025. "The Dual-Edged Sword: Risks and Benefits of JAK Inhibitors in Infections" Pathogens 14, no. 4: 324. https://doi.org/10.3390/pathogens14040324
APA StyleJarneborn, A., Kopparapu, P. K., & Jin, T. (2025). The Dual-Edged Sword: Risks and Benefits of JAK Inhibitors in Infections. Pathogens, 14(4), 324. https://doi.org/10.3390/pathogens14040324