Characterization of Microbiome Diversity in the Digestive Tract of Penaeus vannamei Fed with Probiotics and Challenged with Vibrio parahaemolyticus Acute Hepatopancreatic Necrosis Disease
Abstract
:1. Introduction
Ethics Statement
2. Materials and Methods
2.1. Experimental Design
2.2. Sampling of Stomach (Sto), Intestine (Int), and Hepatopancreas (Hep) for Metagenomic Analysis
2.3. DNA Extraction, Library Preparation, Sequencing, and Bioinformatics Analyses
2.4. Bioinformatic Analysis
2.5. Quality Controls
3. Results
3.1. Read Processing and Alpha Diversity
3.2. Principal Coordinates Analysis with Bray–Curtis Distance
3.3. Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jory, D. Annual Farmed Shrimp Production Survey: A Slight Decrease in Production Reduction in 2023 with Hopes for Renewed Growth in 2024; Global Seafood Alliance: Portsmouth, NH, USA, 2024; Available online: https://www.globalseafood.org/advocate/annual-farmed-shrimp-production-survey-a-slight-decrease-in-production-reduction-in-2023-with-hopes-for-renewed-growth-in-2024/ (accessed on 16 November 2024).
- Tang, K.F.J.; Bondad-Reantaso, M.G.; Arthur, J.R.; MacKinnon, B.; Hao, B.; Alday-Sanz, V.; Liang, Y.; Dong, X. Shrimp Acute Hepatopancreatic Necrosis Disease Strategy Manual; FAO Fisheries and Aquaculture Circular 1190; FAO: Rome, Italy, 2020; pp. 1–80. [Google Scholar]
- Nunan, L.; Lightner, D.; Pantoja, C.; Gomez-Jimenez, S. Detection of acute hepatopancreatic necrosis disease (AHPND) in Mexico. Dis. Aquat. Org. 2014, 111, 81–86. [Google Scholar] [CrossRef]
- Kumar, V.; Roy, S.; Behera, B.K.; Bossier, P.; Das, B.K. Acute hepatopancreatic necrosis disease (AHPND): Virulence, pathogenesis and mitigation strategies in shrimp aquaculture. Toxins 2021, 13, 524. [Google Scholar] [CrossRef] [PubMed]
- Galaviz-Silva, L.; Robles-Valdez, A.; Sánchez-Díaz, R.; Ibarra-Gamez, J.C.; Gómez-Gil, B.; Molina-Garza, Z.J. Cepas de Vibrio parahaemolyticus que causan necrosis hepatopancreática aguda en camarón cultivado de Sonora, México y su resistencia a antibióticos. Hidrobiológica 2021, 31, 111–123. [Google Scholar] [CrossRef]
- Soonthornchai, W.; Chaiyapechara, S.; Klinbunga, S.; Thongda, W.; Tangphatsornruang, S.; Yoocha, T.; Jarayabhand, P.; Jiravanichpaisal, P. Differentially expressed transcripts in stomach of Penaeus monodon in response to AHPND infection. Dev. Comp. Immunol. 2016, 65, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef]
- Gainza, O.; Ramírez, C.; Salinas-Ramos, A.; Romero, J. Intestinal microbiota of white shrimp Penaeus vannamei under intensive cultivation conditions in Ecuador. Microb. Ecol. 2018, 75, 562–568. [Google Scholar] [CrossRef]
- Hasyimi, W.; Widanarni, W.; Yuhana, M. Growth performance and intestinal microbiota diversity in Pacific white shrimp Litopenaeus vannamei fed with a probiotic bacterium, honey prebiotic, and synbiotic. Curr. Microbiol. 2020, 77, 2982–2990. [Google Scholar] [CrossRef]
- Chen, W.Y.; Ng, T.H.; Wu, J.H.; Chen, J.W.; Wang, H.C. Microbiome dynamics in a shrimp grow-out pond with possible outbreak of acute hepatopancreatic necrosis disease. Sci. Rep. 2017, 7, 9395. [Google Scholar] [CrossRef]
- Chang, Y.; Ko, H.; Wu, P.; Kumar, R.; Wang, H.; Lu, H. Gut microbiota of Pacific white shrimp (Litopenaeus vannamei) exhibits distinct responses to pathogenic and non-pathogenic Vibrio parahaemolyticus. Microbiol. Spectr. 2023, 11, e01180-23. [Google Scholar] [CrossRef]
- Cornejo-Granados, F.; Lopez-Zavala, A.A.; Gallardo-Becerra, L.; Mendoza-Vargas, A.; Sánchez, F.; Vichido, R.; Brieba, L.G.; Viana, M.T.; Sotelo-Mundo, R.R.; Ochoa-Leyva, A. Microbiome of Pacific whiteleg shrimp reveals differential bacterial community composition between wild, aquacultured and AHPND/EMS outbreak conditions. Sci. Rep. 2017, 7, 11783. [Google Scholar] [CrossRef]
- Beltrán, M.; Quimi Mujica, J.; Diringer, B.; Barahona, S. Alterations in the gut microbiome of whiteleg shrimp (Penaeus vannamei) postlarvae following exposure to an AHPND-causing strain of Vibrio parahaemolyticus. Lat. Am. J. Aquat. 2024, 52, 76–89. [Google Scholar] [CrossRef]
- Lai, H.-C.; Ng, T.H.; Ando, M.; Lee, C.-T.; Chen, I.-T.; Chuang, J.-C.; Mavichak, R.; Chang, S.-H.; Yeh, M.-D.; Chiang, Y.-A.; et al. Pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in shrimp. Fish Shellfish Immunol. 2015, 47, 1006–1014. [Google Scholar] [CrossRef] [PubMed]
- Reyes, G.; Andrade, B.; Betancourt, I.; Panchana, F.; Preciado, C.; Bayo, B. Bacterial communities and signatures in the stomach and intestine of juvenile Penaeus (litopenaeus) vannamei shrimp affected by acute hepatopancreatic necrosis disease. Heliyon 2024, 10, e33034. [Google Scholar] [CrossRef]
- Garibay-Valdez, E.; Cicala, F.; Martinez-Porchas, M.; Gómez-Reyes, R.; Vargas-Albores, F.; Gollas-Galván, T.; Martínez-Córdova, L.R.; Calderón, K. Longitudinal variations in the gastrointestinal microbiome of the white shrimp, Litopenaeus vannamei. PeerJ 2021, 9, e11827. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Li, X.; Wang, L.; Shao, Z. Changes in the intestinal bacterial community during the growth of white shrimp, Litopenaeus vannamei. Aquac. Res. 2016, 47, 1737–1746. [Google Scholar] [CrossRef]
- Afrin, S.; Alvarez-Ruiz, P.; Luna-González, A.; Escamilla-Montes, R.; Fierro-Coronado, A.; Diarte-Plata, G.; García-Gutiérrez, V.; Peraza-Gómez, V. Gut bacterial profile associated with healthy and diseased (AHPND) shrimp Penaeus vannamei. Lat. Am. J. Aquat. Res. 2022, 50, 197–211. [Google Scholar] [CrossRef]
- Kumar, R.; Ng, T.H.; Wang, H. Acute hepatopancreatic necrosis disease in penaeid shrimp. Rev. Aquac. 2020, 12, 1867–1880. [Google Scholar] [CrossRef]
- Pinoargote, G.; Flores, G.; Cooper, K.; Ravishankar, S. Effects on survival and bacterial community composition of the aquaculture water and gastrointestinal tract of shrimp (Litopenaeus vannamei) exposed to probiotic treatments after an induced infection of acute hepatopancreatic necrosis disease. Aquac. Res. 2018, 49, 3270–3288. [Google Scholar] [CrossRef]
- Restrepo, L.; Domínguez-Borbor, C.; Bajaña, L.; Betancourt, I.; Rodríguez, J.; Bayot, B.; Reyes, A. Microbial community characterization of shrimp survivors to AHPND challenge test treated with an effective shrimp probiotic (Vibrio diabolicus). Microbiome 2021, 9, 88. [Google Scholar] [CrossRef]
- Proespraiwong, P.; Mavichak, R.; Imaizumi, K.; Hirono, I.; Unajak, S. Evaluation of Bacillus spp. as potent probiotics with reduction in AHPND-related mortality and facilitating growth performance of pacific white shrimp (Litopenaeus vannamei) farms. Microorganisms 2023, 11, 2176. [Google Scholar] [CrossRef]
- Galaviz-Silva, L.; Cázares-Jaramillo, G.E.; Ibarra-Gámez, J.C.; Molina-Garza, V.M.; Sánchez-Díaz, R.; Molina-Garza, Z.J. Assessment of probiotic bacteria from marine coasts against Vibrio parahaemolyticus (AHPND strains) in Litopenaeus vannamei. Aquac. Res. 2021, 52, 6396–6409. [Google Scholar] [CrossRef]
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, J.A.; Holmes, S.P. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Gonzalez Peña, A.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Sugathan, S.; Manilal, A.; Selvin, J. Development of a Probiotic for the Management of Shrimp Vibriosis; Scholars’ Press: London, UK, 2014; pp. 96–98. Available online: https://www.perlego.com/book/3221029/development-of-novel-probiotic-for-the-management-of-shrimp-vibriosis-pdf (accessed on 1 May 2024).
- Knipe, H.; Temperton, B.; Lange, A.; Bass, D.; Tyler, C.R. Probiotics and competitive exclusion of pathogens in shrimp aquaculture. Rev. Aquac. 2021, 13, 324–352. [Google Scholar] [CrossRef]
- Hossain, M.S.; Dai, J.; Qiu, D. Dysbiosis of the shrimp (Penaeus monodon) gut microbiome with AHPND outbreaks revealed by 16S rRNA metagenomics analysis. Aquac. Res. 2021, 52, 3336–3349. [Google Scholar] [CrossRef]
- Rungrassame, W.; Klanchui, A.; Chaiyapechara, S.; Maibunkaew, S.; Tangphatsornruang, S.; Jiravanichpaisal, P.; Karoonuthaisiri, N. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages. PLoS ONE 2013, 8, e60802. [Google Scholar] [CrossRef]
- Amin, M.; Kumala, R.R.C.; Mukti, A.T.; Lamid, M.; Nindarwi, D.D. Metagenomic profiles of core and signature bacteria in the guts of white shrimp, Litopenaeus vannamei, with different growth rates. Aquaculture 2022, 550, 737849. [Google Scholar] [CrossRef]
- Landsman, A.; Brown, M.; Gibbons, W. Impact of aquaculture practices on intestinal bacterial profiles of Pacific whiteleg shrimp Litopenaeus vannamei. Microorganisms 2019, 7, 93. [Google Scholar] [CrossRef]
- Lin, X.-Y.; Shih, Y.-J.; Zhang, X.-J.; Cai, Y.-S.; Zhou, X.-W.; Chen, J.-S. Perspective on intestinal microbiota temporal changes of herbal additives treated shrimp in a natural aquaculture setting. Front. Mar. Sci. 2024, 11, 1332585. [Google Scholar] [CrossRef]
- Peng, Q.; Yuan, Y.; Gao, M. Bacillus pumilus, a novel ginger rhizome rot pathogen in China. Plant Dis. 2013, 97, 1308–1315. [Google Scholar] [CrossRef]
- Logan, N.A. Bacillus and relatives in foodborne illness. J. Appl. Microbiol. 2011, 112, 417–429. [Google Scholar] [CrossRef]
- Tena, D.; Martínez-Torres, J.Á.; Pérez-Pomata, M.T.; Sáez-Nieto, J.A.; Rubio, V.; Bisquert, J. Cutaneous infection due to Bacillus pumilus: Report of 3 Cases. Clin. Infect. Dis. 2007, 44, 40–42. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L.; Zhang, Y.; Chen, H.; Song, J.; Lyu, M.; Chen, R.; Zhang, L. Comparative genomic analyses reveal genetic characteristics and pathogenic factors of Bacillus pumilus HM-7. Front. Microbiol. 2022, 13, 1008648. [Google Scholar] [CrossRef]
- Morita, T.; Tanaka, I.; Ryuda, N.; Ikari, M.; Ueno, D.; Someya, T. Antifungal spectrum characterization and identification of strong volatile organic compounds produced by Bacillus pumilus TM-R. Heliyon 2019, 5, e01817. [Google Scholar] [CrossRef]
- Guo, H.; Fu, X.; He, J.; Wang, R.; Yan, M.; Wang, Y.; Don, P.; Huang, L.; Zhang, D. Gut bacterial consortium enriched in a biofoc system protects shrimp against Vibrio parahaemolyticus infection. Microbiome 2023, 11, 230. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, Y.; Liu, Q.; Dong, H.; Li, H.; Xiong, D.; Zhang, J. Changes in the intestine microbial, digestion and immunity of Litopenaeus vannamei in response to dietary resistant starch. Sci. Rep. 2019, 9, 6464. [Google Scholar] [CrossRef]
- Hipólito-Morales, A.; Maeda-Martínez, A.M.; Martínez-Díaz, S.F. Use of Microbacterium sp. and Exiguobacterium mexicanum to improve the survival and development of Artemia under xenic conditions. Aquacult. Int. 2009, 17, 85–90. [Google Scholar] [CrossRef]
- Sañudo-Wilhelmy, S.A.; Gómez-Consarnau, L.; Suffridge, C.; Webb, E.A. The role of B vitamins in marine biogeochemistry. Ann. Rev. Mar. Sci. 2014, 6, 339–367. [Google Scholar] [CrossRef]
- Holt, C.C.; Bass, D.; Stentiford, G.D.; van der Giezen, M. Understanding the role of the shrimp gut microbiome in health and disease. J. Invertebr. Pathol. 2021, 186, 107387. [Google Scholar] [CrossRef]
- Sidiropoulos, T.; Dovrolis, N.; Katifelis, H.; Michalopoulos, N.V.; Kokoropoulos, P.; Arkadopoulos, N.; Gazouli, M. Dysbiosis signature of fecal microbiota in patients with pancreatic adenocarcinoma and pancreatic intraductal papillary mucinous neoplasms. Biomedicines 2024, 12, 1040. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Verma, G.; Gupta, P. Growth performance, feed utilization, digestive enzyme activity, innate immunity and protection against Vibrio harveyi of freshwater prawn, Macrobrachium rosenbergii fed diets supplemented with Bacillus coagulans. Aquac. Int. 2016, 24, 1379–1392. [Google Scholar] [CrossRef]
Trial | Organ * | Raw seq (R1 + R2) | Trimmed seq (R1 + R2) | Chimera Free seq | N° of ASVs Per Organ | Total of ASVs Per Trial | SRA Accession Number |
---|---|---|---|---|---|---|---|
Neg | Hep | 58,274 | 57,950 | 24,484 | 83 | SAMN37458684 | |
Int | 66,018 | 65,680 | 28,116 | 85 | 293 | SAMN37458685 | |
Sto | 52,442 | 52,104 | 22,359 | 125 | SAMN37458686 | ||
Pos | Hep | 45,648 | 45,310 | 18,993 | 108 | 281 | SAMN37458689 |
Int | 45,944 | 45,702 | 15,638 | 29 | SAMN37458687 | ||
Sto | 56,104 | 55,710 | 22,437 | 144 | SAMN37458688 | ||
BpY100 | Hep | 49,354 | 49,028 | 19,549 | 16 | SAMN37458690 | |
Int | 47,772 | 47,468 | 20,018 | 117 | 223 | SAMN37458691 | |
Sto | 66,502 | 66,060 | 26,552 | 90 | SAMN37458692 | ||
BpY119 | Hep | 62,882 | 62,490 | 27,985 | 60 | SAMN37458693 | |
Int | 59,734 | 59,390 | 26,789 | 37 | 213 | SAMN37458694 | |
Sto | 63,434 | 62,982 | 27,791 | 116 | SAMN37458695 | ||
VcHA | Hep | 55,020 | 54,558 | 23,941 | 166 | SAMN37458696 | |
Int | 70,452 | 70,018 | 30,760 | 136 | 449 | SAMN37458697 | |
Sto | 66,192 | 65,638 | 28,416 | 147 | SAMN37458698 | ||
Bp43 | Hep | 73,700 | 73,050 | 31,367 | 7 | SAMN37458699 | |
Int | 43,668 | 43,474 | 18,092 | 79 | 196 | SAMN37458700 | |
Sto | 35,834 | 35,626 | 15,612 | 110 | SAMN37458701 | ||
Va32A | Hep | 40,460 | 40,244 | 17,647 | 87 | SAMN37458702 | |
Sto | 36,666 | 36,484 | 15,773 | 78 | 275 | SAMN37458703 | |
Int | 38,996 | 38,788 | 16,680 | 110 | SAMN37458704 | ||
Total | 1,135,096 | 1,127,754 | 478,999 | 1930 | 1930 |
Trial | Organ | Phylum Level | |||
---|---|---|---|---|---|
Actinobacteria | Bacteroidetes | Proteobacteria | Saccharibacteria | ||
Neg | Hep | 23.0% | 0.1% | 60.4% | 5.5% |
Int | 2.9% | 33.2% | 56.8% | 0.4% | |
Sto | 11.6% | 17.0% | 63.4% | 4.0% | |
Pos | Hep | 17.7% | 2.0% | 61.8% | 1.6% |
Int | 0.3% | 0.0% | 99.6% | 0.0% | |
Sto | 10.6% | 3.0% | 72.5% | 1.0% | |
BpY00 | Hep | 0.0% | 0.1% | 98.3% | 1.1% |
Int | 22.2% | 6.3% | 57.3% | 3.4% | |
Sto | 31.8% | 0.2% | 58.8% | 5.3% | |
Bp119 | Hep | 14.2% | 0.1% | 83.7% | 0.8% |
Int | 0.7% | 15.1% | 83.3% | 0.1% | |
Sto | 30.7% | 1.9% | 63.4% | 1.1% | |
VcHA | Hep | 12.8% | 13.7% | 48.7% | 6.8% |
Int | 7.1% | 20.6% | 62.6% | 1.9% | |
Sto | 14.6% | 16.3% | 53.3% | 3.6% | |
Bp43 | Hep | 0.0% | 0.0% | 82.0% | 18.0% |
Int | 1.7% | 18.7% | 68.5% | 0.4% | |
Sto | 23.0% | 9.4% | 58.0% | 3.4% | |
Va32A | Hep | 13.8% | 3.2% | 59.5% | 6.6% |
Int | 13.7% | 11.3% | 64.4% | 1.7% | |
Sto | 16.0% | 3.8% | 72.1% | 2.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galaviz-Silva, L.; Rodríguez de la Fuente, A.O.; Gomez-Flores, R.; Ibarra-Gámez, J.C.; Luna-Cruz, I.E.; Elizondo-Luevano, J.H.; Sánchez-Díaz, R.; Molina Garza, Z.J. Characterization of Microbiome Diversity in the Digestive Tract of Penaeus vannamei Fed with Probiotics and Challenged with Vibrio parahaemolyticus Acute Hepatopancreatic Necrosis Disease. Pathogens 2025, 14, 320. https://doi.org/10.3390/pathogens14040320
Galaviz-Silva L, Rodríguez de la Fuente AO, Gomez-Flores R, Ibarra-Gámez JC, Luna-Cruz IE, Elizondo-Luevano JH, Sánchez-Díaz R, Molina Garza ZJ. Characterization of Microbiome Diversity in the Digestive Tract of Penaeus vannamei Fed with Probiotics and Challenged with Vibrio parahaemolyticus Acute Hepatopancreatic Necrosis Disease. Pathogens. 2025; 14(4):320. https://doi.org/10.3390/pathogens14040320
Chicago/Turabian StyleGalaviz-Silva, Lucio, Abraham O. Rodríguez de la Fuente, Ricardo Gomez-Flores, José C. Ibarra-Gámez, Itza Eloisa Luna-Cruz, Joel H. Elizondo-Luevano, Ricardo Sánchez-Díaz, and Zinnia J. Molina Garza. 2025. "Characterization of Microbiome Diversity in the Digestive Tract of Penaeus vannamei Fed with Probiotics and Challenged with Vibrio parahaemolyticus Acute Hepatopancreatic Necrosis Disease" Pathogens 14, no. 4: 320. https://doi.org/10.3390/pathogens14040320
APA StyleGalaviz-Silva, L., Rodríguez de la Fuente, A. O., Gomez-Flores, R., Ibarra-Gámez, J. C., Luna-Cruz, I. E., Elizondo-Luevano, J. H., Sánchez-Díaz, R., & Molina Garza, Z. J. (2025). Characterization of Microbiome Diversity in the Digestive Tract of Penaeus vannamei Fed with Probiotics and Challenged with Vibrio parahaemolyticus Acute Hepatopancreatic Necrosis Disease. Pathogens, 14(4), 320. https://doi.org/10.3390/pathogens14040320