Expanded Gram-Negative Activity of Marinopyrrole A
Abstract
:1. Background
2. Material and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Antimicrobial Agents and Assays
2.3. LpxC Inhibitor Assay
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [CrossRef] [PubMed]
- Woolhouse, M.; Gaunt, E. Ecological origins of novel human pathogens. Crit. Rev. Microbiol. 2007, 33, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.B.; Young, K.; Silver, L.L. What is an “ideal” antibiotic? Discovery challenges and path forward. Biochem. Pharmacol. 2017, 133, 63–73. [Google Scholar] [CrossRef]
- McCarthy, K.; Avent, M. Oral or intravenous antibiotics? Aust. Prescr. 2020, 43, 45–48. [Google Scholar] [CrossRef]
- Hughes, C.C.; Prieto-Davo, A.; Jensen, P.R.; Fenical, W. The marinopyrroles, antibiotics of an unprecedented structure class from a marine Streptomyces sp. Org. Lett. 2008, 10, 629–631. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Donigian, J.R.; Hsueh, A.J.W. Tankyrase 1 interacts with Mcl-1 proteins and inhibits their regulation of apoptosis. J. Biol. Chem. 2003, 278, 5195–5204. [Google Scholar] [CrossRef]
- Pandey, M.K.; Gowda, K.; Doi, K.; Sharma, A.K.; Wang, H.-G.; Amin, S. Proteasomal Degradation of Mcl-1 by Maritoclax Induces Apoptosis and Enhances the Efficacy of ABT-737 in Melanoma Cells. PLoS ONE 2013, 8, e78570. [Google Scholar] [CrossRef]
- Doi, K.; Li, R.; Sung, S.-S.; Wu, H.; Liu, Y.; Manieri, W.; Krishnegowda, G.; Awwad, A.; Dewey, A.; Liu, X.; et al. Discovery of Marinopyrrole A (Maritoclax) as a Selective Mcl-1 Antagonist that Overcomes ABT-737 Resistance by Binding to and Targeting Mcl-1 for Proteasomal Degradation. J. Biol. Chem. 2012, 287, 10224–10235. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, Y.; Balasis, M.E.; Simmons, N.L.; Li, J.; Song, H.; Pan, L.; Qin, Y.; Nicolaou, K.C.; Sebti, S.M.; et al. Cyclic marinopyrrole derivatives as disruptors of Mcl-1 and Bcl-x(L) binding to Bim. Mar. Drugs 2014, 12, 1335–1348. [Google Scholar] [CrossRef]
- Eichhorn, J.M.; Alford, S.E.; Hughes, C.C.; Fenical, W.; Chambers, T.C. Purported Mcl-1 inhibitor marinopyrrole A fails to show selective cytotoxicity for Mcl-1-dependent cell lines. Cell Death Dis. 2013, 4, e880. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Simmons, N.L.; Chen, J.S.; Haste, N.M.; Nizet, V. Total synthesis and biological evaluation of marinopyrrole A and analogues. Tetrahedron Lett. 2011, 52, 2041–2043. [Google Scholar] [CrossRef] [PubMed]
- Doi, K.; Liu, Q.; Gowda, K.; Barth, B.M.; Claxton, D.; Amin, S.; Loughran, T.P.; Wang, H.-G. Maritoclax induces apoptosis in acute myeloid leukemia cells with elevated Mcl-1 expression. Cancer Biol. Ther. 2014, 15, 1077–1086. [Google Scholar] [CrossRef] [PubMed]
- Haste, N.M.; Hughes, C.C.; Tran, D.N.; Fenical, W.; Jensen, P.R.; Nizet, V.; Hensler, M.E. Pharmacological Properties of the Marine Natural Product Marinopyrrole A against Methicillin-Resistant Staphylococcus aureus ▿. Antimicrob. Agents Chemother. 2011, 55, 3305–3312. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, Y.; Song, H.; Pan, L.; Li, J.; Qin, Y.; Li, R. Marinopyrrole Derivatives as Potential Antibiotic Agents against Methicillin-Resistant Staphylococcus aureus (II). Mar. Drugs 2013, 11, 2927–2948. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef] [PubMed]
- Mai-Prochnow, A.; Clauson, M.; Hong, J.; Murphy, A.B. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep. 2016, 6, 38610. [Google Scholar] [CrossRef]
- Prajapati, J.D.; Kleinekathöfer, U.; Winterhalter, M. How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics. Chem. Rev. 2021, 121, 5158–5192. [Google Scholar] [CrossRef]
- Bertani, B.; Ruiz, N. Function and biogenesis of lipopolysaccharides. EcoSal Plus 2018, 8, 10. [Google Scholar] [CrossRef]
- Benthien, H.; Fresenborg, B.; Pätzold, L.; Elhawy, M.I.; Huc-Brandt, S.; Beisswenger, C.; Krasteva-Christ, G.; Becker, S.L.; Molle, V.; Knobloch, J.K.; et al. The Transcription Factor SpoVG Is of Major Importance for Biofilm Formation of Staphylococcus epidermidis under In Vitro Conditions, but Dispensable for In Vivo Biofilm Formation. Int. J. Mol. Sci. 2022, 23, 3255. [Google Scholar] [CrossRef]
- Muñoz-Criado, S.; Muñoz-Bellido, J.L.; Alonso-Manzanares, M.A.; Gutiérrez-Zufiaurre, M.N.; García-Rodríguez, J.A. Psychotropic drugs inhibit swarming in Proteus spp. and related genera. Clin. Microbiol. Infect. 1998, 4, 447–449. [Google Scholar] [CrossRef]
- Rice, J.; Gibson, J.; Young, E.; Souder, K.; Cunningham, K.; Schmitt, D.M. Low Oxygen Concentration Reduces Neisseria gonorrhoeae Susceptibility to Resazurin. Antibiotics 2024, 13, 395. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, N.G.; Stephens, D.S. Neisseria meningitidis: Biology, Microbiology, and Epidemiology. Methods Mol. Biol. 2012, 799, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.N.; Frank, J.F. Attachment of Escherichia coli O157:H7 grown in tryptic soy broth and nutrient broth to apple and lettuce surfaces as related to cell hydrophobicity, surface charge, and capsule production. Int. J. Food Microbiol. 2004, 96, 103–109. [Google Scholar] [CrossRef]
- Li, B.; Zhan, M.; Evivie, S.E.; Jin, D.; Zhao, L.; Chowdhury, S.; Sarker, S.K.; Huo, G.; Liu, F. Evaluating the Safety of Potential Probiotic Enterococcus durans KLDS6.0930 Using Whole Genome Sequencing and Oral Toxicity Study. Front. Microbiol. 2018, 9, 1943. [Google Scholar] [CrossRef]
- Shaheen, B.W.; Miller, M.E.; Oyarzabal, O.A. In vitro survival at low PH and acid adaptation response of Campylobacter jejuni and Campylobacter coli. J. Food Saf. 2007, 27, 326–343. [Google Scholar] [CrossRef]
- Tan, A.; Blakeway, L.V.; Taha; Yang, Y.; Zhou, Y.; Atack, J.M.; Peak, I.R.; Seib, K.L. Moraxella catarrhalis phase-variable loci show differences in expression during conditions relevant to disease. PLoS ONE 2020, 15, e0234306. [Google Scholar] [CrossRef] [PubMed]
- Poje, G.; Redfield, R.J. General Methods for Culturing Haemophilus influenzae. In Hemophilus Influenzae Protocols; Humana Press: New Jersey, NJ, USA, 2002; Volume 71, pp. 51–56. ISBN 978-1-59259-321-7. [Google Scholar]
- Wu, S.; Shah, D.K. Determination of ADC Cytotoxicity in Immortalized Human Cell Lines. Methods Mol. Biol. 2020, 2078, 329–340. [Google Scholar] [CrossRef]
- Calculate ECanything from EC50. Available online: https://www.graphpad.com/quickcalcs/ecanything1/ (accessed on 6 March 2025).
- Ekelund, O.; Klokkhammer Hetland, M.A.; Høyland Löhr, I.; Schön, T.; Somajo, S. Rapid high-resolution detection of colistin resistance in Gram-negative bacteria using flow cytometry: A comparison with broth microdilution, a commercial screening test and WGS. J. Antimicrob. Chemother. 2021, 76, 3183–3191. [Google Scholar] [CrossRef]
- Brown, M.F.; Reilly, U.; Abramite, J.A.; Arcari, J.T.; Oliver, R.; Barham, R.A.; Che, Y.; Chen, J.M.; Collantes, E.M.; Chung, S.W.; et al. Potent inhibitors of LpxC for the treatment of Gram-negative infections. J. Med. Chem. 2012, 55, 914–923. [Google Scholar] [CrossRef]
- John, C.M.; Feng, D.; Jarvis, G.A. Treatment of human challenge and MDR strains of Neisseria gonorrhoeae with LpxC inhibitors. J. Antimicrob. Chemother. 2018, 73, 2064–2071. [Google Scholar] [CrossRef]
- Castro-Falcón, G.; Straetener, J.; Bornikoel, J.; Reimer, D.; Purdy, T.N.; Berscheid, A.; Schempp, F.M.; Liu, D.Y.; Linington, R.G.; Brötz-Oesterhelt, H.; et al. Antibacterial Marinopyrroles and Pseudilins Act as Protonophores. ACS Chem. Biol. 2024, 19, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Martens, M.C.; Liu, Y.; Sanford, A.G.; Wallick, A.I.; Warner, R.C.; Li, R.; Davis, P.H. Analogs of Marinopyrrole A Show Enhancement to Observed In Vitro Potency against Acute Toxoplasma gondii Infection. Antimicrob. Agents Chemother. 2022, 66, e00794-21. [Google Scholar] [CrossRef] [PubMed]
- Gorman, A.; Golovanov, A.P. Lipopolysaccharide Structure and the Phenomenon of Low Endotoxin Recovery. Eur. J. Pharm. Biopharm. 2022, 180, 289–307. [Google Scholar] [CrossRef] [PubMed]
- Preston, A.; Mandrell, R.E.; Gibson, B.W.; Apicella, M.A. The lipooligosaccharides of pathogenic gram-negative bacteria. Crit. Rev. Microbiol. 1996, 22, 139–180. [Google Scholar] [CrossRef]
- Peng, D.; Hong, W.; Choudhury, B.P.; Carlson, R.W.; Gu, X.-X. Moraxella catarrhalis Bacterium without Endotoxin, a Potential Vaccine Candidate. Infect. Immun. 2005, 73, 7569–7577. [Google Scholar] [CrossRef]
- Maldonado, R.F.; Sá-Correia, I.; Valvano, M.A. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol. Rev. 2016, 40, 480–493. [Google Scholar] [CrossRef]
- Ford, L.; Healy, J.M.; Cui, Z.; Ahart, L.; Medalla, F.; Ray, L.C.; Reynolds, J.; Laughlin, M.E.; Vugia, D.J.; Hanna, S.; et al. Epidemiology and Antimicrobial Resistance of Campylobacter Infections in the United States, 2005–2018. Open Forum Infect Dis. 2023, 10, ofad378. [Google Scholar] [CrossRef]
- Janssen, R.; Krogfelt, K.A.; Cawthraw, S.A.; van Pelt, W.; Wagenaar, J.A.; Owen, R.J. Host-pathogen interactions in Campylobacter infections: The host perspective. Clin. Microbiol. Rev. 2008, 21, 505–518. [Google Scholar] [CrossRef]
- Finsterer, J. Triggers of Guillain-Barré Syndrome: Campylobacter jejuni Predominates. Int. J. Mol. Sci. 2022, 23, 14222. [Google Scholar] [CrossRef]
- Veltcheva, D.; Colles, F.M.; Varga, M.; Maiden, M.C.J.; Bonsall, M.B. Emerging patterns of fluoroquinolone resistance in Campylobacter jejuni in the UK [1998–2018]. Microb. Genom. 2022, 8, mgen000875. [Google Scholar] [CrossRef]
- Othman, D.; Elhosseiny, N.M.; Eltayeb, W.N.; Attia, A.S. The Moraxella catarrhalis AdhC-FghA system is important for formaldehyde detoxification and protection against pulmonary clearance. Med. Microbiol. Immunol. 2024, 213, 3. [Google Scholar] [CrossRef]
- Alexandrova, A.S.; Boyanov, V.S.; Mihova, K.Y.; Gergova, R.T. Phylogenetic Lineages and Diseases Associated with Moraxella catarrhalis Isolates Recovered from Bulgarian Patients. Int. J. Mol. Sci. 2024, 25, 9769. [Google Scholar] [CrossRef]
- Song, W.; Ma, L.; Chen, R.; Stein, D.C. Role of Lipooligosaccharide in Opa-Independent Invasion of Neisseria gonorrhoeae into Human Epithelial Cells. J. Exp. Med. 2000, 191, 949–960. [Google Scholar] [CrossRef] [PubMed]
- WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance. Available online: https://www.who.int/publications/i/item/9789240093461 (accessed on 15 August 2024).
- Melendez, J.H.; Edwards, V.L.; Muniz Tirado, A.; Hardick, J.; Mehta, A.; Aluvathingal, J.; D’Mello, A.; Gaydos, C.A.; Manabe, Y.C.; Tettelin, H. Local emergence and global evolution of Neisseria gonorrhoeae with high-level resistance to azithromycin. Antimicrob. Agents Chemother. 2024, e0092724. [Google Scholar] [CrossRef]
- Walker, E.; van Niekerk, S.; Hanning, K.; Kelton, W.; Hicks, J. Mechanisms of host manipulation by Neisseria gonorrhoeae. Front. Microbiol. 2023, 14. [Google Scholar] [CrossRef] [PubMed]
- Hooshiar, M.H.; Sholeh, M.; Beig, M.; Azizian, K.; Kouhsari, E. Global trends of antimicrobial resistance rates in Neisseria gonorrhoeae: A systematic review and meta-analysis. Front. Pharmacol. 2024, 15, 1284665. [Google Scholar] [CrossRef]
- Unemo, M.; Del Rio, C.; Shafer, W.M. Antimicrobial Resistance Expressed by Neisseria gonorrhoeae: A Major Global Public Health Problem in the 21st Century. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Willerton, L.; Lucidarme, J.; Walker, A.; Lekshmi, A.; Clark, S.A.; Walsh, L.; Bai, X.; Lee-Jones, L.; Borrow, R. Antibiotic resistance among invasive Neisseria meningitidis isolates in England, Wales and Northern Ireland (2010/11 to 2018/19). PLoS ONE 2021, 16, e0260677. [Google Scholar] [CrossRef]
- Mikucki, A.; McCluskey, N.R.; Kahler, C.M. The Host-Pathogen Interactions and Epicellular Lifestyle of Neisseria meningitidis. Front. Cell Infect. Microbiol. 2022, 12, 862935. [Google Scholar] [CrossRef]
- Mikucki, A.; Kahler, C.M. Microevolution and Its Impact on Hypervirulence, Antimicrobial Resistance, and Vaccine Escape in Neisseria meningitidis. Microorganisms 2023, 11, 3005. [Google Scholar] [CrossRef]
- Erwin, A.L. Antibacterial Drug Discovery Targeting the Lipopolysaccharide Biosynthetic Enzyme LpxC. Cold Spring Harb. Perspect. Med. 2016, 6, a025304. [Google Scholar] [CrossRef] [PubMed]
- Möller, A.-M.; Vázquez-Hernández, M.; Kutscher, B.; Brysch, R.; Brückner, S.; Marino, E.C.; Kleetz, J.; Senges, C.H.R.; Schäkermann, S.; Bandow, J.E.; et al. Common and varied molecular responses of Escherichia coli to five different inhibitors of the lipopolysaccharide biosynthetic enzyme LpxC. J. Biol. Chem. 2024, 300, 107143. [Google Scholar] [CrossRef] [PubMed]
- Clifton, L.A.; Ciesielski, F.; Skoda, M.W.A.; Paracini, N.; Holt, S.A.; Lakey, J.H. The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane. Langmuir 2016, 32, 3485–3494. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.; Hassan, K.A. The Gram-negative permeability barrier: Tipping the balance of the in and the out. mBio 2023, 14, e01205–e01223. [Google Scholar] [CrossRef]
- Thornsberry, C.; Hill, B.C.; Swenson, J.M.; McDougal, L.K. Rifampin: Spectrum of antibacterial activity. Rev. Infect. Dis. 1983, 5 (Suppl. S3), S412–S417. [Google Scholar] [CrossRef]
- Tsujimoto, H.; Gotoh, N.; Nishino, T. Diffusion of macrolide antibiotics through the outer membrane of Moraxella catarrhalis. J. Infect. Chemother. 1999, 5, 196–200. [Google Scholar] [CrossRef]
- HMDB. Showing Metabocard for (-)-Marinopyrrole A (HMDB0242215). Available online: https://hmdb.ca/metabolites/HMDB0242215 (accessed on 26 June 2024).
- Schaeffer, J.; Lippert, K.; Pleininger, S.; Stöger, A.; Hasenberger, P.; Stadlbauer, S.; Heger, F.; Eigentler, A.; Geusau, A.; Indra, A.; et al. Rifampicin Resistance Associated with rpoB Mutations in Neisseria gonorrhoeae Clinical Strains Isolated in Austria, 2016 to 2020. Microbiol Spectr 2022, 10, e0275721. [Google Scholar] [CrossRef]
- PubChem Rifampin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/135398735 (accessed on 23 February 2025).
- Qu, X.; Zhou, J.; Huang, H.; Wang, W.; Xiao, Y.; Tang, B.; Liu, H.; Xu, C.; Xiao, X. Genomic Investigation of Proteus mirabilis Isolates Recovered from Pig Farms in Zhejiang Province, China. Front. Microbiol. 2022, 13, 952982. [Google Scholar] [CrossRef]
- Weinstein, Z.B.; Zaman, M.H. Evolution of Rifampin Resistance in Escherichia coli and Mycobacterium smegmatis Due to Substandard Drugs. Antimicrob. Agents Chemother. 2018, 63, e01243-18. [Google Scholar] [CrossRef]
- Valderrama, K.; Pradel, E.; Firsov, A.M.; Drobecq, H.; Bauderlique-le Roy, H.; Villemagne, B.; Antonenko, Y.N.; Hartkoorn, R.C. Pyrrolomycins Are Potent Natural Protonophores. Antimicrob. Agents Chemother. 2019, 63, e01450-19. [Google Scholar] [CrossRef]
Organism | MIC (mg/L) | References |
---|---|---|
Gram-positive Bacteria | ||
Bacillus anthracis | 1–2 | [13] |
Bacillus subtilis | 0.13–1.9 | [13,33] |
Enterococcus faecalis | 1–6.8 | [13,33] |
Highly vancomycin-resistant Enterococcus faecalis | 16–128 | [14] |
Enterococcus faecium | 4 | [33] |
Listeria ivanovii | 0.26 | [33] |
Staphylococcus aureus | 0.5–1 | [13,14,33] |
Methicillin-resistant Staphylococcus aureus | 0.2–1 | [13,14,33] |
Staphylococcus epidermidis | 0.25–2.7 | [13,33] |
Methicillin-resistant Staphylococcus epidermidis | 0.06–1 | [14] |
Streptococcus agalactiae | 2 | [13] |
Streptococcus pneumonia | 0.13 | [33] |
Streptococcus pyogenes | 1 | [13] |
Gram-negative Bacteria | ||
Acinetobacter baumannii | >33 | [33] |
Escherichia coli | >33 | [13,14,33] |
Haemophilus influenzae | 2 | [13] |
Klebsiella aerogenes | >33 | [33] |
Klebsiella pneumoniae | >16 | [13,14,33] |
Ochrobactrum anthropi | 16 | [33] |
Providencia alcalifaciens | >33 | [33] |
Pseudomonas aeruginosa | >33 | [13,14,33] |
Salmonella enterica | >33 | [33] |
Shigella sonnei | >33 | [33] |
Vibrio cholerae | >33 | [33] |
Yersinia pseudotuberculosis | >33 | [33] |
Organism | Marinopyrrole A (mg/L) | Gentamicin (mg/L) | Marinopyrrole A Selectivity Index | ||||
---|---|---|---|---|---|---|---|
MIC | IC50 | IC90 | MIC | IC50 | IC90 | HFF IC50 (mg/L)/Bacteria IC50 (mg/L) * | |
Enterococcus durans | 2 | 0.20 | 0.53 | 24 | 7.5 | 14.6 | >125 |
Staphylococcus epidermidis | <0.2 | <0.15 | <0.15 | 48 | 3.0 | 7.3 | >167 |
Escherichia coli | >50 | >50 | >50 | 2 | 1.3 | 18.8 | 0.5 |
Proteus mirabilis | >50 | 17 | 260 | 5 | 0.76 | 5.0 | >1.5 |
Organism | Marinopyrrole A (mg/L) | Gentamicin (mg/L) | ||||
---|---|---|---|---|---|---|
MIC | IC50 | IC90 | MIC | IC50 | IC90 | |
Campylobacter jejuni | 2 | 0.74 | 6.7 | 0.2 | 0.09 | 0.1 |
Moraxella catarrhalis | 0.6 | 0.17 | 1.5 | 5 | 0.2 | 0.6 |
Haemophilus influenzae | 0.6 | 0.38 | 9.2 | 5 | 1.3 | 1.6 |
Neisseria mucosa | 6 | 1.2 | 2.3 | 5 | 1.1 | 2.3 |
Neisseria gonorrhoeae | <0.2 | <0.15 | <0.15 | 2 | 0.8 | 0.9 |
Neisseria meningitidis | 2 | 1.3 | 1.5 | 16 | 4.7 | 16.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Euteneuer, C.F.; Davis, B.N.; Lui, L.M.; Neville, A.J.; Davis, P.H. Expanded Gram-Negative Activity of Marinopyrrole A. Pathogens 2025, 14, 290. https://doi.org/10.3390/pathogens14030290
Euteneuer CF, Davis BN, Lui LM, Neville AJ, Davis PH. Expanded Gram-Negative Activity of Marinopyrrole A. Pathogens. 2025; 14(3):290. https://doi.org/10.3390/pathogens14030290
Chicago/Turabian StyleEuteneuer, Clare F., Brianna N. Davis, LeeAnna M. Lui, Andrew J. Neville, and Paul H. Davis. 2025. "Expanded Gram-Negative Activity of Marinopyrrole A" Pathogens 14, no. 3: 290. https://doi.org/10.3390/pathogens14030290
APA StyleEuteneuer, C. F., Davis, B. N., Lui, L. M., Neville, A. J., & Davis, P. H. (2025). Expanded Gram-Negative Activity of Marinopyrrole A. Pathogens, 14(3), 290. https://doi.org/10.3390/pathogens14030290