A 10-Year Study of Neonatal Sepsis from Tuen Mun Hospital, Hong Kong
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EOS | Early-onset sepsis |
LOS | Late-onset sepsis |
CA-LOS | Community-acquired late-onset sepsis |
HA-LOS | Healthcare-associated late-onset sepsis |
V/ELBW | Very low/extremely low birth weight |
N/LBW | Normal/low birth weight |
GBS | Streptococcus agalactiae (group B Streptococcus) |
SBG | Streptococcus bovis group |
CoNS | Coagulase-negative Staphylococcus |
OR | Odds ratio |
CI | Confidence interval |
References
- Fleischmann, C.; Reichert, F.; Cassini, A.; Horner, R.; Harder, T.; Markwart, R.; Tröndle, M.; Savova, Y.; Kissoon, N.; Schlattmann, P.; et al. Global Incidence and Mortality of Neonatal Sepsis: A Systematic Review and Meta-Analysis. Arch. Dis. Child. 2021, 106, 745–752. [Google Scholar] [CrossRef]
- Milton, R.; Gillespie, D.; Dyer, C.; Taiyari, K.; Carvalho, M.J.; Thomson, K.; Sands, K.; Portal, E.A.R.; Hood, K.; Ferreira, A.; et al. Neonatal Sepsis and Mortality in Low-Income and Middle-Income Countries from a Facility-Based Birth Cohort: An International Multisite Prospective Observational Study. Lancet Glob. Health 2022, 10, e661–e672. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.L. Defining Neonatal Sepsis. Curr. Opin. Pediatr. 2016, 28, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Prevention of Group B Streptococcal Early-Onset Disease in Newborns: ACOG Committee Opinion, Number 797. Obstet. Gynecol. 2020, 135, e51–e72. [CrossRef] [PubMed]
- Di Renzo, G.C.; Melin, P.; Berardi, A.; Blennow, M.; Carbonell-Estrany, X.; Donzelli, G.P.; Hakansson, S.; Hod, M.; Hughes, R.; Kurtzer, M.; et al. Intrapartum GBS Screening and Antibiotic Prophylaxis: A European Consensus Conference. J. Matern. Fetal Neonatal Med. 2015, 28, 766–782. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Recommendation on Screening of Pregnant Women for Intrapartum Antibiotic Prophylaxis for the Prevention of Early Onset Group B Streptococcus Disease in Newborns; World Health Organization, Human Reproduction Programme: Geneva, Switzerland, 2024; ISBN 978-92-4-009912-8. [Google Scholar]
- Li, J.; Shen, L.; Qian, K. Global, Regional, and National Incidence and Mortality of Neonatal Sepsis and Other Neonatal Infections, 1990–2019. Front. Public Health 2023, 11, 1139832. [Google Scholar] [CrossRef]
- Briggs-Steinberg, C.; Roth, P. Early-Onset Sepsis in Newborns. Pediatr. Rev. 2023, 44, 14–22. [Google Scholar] [CrossRef]
- Coggins, S.A.; Glaser, K. Updates in Late-Onset Sepsis: Risk Assessment, Therapy, and Outcomes. Neoreviews 2022, 23, 738–755. [Google Scholar] [CrossRef]
- Iroh Tam, P.-Y.; Bendel, C.M. Diagnostics for Neonatal Sepsis: Current Approaches and Future Directions. Pediatr. Res. 2017, 82, 574–583. [Google Scholar] [CrossRef]
- Celik, I.H.; Hanna, M.; Canpolat, F.E. Mohan Pammi, null Diagnosis of Neonatal Sepsis: The Past, Present and Future. Pediatr. Res. 2022, 91, 337–350. [Google Scholar] [CrossRef]
- Zea-Vera, A.; Ochoa, T.J. Challenges in the Diagnosis and Management of Neonatal Sepsis. J. Trop. Pediatr. 2015, 61, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Prusakov, P.; Goff, D.A.; Wozniak, P.S.; Cassim, A.; Scipion, C.E.A.; Urzúa, S.; Ronchi, A.; Zeng, L.; Ladipo-Ajayi, O.; Aviles-Otero, N.; et al. A Global Point Prevalence Survey of Antimicrobial Use in Neonatal Intensive Care Units: The No-More-Antibiotics and Resistance (NO-MAS-R) Study. EClinicalMedicine 2021, 32, 100727. [Google Scholar] [CrossRef] [PubMed]
- Sharland, E.; Qazi, S.; Heath, P.; Balasegaram, M.; Bielicki, J.; Sharland, M. Can the History of Empiric Antibiotic Treatment for Neonatal Sepsis Inform Future Global Trials? Clin. Microbiol. Infect. 2022, 28, 1313–1315. [Google Scholar] [CrossRef]
- World Health Organization. Pocket Book of Hospital Care for Children: Guidelines for the Management of Common Childhood Illnesses, 2nd ed.; World Health Organization: Geneva, Switzerland, 2013; ISBN 978-92-4-154837-3. [Google Scholar]
- Neonatal Infection: Antibiotics for Prevention and Treatment; National Institute for Health and Care Excellence: London, UK, 2021.
- Puopolo, K.M.; Benitz, W.E.; Zaoutis, T.E.; COMMITTEE ON FETUS AND NEWBORN; COMMITTEE ON INFECTIOUS DISEASES; Cummings, J.; Juul, S.; Hand, I.; Eichenwald, E.; Poindexter, B.; et al. Management of Neonates Born at ≥35 0/7 Weeks’ Gestation With Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics 2018, 142, e20182894. [Google Scholar] [CrossRef]
- Harrison, M.L.; Dickson, B.F.R.; Sharland, M.; Williams, P.C.M. Beyond Early- and Late-Onset Neonatal Sepsis Definitions: What Are the Current Causes of Neonatal Sepsis Globally? A Systematic Review and Meta-Analysis of the Evidence. Pediatr. Infect. Dis. J. 2024, 43, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Song, W.S.; Park, H.W.; Oh, M.Y.; Jo, J.Y.; Kim, C.Y.; Lee, J.J.; Jung, E.; Lee, B.S.; Kim, K.-S.; Kim, E.A.-R. Neonatal Sepsis-Causing Bacterial Pathogens and Outcome of Trends of Their Antimicrobial Susceptibility a 20-Year Period at a Neonatal Intensive Care Unit. Clin. Exp. Pediatr. 2022, 65, 350–357. [Google Scholar] [CrossRef]
- 2021 Population Census-District Profiles. Available online: https://www.census2021.gov.hk/en/district_profiles.html (accessed on 22 February 2025).
- Klinger, G.; Bromiker, R.; Zaslavsky-Paltiel, I.; Klinger, S.; Sokolover, N.; Lerner-Geva, L.; Reichman, B. ISRAEL NEONATAL NETWORK Late-Onset Sepsis in Very Low Birth Weight Infants. Pediatrics 2023, 152, e2023062223. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Kaufman, D.A.; Saha, S.; Puopolo, K.M.; Flannery, D.D.; Weimer, K.E.D.; Greenberg, R.G.; Sanchez, P.J.; Eichenwald, E.C.; Cotten, C.M.; et al. Late-Onset Sepsis Among Extremely Preterm Infants During the COVID-19 Pandemic. Pediatrics 2025, 155, e2024067675. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.; Fanaroff, A.A.; Wright, L.L.; Carlo, W.A.; Ehrenkranz, R.A.; Lemons, J.A.; Donovan, E.F.; Stark, A.R.; Tyson, J.E.; et al. Late-Onset Sepsis in Very Low Birth Weight Neonates: The Experience of the NICHD Neonatal Research Network. Pediatrics 2002, 110, 285–291. [Google Scholar] [CrossRef]
- Hayes, R.; Hartnett, J.; Semova, G.; Murray, C.; Murphy, K.; Carroll, L.; Plapp, H.; Hession, L.; O’Toole, J.; McCollum, D.; et al. Neonatal Sepsis Definitions from Randomised Clinical Trials. Pediatr. Res. 2023, 93, 1141–1148. [Google Scholar] [CrossRef]
- Giannoni, E.; Agyeman, P.K.A.; Stocker, M.; Posfay-Barbe, K.M.; Heininger, U.; Spycher, B.D.; Bernhard-Stirnemann, S.; Niederer-Loher, A.; Kahlert, C.R.; Donas, A.; et al. Neonatal Sepsis of Early Onset, and Hospital-Acquired and Community-Acquired Late Onset: A Prospective Population-Based Cohort Study. J. Pediatr. 2018, 201, 106–114.e4. [Google Scholar] [CrossRef] [PubMed]
- Ceparano, M.; Sciurti, A.; Isonne, C.; Baccolini, V.; Migliara, G.; Marzuillo, C.; Natale, F.; Terrin, G.; Villari, P. The Collaborating Group Incidence of Healthcare-Associated Infections in a Neonatal Intensive Care Unit before and during the COVID-19 Pandemic: A Four-Year Retrospective Cohort Study. J. Clin. Med. 2023, 12, 2621. [Google Scholar] [CrossRef] [PubMed]
- Verstraete, E.H.; Blot, K.; Mahieu, L.; Vogelaers, D.; Blot, S. Prediction Models for Neonatal Health Care–Associated Sepsis: A Meta-Analysis. Pediatrics 2015, 135, e1002–e1014. [Google Scholar] [CrossRef] [PubMed]
- Hospital Authority Statistical Report. Available online: https://www3.ha.org.hk/data/HAStatistics/StatisticalReport/ (accessed on 15 February 2025).
- Almeida, A.C.; Granado, M.C.; Sousa, P.; Vieira, M.J. COVID-19 Pandemic Lockdown Effect on Neonatal Hospital Admissions from the Community. J. Neonatal-Perinat. Med. 2022, 15, 583–588. [Google Scholar] [CrossRef]
- Raturi, A.; Chandran, S. Neonatal Sepsis: Aetiology, Pathophysiology, Diagnostic Advances and Management Strategies. Clin. Med. Insights Pediatr. 2024, 18, 11795565241281337. [Google Scholar] [CrossRef]
- Kariniotaki, C.; Thomou, C.; Gkentzi, D.; Panteris, E.; Dimitriou, G.; Hatzidaki, E. Neonatal Sepsis: A Comprehensive Review. Antibiotics 2024, 14, 6. [Google Scholar] [CrossRef]
- Geleta, D.; Abebe, G.; Workneh, N.; Beyene, G. Epidemiologic Features of Neonatal Sepsis and Its COVID-19 Associated Temporal Patterns in Jimma Medical Center, Ethiopia: A Joinpoint Regression Analysis. PLoS ONE 2023, 18, e0291610. [Google Scholar] [CrossRef]
- Dutta, S.; Kumar, P.; Paulpandian, R.; Sajan Saini, S.; Sreenivasan, P.; Mukhopadhyay, K.; Sundaram, V.; Kumar, J.; Ray, P. Relationship Between COVID-19 Lockdown and Epidemiology of Neonatal Sepsis. Pediatr. Infect. Dis. J. 2022, 41, 482–489. [Google Scholar] [CrossRef]
- Mukherjee, M.; Poddar, S.; Mukherjee, A.; Bathia, J.N. Covid-Period-Associated Changes in Organism Profile of Neonatal Sepsis in a Tertiary Center from East India. J. Trop. Pediatr. 2022, 69, fmac106. [Google Scholar] [CrossRef]
- Indrio, F.; Salatto, A.; Amato, O.; Bartoli, F.; Capasso, L.; Corvaglia, L.; Maffei, G.; Mosca, F.; Pettoello Mantovani, M.; Raimondi, F.; et al. COVID-19 Pandemic in the Neonatal Intensive Care Unit: Any Effect on Late-Onset Sepsis and Necrotizing Enterocolitis? Eur. J. Pediatr. 2022, 181, 853–857. [Google Scholar] [CrossRef]
- Palleri, E.; Svenningsson, A.; Markasz, L.; Engstrand Lilja, H. The Incidence of Necrotizing Enterocolitis and Late-Onset Sepsis during the COVID-19 Pandemic in Sweden: A Population-Based Cohort Study. Neonatology 2024, 121, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chan, P.H.Y.; Lau, H.Y.S.; Tsoi, K.; Lam, H.S. Epidemiologic Changes of Neonatal Early-Onset Sepsis After the Implementation of Universal Maternal Screening for Group B Streptococcus in Hong Kong. Pediatr. Infect. Dis. J. 2023, 42, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.T.V.; Lau, S.Y.F.; Hui, S.Y.A.; Ma, T.; Kong, C.W.; Kwong, L.T.; Chan, D.; Lee, D.; Mok, S.L.; Ma, V.; et al. Incidence of Neonatal Sepsis after Universal Antenatal Culture-based Screening of Group B Streptococcus and Intrapartum Antibiotics: A Multicentre Retrospective Cohort Study. Int. J. Obstet. Gynaecol. 2023, 130, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.W.L.; Chan, V.; So, C.H.; Hui, A.S.Y.; Lee, C.N.; Hui, A.P.W.; So, P.L.; Kong, C.W.; Fung, B.; Leung, K.Y. Prevention of Early Onset Group B Streptococcal Disease by Universal Antenatal Culture-Based Screening in All Public Hospitals in Hong Kong. J. Matern. Fetal Neonatal Med. 2018, 31, 881–887. [Google Scholar] [CrossRef]
- Khan, A. Letters to the Editor. J. Paediatr. Child. Health 2009, 45, 474–475. [Google Scholar] [CrossRef]
- Pompilio, A.; Di Bonaventura, G.; Gherardi, G. An Overview on Streptococcus Bovis/Streptococcus Equinus Complex Isolates: Identification to the Species/Subspecies Level and Antibiotic Resistance. Int. J. Mol. Sci. 2019, 20, 480. [Google Scholar] [CrossRef]
- Klatte, J.M.; Clarridge, J.E.; Bratcher, D.; Selvarangan, R. A Longitudinal Case Series Description of Meningitis Due to Streptococcus Gallolyticus Subsp. Pasteurianus in Infants. J. Clin. Microbiol. 2012, 50, 57–60. [Google Scholar] [CrossRef]
- Xing, Y.; Naik, S. Baby’s First Bacteria: Discriminating Colonizing Commensals from Pathogens. Cell Host Microbe 2019, 26, 705–707. [Google Scholar] [CrossRef]
- Klingenberg, C.; Aarag, E.; RØnnestad, A.; Sollid, J.E.; Abrahamsen, T.G.; Kjeldsen, G.; Flægstad, T. Coagulase-Negative Staphylococcal Sepsis in Neonates: Association Between Antibiotic Resistance, Biofilm Formation and the Host Inflammatory Response. Pediatr. Infect. Dis. J. 2005, 24, 817–822. [Google Scholar] [CrossRef]
- França, A. The Role of Coagulase-Negative Staphylococci Biofilms on Late-Onset Sepsis: Current Challenges and Emerging Diagnostics and Therapies. Antibiotics 2023, 12, 554. [Google Scholar] [CrossRef]
- Findlay, E.; Cullen, E.; Abernethy, C. 297 A Study to Assess the Length of Hospital Stay in Pre-Term Babies under 34 Weeks Gestation. In Proceedings of the British Association of Perinatal Medicine and Neonatal Society; BMJ Publishing Group Ltd.: London, UK; Royal College of Paediatrics and Child Health: London, UK, 2022; pp. A136–A137. [Google Scholar]
- Maheshwari, A.; Sah, R.; Kumar, J.; Padhi, B.K.; Manna, S.; Pallepogula, D.R.; Joshi, B.; Aggarwal, A.K. Prevalence of Gram-Negative Bacteria in Maternal Cervical Secretions: A Systematic Review and Meta-Analysis. Newborn 2022, 1, 397–407. [Google Scholar] [CrossRef]
- Bizzarro, M.J.; Raskind, C.; Baltimore, R.S.; Gallagher, P.G. Seventy-Five Years of Neonatal Sepsis at Yale: 1928–2003. Pediatrics 2005, 116, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, V.; Iversen, A.; Tidell, A.; Ininbergs, K.; Giske, C.G.; Navér, L. A Decade of Neonatal Sepsis Caused by Gram-Negative Bacilli-a Retrospective Matched Cohort Study. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1803–1813. [Google Scholar] [CrossRef] [PubMed]
- Anthony, M.; Bedford-Russell, A.; Cooper, T.; Fry, C.; Heath, P.T.; Kennea, N.; McCartney, M.; Patel, B.; Pollard, T.; Sharland, M.; et al. Managing and Preventing Outbreaks of Gram-Negative Infections in UK Neonatal Units. Arch. Dis. Child. Fetal Neonatal Ed. 2013, 98, F549–F553. [Google Scholar] [CrossRef]
- Cuna, A.; Morowitz, M.J.; Ahmed, I.; Umar, S.; Sampath, V. Dynamics of the Preterm Gut Microbiome in Health and Disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 320, G411–G419. [Google Scholar] [CrossRef]
- Lee, C.-C.; Feng, Y.; Yeh, Y.-M.; Lien, R.; Chen, C.-L.; Zhou, Y.-L.; Chiu, C.-H. Gut Dysbiosis, Bacterial Colonization and Translocation, and Neonatal Sepsis in Very-Low-Birth-Weight Preterm Infants. Front. Microbiol. 2021, 12, 746111. [Google Scholar] [CrossRef]
- Hartz, L.E.; Bradshaw, W.; Brandon, D.H. Potential NICU Environmental Influences on the Neonate’s Microbiome: A Systematic Review. Adv. Neonatal Care 2015, 15, 324–335. [Google Scholar] [CrossRef]
- Mulinge, M.M.; Mwanza, S.S.; Kabahweza, H.M.; Wamalwa, D.C.; Nduati, R.W. The Impact of Neonatal Intensive Care Unit Antibiotics on Gut Bacterial Microbiota of Preterm Infants: A Systematic Review. Front. Microbiomes 2023, 2, 1180565. [Google Scholar] [CrossRef]
- Carl, M.A.; Ndao, I.M.; Springman, A.C.; Manning, S.D.; Johnson, J.R.; Johnston, B.D.; Burnham, C.-A.D.; Weinstock, E.S.; Weinstock, G.M.; Wylie, T.N.; et al. Sepsis from the Gut: The Enteric Habitat of Bacteria That Cause Late-Onset Neonatal Bloodstream Infections. Clin. Infect. Dis. 2014, 58, 1211–1218. [Google Scholar] [CrossRef]
- Niu, X.; Daniel, S.; Kumar, D.; Ding, E.Y.; Savani, R.C.; Koh, A.Y.; Mirpuri, J. Transient Neonatal Antibiotic Exposure Increases Susceptibility to Late-Onset Sepsis Driven by Microbiota-Dependent Suppression of Type 3 Innate Lymphoid Cells. Sci. Rep. 2020, 10, 12974. [Google Scholar] [CrossRef]
- Sherman, M.P. New Concepts of Microbial Translocation in the Neonatal Intestine: Mechanisms and Prevention. Clin. Perinatol. 2010, 37, 565–579. [Google Scholar] [CrossRef]
- Schwartz, D.J.; Shalon, N.; Wardenburg, K.; DeVeaux, A.; Wallace, M.A.; Hall-Moore, C.; Ndao, I.M.; Sullivan, J.E.; Radmacher, P.; Escobedo, M.; et al. Gut Pathogen Colonization Precedes Bloodstream Infection in the Neonatal Intensive Care Unit. Sci. Transl. Med. 2023, 15, eadg5562. [Google Scholar] [CrossRef] [PubMed]
- Dermitzaki, N.; Baltogianni, M.; Tsekoura, E.; Giapros, V. Invasive Candida Infections in Neonatal Intensive Care Units: Risk Factors and New Insights in Prevention. Pathogens 2024, 13, 660. [Google Scholar] [CrossRef]
- Menezes, R.P.; Melo, S.G.O.; Oliveira, M.B.; Silva, F.F.; Alves, P.G.V.; Bessa, M.A.S.; Silva, N.B.S.; Araújo, L.B.; Penatti, M.P.A.; Pedroso, R.S.; et al. Healthcare-Associated Infections in High-Risk Neonates: Temporal Trends in a National Surveillance System. Early Hum. Dev. 2021, 158, 105394. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef]
- Hope, W.W.; Castagnola, E.; Groll, A.H.; Roilides, E.; Akova, M.; Arendrup, M.C.; Arikan-Akdagli, S.; Bassetti, M.; Bille, J.; Cornely, O.A.; et al. ESCMID Guideline for the Diagnosis and Management of Candida Diseases 2012: Prevention and Management of Invasive Infections in Neonates and Children Caused by Candida spp. Clin. Microbiol. Infect. 2012, 18, 38–52. [Google Scholar] [CrossRef]
- Turkova, A.; Roilides, E.; Sharland, M. Amphotericin B in Neonates: Deoxycholate or Lipid Formulation as First-Line Therapy - Is There a “right” Choice? Curr. Opin. Infect. Dis. 2011, 24, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, D.K.; Ross, K.; McKinney, R.E.; Benjamin, D.K.; Auten, R.; Fisher, R.G. When to Suspect Fungal Infection in Neonates: A Clinical Comparison of Candida Albicans and Candida Parapsilosis Fungemia with Coagulase-Negative Staphylococcal Bacteremia. Pediatrics 2000, 106, 712–718. [Google Scholar] [CrossRef]
- Greenberg, R.G.; Benjamin, D.K.; Gantz, M.G.; Cotten, C.M.; Stoll, B.J.; Walsh, M.C.; Sánchez, P.J.; Shankaran, S.; Das, A.; Higgins, R.D.; et al. Empiric Antifungal Therapy and Outcomes in Extremely Low Birth Weight Infants with Invasive Candidiasis. J. Pediatr. 2012, 161, 264–269.e2. [Google Scholar] [CrossRef]
- Blyth, C.C.; Barzi, F.; Hale, K.; Isaacs, D. Chemoprophylaxis of Neonatal Fungal Infections in Very Low Birthweight Infants: Efficacy and Safety of Fluconazole and Nystatin. J. Paediatr. Child. Health 2012, 48, 846–851. [Google Scholar] [CrossRef]
- Rundjan, L.; Wahyuningsih, R.; Oeswadi, C.A.; Marsogi, M.; Purnamasari, A. Oral Nystatin Prophylaxis to Prevent Systemic Fungal Infection in Very Low Birth Weight Preterm Infants: A Randomized Controlled Trial. BMC Pediatr. 2020, 20, 170. [Google Scholar] [CrossRef] [PubMed]
- Barcellini, L.; Bresesti, I.; Folgori, L. Neglected Populations Not to Be Forgotten: Tackling Antimicrobial Resistance in Neonatal Infections. Antibiotics 2023, 12, 1688. [Google Scholar] [CrossRef]
- Yusef, D.; Shalakhti, T.; Awad, S.; Algharaibeh, H.; Khasawneh, W. Clinical Characteristics and Epidemiology of Sepsis in the Neonatal Intensive Care Unit in the Era of Multi-Drug Resistant Organisms: A Retrospective Review. Pediatr. Neonatol. 2018, 59, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Ondongo-Ezhet, C.; Motsoaledi, N.; Sharland, M.; Clements, M.; Velaphi, S. Incidence and All-Cause Mortality Rates in Neonates Infected With Carbapenem Resistant Organisms. Front. Trop. Dis. 2022, 3, 832011. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Chu, S.-M.; Hsu, J.-F.; Lien, R.; Huang, H.-R.; Chiang, M.-C.; Fu, R.-H.; Lee, C.-W.; Huang, Y.-C. Risk Factors and Outcomes for Multidrug-Resistant Gram-Negative Bacteremia in the NICU. Pediatrics 2014, 133, e322–e329. [Google Scholar] [CrossRef]
- Cotten, C.M.; McDonald, S.; Stoll, B.; Goldberg, R.N.; Poole, K.; Benjamin, D.K. National Institute for Child Health and Human Development Neonatal Research Network The Association of Third-Generation Cephalosporin Use and Invasive Candidiasis in Extremely Low Birth-Weight Infants. Pediatrics 2006, 118, 717–722. [Google Scholar] [CrossRef]
- Chang, Y.J.; Choi, I.R.; Shin, W.S.; Lee, J.H.; Kim, Y.K.; Park, M.S. The Control of Invasive Candida Infection in Very Low Birth Weight Infants by Reduction in the Use of 3rd Generation Cephalosporin. Korean J. Pediatr. 2013, 56, 68. [Google Scholar] [CrossRef]
- Kaufman, D.A. Challenging Issues in Neonatal Candidiasis. Curr. Med. Res. Opin. 2010, 26, 1769–1778. [Google Scholar] [CrossRef]
- de Man, P.; Verhoeven, B.A.; Verbrugh, H.A.; Vos, M.C.; van den Anker, J.N. An Antibiotic Policy to Prevent Emergence of Resistant Bacilli. Lancet 2000, 355, 973–978. [Google Scholar] [CrossRef]
- Piantino, J.H.; Schreiber, M.D.; Alexander, K.; Hageman, J. Culture Negative Sepsis and Systemic Inflammatory Response Syndrome in Neonates. NeoReviews 2013, 14, e294–e305. [Google Scholar] [CrossRef]
Period | 2014–2018 | 2019–2023 | OR [95% CI] | p-Value | Total | |
---|---|---|---|---|---|---|
Number of Patients | 89 | 29 | 118 | |||
Sex | Male | 44 (49.4%) | 15 (51.7%) | 1.10 [0.44, 2.77] | 1 | 59 (50.0%) |
Female | 45 (50.6%) | 14 (48.3%) | 59 (50.0%) | |||
Birth weight | V/ELBW (<1.5 kg) | 26 (29.2%) | 8 (27.6%) | 0.92 [0.31, 2.52] | 1 | 34 (28.8%) |
N/LBW (≥1.5 kg) | 63 (70.8%) | 21 (72.4%) | 84 (71.2%) | |||
Onset | EOS | 21 (23.6%) | 7 (24.1%) | 1.03 [0.33, 2.96] | 1 | 28 (23.7%) |
LOS | 68 (76.4%) | 22 (75.9%) | 90 (76.3%) | |||
CA-LOS | 17 (19.1%) | 7 (24.1%) | 1.4 [0.41, 4.43] | 0.58 | 24 (20.4%) | |
HA-LOS | 51 (57.3%) | 15 (51.7%) | 66 (55.9%) | |||
Hospitalisation | In-born | 68 (76.4%) | 21 (72.4%) | 0.81 [0.29, 2.44] | 0.8 | 89 (75.4%) |
Out-born | 21 (23.6%) | 8 (27.6%) | 29 (24.6%) | |||
Prior antibiotic in the intrapartum or neonatal period | Naive | 32 (36.0%) | 10 (34.5%) | 0.94 [0.35, 2.43] | 1 | 42 (35.6%) |
Exposed | 57 (64.0%) | 19 (65.5%) | 76 (64.4%) |
2014–2018 | 2019–2023 | OR [95% CI] | p-Value | Total | |
---|---|---|---|---|---|
Culture isolates | 94 | 31 | 125 | ||
Gram-positive bacteria | 49 (52.1%) | 13 (41.9%) | 0.66 [0.27, 1.62] | 0.41 | 62 (49.6%) |
Streptoccocus agalactiae | 13 (13.8%) | 3 (9.7%) | 0.67 [0.11, 2.70] | 0.76 | 16 (12.8%) |
Streptococcus bovis group | 8 (8.5%) | 0 | - | 0.2 | 8 (6.4%) |
Streptococcus mitis group, nonpneumococcal | 2 (2.1%) | 0 | - | 1 | 2 (1.6%) |
Streptococcus pneumoniae | 1 (1.1%) | 0 | - | 1 | 1 (0.8%) |
Coagulase-negative Staphylococcus | 20 (21.3%) | 9 (29.0%) | 1.51 [0.53, 4.10] | 0.46 | 29 (23.2%) |
Staphylococcus aureus | 2 (2.1%) | 0 | - | 1 | 2 (1.6%) |
Enterococcus faecalis | 3 (3.2%) | 1 (3.3%) | 1.01 [0.02, 13.1] | 1 | 4 (3.2%) |
Gram-negative bacteria | 40 (42.6%) | 17 (54.8%) | 1.64 [0.67, 4.04] | 0.3 | 57 (45.6) |
Escherichia coli | 22 (23.4%) | 11 (35.5%) | 1.8 [0.67, 4.67] | 0.24 | 33 (26.4%) |
Klebsiella pneumoniae complex | 7 (7.4%) | 2 (6.5%) | 0.86 [0.08, 4.86] | 1 | 9 (7.2%) |
Klebsiella aerogenes | 3 (3.2%) | 0 | - | 0.57 | 3 (2.4%) |
Enterobacter cloacae complex | 3 (3.2%) | 2 (6.5%) | 2.09 [0.17, 19.1] | 0.6 | 5 (4%) |
Morganella morganii | 0 | 1 (3.3%) | - | 0.25 | 1 (0.8%) |
Salmonella spp. | 2 (2.2%) | 0 | - | 1 | 2 (1.6%) |
Pseudomonas aeruginosa | 1 (1.1%) | 0 | - | 1 | 1 (0.8%) |
Campylobacter jejuni | 1 (1.1%) | 1 (3.3%) | 3.1 [0.04, 246] | 0.44 | 2 (1.6%) |
Neisseria meningitidis | 1 (1.1%) | 0 | - | 1 | 1 (0.8%) |
Yeasts | 5 (5.3%) | 1 (3.2%) | 0.59 [0.01, 5.63] | 1 | 6 (4.8%) |
Candida albicans | 3 (3.2%) | 0 | - | 0.57 | 3 (2.4%) |
Candida tropicalis | 1 (1.1%) | 0 | - | 1 | 1 (1.6%) |
Candida orthopsilosis | 0 | 1 (3.2%) | - | 0.25 | 1 (1.6%) |
Lodderomyces elongisporus | 1 (1.1%) | 0 | - | 1 | 1 (1.6%) |
V/ELBW (<1.5 kg) | N/LBW (≥1.5 kg) | OR [95% CI] | p-Value | ||
---|---|---|---|---|---|
Number of patients | Total | 34 | 84 | ||
Onset | EOS | 5 (14.7%) | 23 (27.4%) | 0.46 [0.12, 1.41] | 0.16 |
LOS | 29 (85.3%) | 61 (72.6%) | |||
Hospitalisation | In-born | 34 (100%) | 55 (65.5%) | - | <0.001 |
Out-born | 0 | 29 (34.5%) | |||
Prior antibiotic in the intrapartum or neonatal period | Naive | 3 (8.8%) | 39 (46.4%) | 0.11 [0.02, 0.41] | 0.001 |
Exposed | 31 (91.2%) | 45 (53.6%) | |||
Culture isolates | Total | 38 | 87 | ||
Gram-positive bacteria | 21 (55.3%) | 41 (47.1%) | 1.39 [0.60, 3.21] | 0.44 | |
Streptoccocus agalactiae | 3 (7.9%) | 13 (14.9%) | 0.49 [0.08, 1.95] | 0.39 | |
Streptococcus bovis group | 1 (2.6%) | 7 (8.0%) | 0.31 [0.01, 2.57] | 0.43 | |
Streptococcus mitis group, nonpneumococcal | 0 | 2 (2.3%) | - | 1 | |
Streptococcus pneumoniae | 0 | 1 (1.1%) | - | 1 | |
Coagulase-negative Staphylococcus | 15 (39.5%) | 14 (16.1%) | 3.40 [1.30, 8.83] | 0.006 | |
Staphylococcus aureus | 1 (2.6%) | 1 (1.1%) | 2.32 [0.03, 185] | 0.52 | |
Enterococcus faecalis | 1 (2.6%) | 3 (3.4%) | 0.76 [0.01, 9.81] | 1 | |
Gram-negative bacteria | 11 (28.9%) | 46 (52.9%) | 0.36 [0.14, 0.88] | 0.019 | |
Escherichia coli | 5 (13.6%) | 28 (32.2%) | 0.32 [0.09, 0.96] | 0.029 | |
Klebsiella pneumoniae complex | 2 (5.3%) | 7 (8.0%) | 0.63 [0.06, 3.58] | 0.72 | |
Klebsiella aerogenes | 1 (2.6%) | 2 (2.3%) | 1.15 [0.02, 22.7] | 1 | |
Enterobacter cloacae complex | 2 (5.3%) | 3 (3.4%) | 1.56 [0.12, 14.1] | 0.64 | |
Morganella morganii | 0 | 1 (1.1%) | - | 1 | |
Salmonella spp. | 0 | 2 (2.3%) | - | 1 | |
Pseudomonas aeruginosa | 1 (2.6%) | 0 | - | 0.3 | |
Campylobacter jejuni | 0 | 2 (2.3%) | - | 1 | |
Neisseria meningitidis | 0 | 1 (1.1%) | - | 1 | |
Yeasts | 6 (15.8%) | 0 | - | <0.001 |
EOS | LOS | OR [95% CI] | p-Value | ||
---|---|---|---|---|---|
Number of patients | 28 | 90 | |||
Birth weight | V/ELBW (<1.5 kg) | 5 (17.8%) | 29 (32.2%) | 2.19 [0.71, 8.07] | 0.16 |
N/LBW (≥1.5 kg) | 23 (82.1%) | 61 (67.8%) | |||
Hospitalisation | In-born | 28 (100%) | 61 (67.8%) | - | <0.001 |
Out-born | 0 | 29 (32.2%) | |||
Prior antibiotic in the intrapartum or neonatal period | Naive | 17 (60.7%) | 25 (27.8%) | 0.25 [0.09, 0.66] | 0.003 |
Exposed | 11 (39.3%) | 65 (72.2%) | |||
Culture isolates | Total | 29 | 96 | ||
Gram-positive bacteria | 18 (62.1%) | 44 (45.8%) | 0.52 [0.20, 1.31] | 0.14 | |
Streptoccocus agalactiae | 9 (32.1%) | 7 (7.3%) | 0.17 [0.05–0.61] | 0.002 | |
Streptococcus bovis group | 7 (24.1%) | 1 (1.0%) | 0.03 [0.0007, 0.29] | <0.001 | |
Streptococcus mitis group, nonpneumococcal | 0 | 2 (2.1%) | - | 1 | |
Streptococcus pneumoniae | 1 (3.4%) | 0 | - | 0.23 | |
Coagulase-negative Staphylococcus | 1 (3.4%) | 28 (31.1%) | 11.5 [1.70, 488] | 0.003 | |
Staphylococcus aureus | 0 | 2 (2.1%) | - | 1 | |
Enterococcus faecalis | 0 | 4 (4.2%) | - | 0.57 | |
Gram-negative bacteria | 11 (37.9%) | 46 (47.9%) | 1.51 [0.60, 3.92] | 0.4 | |
Escherichia coli | 11 (37.9%) | 22 (22.9%) | 0.49 [0.18, 1.33] | 0.15 | |
Non-Escherichia coli | 0 | 24 (25.0%) | - | 0.001 | |
Klebsiella pneumoniae complex | 0 | 9 (9.4%) | - | 0.12 | |
Klebsiella aerogenes | 0 | 3 (3.1%) | - | 1 | |
Enterobacter cloacae complex | 0 | 5 (5.2%) | - | 0.59 | |
Morganella morganii | 0 | 1 (1.0%) | - | 1 | |
Salmonella spp. | 0 | 2 (2.1%) | - | 1 | |
Pseudomonas aeruginosa | 0 | 1 (1.0%) | - | 1 | |
Campylobacter jejuni | 0 | 2 (2.1%) | - | 1 | |
Neisseria meningitidis | 0 | 1 (1.0%) | - | 1 | |
Yeasts | 0 | 6 (6.3%) | - | 0.33 |
CA-LOS | HA-LOS | OR [95% CI] | p-Value | ||
---|---|---|---|---|---|
Number of patients | Total | 24 | 66 | ||
Birth weight | V/ELBW (<1.5 kg) | 0 | 29 (43.9%) | - | <0.001 |
N/LBW (≥1.5 kg) | 24 (100%) | 37 (56.1%) | |||
Hospitalisation | In-born | 0 | 60 (90.9%) | - | <0.001 |
Out-born | 24 (100%) | 6 (9.1%) | |||
Prior antibiotic in the intrapartum or neonatal period | Naive | 13 (54.2%) | 12 (18.2%) | 0.19 [0.06, 0.59] | 0.001 |
Exposed | 11 (45.8%) | 54 (81.8%) | |||
Culture isolates | Total | 24 | 72 | ||
Gram-positive bacteria | 11 (45.8%) | 33 (45.8%) | 1.0 [0.36, 2.83] | 1 | |
Streptoccocus agalactiae | 7 (29.2%) | 0 | - | <0.001 | |
Streptococcus bovis group | 0 | 1 (1.4%) | - | 1 | |
Streptococcus mitis group, nonpneumococcal | 1 (4.2%) | 1 (1.4%) | 0.32 [0.004, 26.5] | 0.44 | |
Streptococcus pneumoniae | 0 | 0 | - | - | |
Coagulase-negative Staphylococcus | 3 (12.5%) | 25 (34.7%) | 3.72 [0.96, 21.2] | 0.042 | |
Staphylococcus aureus | 0 | 2 (2.8%) | - | 1 | |
Enterococcus faecalis | 0 | 4 (5.6%) | - | 0.57 | |
Gram-negative bacteria | 13 (54.2%) | 33 (54.2%) | 0.72 [0.25, 2.00] | 0.49 | |
Escherichia coli | 8 (33.3%) | 14 (19.4%) | 0.48 [0.16, 1.59] | 0.17 | |
Klebsiella pneumoniae complex | 0 | 9 (12.5%) | - | 0.11 | |
Klebsiella aerogenes | 0 | 3 (4.2%) | - | 0.57 | |
Enterobacter cloacae complex | 1 (4.2%) | 4 (5.6%) | 1.35 [0.12, 69.5] | 1 | |
Morganella morganii | 0 | 1 (1.4%) | - | 1 | |
Salmonella spp. | 1 (4.2%) | 1 (1.4%) | 0.32 [0.004, 26.5] | 0.44 | |
Pseudomonas aeruginosa | 0 | 1 (1.4%) | 1 | 1 | |
Campylobacter jejuni | 2 (8.3%) | 0 | - | 0.06 | |
Neisseria meningitidis | 1 (4.2%) | 0 | - | 0.25 | |
Yeasts | 0 | 6 (8.3%) | - | 0.33 |
Patient | Sex | Gestation (Weeks) | Birth Weight (kg) | Age at Which Positive Culture Obtained (Days) | Specimen | Organism | Empirical Antimicrobial(s) Given | Concordance |
---|---|---|---|---|---|---|---|---|
1 | F | 25 | 0.750 | 0 | Blood | Streptococcus agalactiae | Ampicillin, gentamicin | + |
2 | F | 25 | 0.665 | 0 | Blood | Escherichia coli | Died before antimicrobial commenced | N/A |
3 | F | 33 | 1.520 | 9 | Blood | Escherichia coli | Cefotaxime, vancomycin, metronidazole | + |
4 | M | 24 | 0.625 | 6 | Blood | Pseudomonas aeruginosa | Meropenem, vancomycin | + |
5 | M | 23 | 0.520 | 11 | Blood | Candida albicans | Cefotaxime, teicoplanin | − |
6 | M | 24 | 0.690 | 13 | Blood | Candida albicans | Meropenem, vancomycin | − |
7 | M | 23 | 0.670 | 3 | Blood | Candida tropicalis | Cefotaxime, vancomycin | − |
8 | M | 24 | 0.740 | 11 | Blood | Lodderomyces elongisporus | Cefotaxime, vancomycin, metronidazole | − |
Period | Birth Weight | Onset | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Organisms | Antibiotic | 2014–2018 | 2019–2023 | OR [95% CI] | p-Value | N/LBW (≥1.5 kg) | V/ELBW (<1.5 kg) | OR [95% CI] | p-Value | EOS | LOS | OR [95% CI] | p-Value | |
CA-LOS | HA-LOS | |||||||||||||
Staphylococci | Methicillin | 18/22 (81.8%) | 7/9 (77.8%) | 0.78 [0.09, 10.5] | 1.0 | 9/15 (60.0%) | 16/16 (100%) | - | 0.006 | 0/1 | 25/30 (83.3%) | - | 0.19 | |
0/3 | 25/27 (92.6%) | - | 0.003 | |||||||||||
Streptococci | Penicillin | 2/24 (8.3%) | 0/3 | - | 1.0 | 2/23 (8.7%) | 0/4 | - | 1.0 | 0/17 | 2/10 (20%) | - | 0.13 | |
1/8 (12.5%) | 1/2 (50.0%) | - | 0.38 | |||||||||||
Gram-negative bacteria | Ampicillin | 25/28 (89.2%) | 13/15 (86.7%) | 0.78 [0.12, 5.27] | 1.0 | 30/35 (85.7%) | 8/8 (100%) | - | 0.56 | 8/9 (88.9%) | 30/34 (88.2%) | 7.0 [0.04, 626] | 1.0 | |
7/9 (77.8%) | 23/25 (92.0%) | 0.94 [0.02, 11.4] | 0.28 | |||||||||||
Cefotaxime/ceftriaxone | 5/38 (13.2%) | 4/16 (25.0%) | 2.2 [0.37, 12.1] | 0.42 | 4/43 (9.3%) | 5/11 (45.5%) | 8.13 [1.27, 51.8] | 0.01 | 0/11 | 9/43 (20.9%) | 3.29 [0.20, 51.2] | 0.18 | ||
1/11 (9.1%) | 8/32 (25.0%) | - | 0.41 | |||||||||||
Gentamicin | 4/36 (11.1%) | 4/16 (25.0%) | 2.67 [0.42, 16.5] | 0.23 | 7/41 (17.1%) | 1/11 (9.1%) | 0.49 [0.01, 4.65] | 1.0 | 4/11 (36.4%) | 4/41 (9.6%) | 3.33 [0.35, 162] | 0.052 | ||
0/9 | 4/34 (11.8%) | 0.19 [0.03, 1.32] | 1.0 |
Period | Birth Weight | Onset | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antimicrobial | 2014–2018 | 2019–2023 | OR [95% CI] | p-value | N/LBW (≥1.5 kg) | V/ELBW (<1.5 kg) | OR [95% CI] | p-Value | EOS | LOS | OR [95% CI] | p-Value | |
CA-LOS | HA-LOS | ||||||||||||
Penicillin | 2 (2.2%) | 0 | - | 1.0 | 1 (1.2%) | 1 (2.9%) | 2.52 [0.03, 200] | 0.495 | 2 (7.1%) | 0 | - | 0.055 | |
Ampicillin | 55 (61.8%) | 19 (65.5%) | 1.17 [0.45, 3.18] | 0.83 | 68 (81.0%) | 6 (17.6%) | 0.05 [0.02, 0.15] | <0.001 | 25 (89.3%) | 49 (54.4%) | 0.14 [0.03, 0.53] | <0.001 | |
24 (100%) | 25 (37.9%) | - | <0.001 # | ||||||||||
Cefotaxime | 58 (65.2%) | 28 (96.6%) | 15.0 [2.21, 631] | <0.001 | 59 (70.2%) | 27 (79.4%) | 1.63 [0.59, 5.02] | 0.37 | 9 (32.1%) | 77 (85.6%) | 12.5 [4.21, 38.0] | <0.001 | |
22 (91.6%) | 55 (83.3%) | 0.45 [0.05, 2.36] | 0.50 # | ||||||||||
Meropenem | 4 (4.5%) | 0 | - | 0.57 | 1 (1.2%) | 3 (8.8%) | 8.03 [0.61, 427] | 0.07 | 0 | 4 (4.4%) | - | 0.57 | |
0 | 4 (6.1%) | - | 0.57 # | ||||||||||
Gentamicin | 24 (27.0%) | 3 (10.3%) | 0.31 [0.06, 1.18] | 0.08 | 22 (26.2%) | 5 (14.7%) | 0.49 [0.13, 1.50] | 0.23 | 18 (64.3%) | 9 (10.0%) | 0.06 [0.02, 0.19] | <0.001 | |
2 (8.3%) | 7 (10.6%) | 1.31 [0.22, 13.8] | 1.0 # | ||||||||||
Vancomycin | 23 (25.8%) | 10 (34.5%) | 1.51 [0.54, 4.02] | 0.48 | 12 (14.3%) | 21 (61.7%) | 9.69 [3.51, 27.1] | <0.001 | 0 | 33 (36.7%) | - | <0.001 | |
0 | 33 (50.0%) | - | <0.001 # | ||||||||||
Teicoplanin | 1 (1.1%) | 0 | - | 1.0 | 0 | 1 (2.9%) | - | 0.29 | 0 | 1 (1.1%) | - | 1.0 | |
0 | 1 (1.5%) | - | 1.0 # | ||||||||||
Metronidazole | 7 (7.9%) | 3 (10.3%) | 1.35 [0.21, 6.45] | 0.71 | 9 (10.7%) | 1 (2.9%) | 0.25 [0.01, 1.97] | 0.28 | 2 (7.1%) | 8 (8.9%) | 1.27 [0.23, 13.0] | 1.0 | |
0 | 8 (12.1%) | - | 0.10 # | ||||||||||
Amphotericin B | 1 (1.1%) | 0 | - | 1.0 | 0 | 1 (2.9%) | - | 0.29 | 0 | 1 (1.1%) | - | 1.0 | |
0 | 1 (1.5%) | - | 1.0 # |
2014–2018 | 2019–2023 | OR [95% CI] | p-Value | N/LBW (≥1.5 kg) | V/ELBW (<1.5 kg) | OR [95% CI] | p-Value | EOS | LOS | OR [95% CI] | p-Value | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CA-LOS | HA-LOS | ||||||||||||
All antimicrobial prescriptions | 70/86 (81.4%) | 19/28 (67.9%) | 0.48 [0.17, 1.45] | 0.19 | 69/81 (85.2%) | 20/33 (60.6%) | 0.27 [0.10, 0.76] | 0.006 | 25/27 (92.6%) | 64/87 (73.6%) | 0.22 [0.02, 1.03] | 0.06 | |
20/22 (90.9%) | 44/65 (67.7%) | 0.40 [0.18, 0.88] | 0.048 | ||||||||||
Empirical prescriptions that included: | |||||||||||||
Ampicillin and gentamicin | 18/20 (90.0%) | 1/3 (33.3%) | 0.06 [0.0009, 1.84] | 0.07 | 17/21 (81.0%) | 2/2 (100%) | - | 1.0 | 14/16 (87.5%) | 5/7 (71.4%) | 0.36 [0.02, 6.47] | 0.56 | |
1/2 (50.0%) | 4/5 (80.0%) | 4.0 [0.03, 391] | 1.0 | ||||||||||
Ampicillin and cefotaxime | 31/34 (91.2%) | 12/15 (80.0%) | 0.39 [0.05, 3.37] | 0.35 | 41/45 (91.1%) | 2/4 (50.0%) | 0.10 [0.01, 1.83] | 0.07 | 9/9 (100%) | 34/40 (85.0%) | - | 0.58 | |
19/20 (95.0%) | 15/20 (75.0%) | 0.16 [0.003, 1.70] | 0.18 | ||||||||||
Vancomycin and cefotaxime | 13/20 (65.0%) | 5/9 (55.6%) | 0.67 [0.10, 4.64] | 0.69 | 7/11 (63.6%) | 11/18 (61.1%) | 0.90 [0.14, 5.35] | 1.0 | 0 | 0 | 18/29 (62.1%) | - | - |
Other antibiotics | 8/12 (66.7%) | 1/1 (100%) | - | 1.0 | 4/4 (100%) | 5/9 (55.6%) | - | 0.23 | 2/2 (100%) | 0 | 7/11 (63.6%) | - | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, P.; Sin, E.; Yip, K.-T.; Ng, K. A 10-Year Study of Neonatal Sepsis from Tuen Mun Hospital, Hong Kong. Pathogens 2025, 14, 276. https://doi.org/10.3390/pathogens14030276
Lee P, Sin E, Yip K-T, Ng K. A 10-Year Study of Neonatal Sepsis from Tuen Mun Hospital, Hong Kong. Pathogens. 2025; 14(3):276. https://doi.org/10.3390/pathogens14030276
Chicago/Turabian StyleLee, Pascoe, Eugene Sin, Kam-Tong Yip, and Kenneth Ng. 2025. "A 10-Year Study of Neonatal Sepsis from Tuen Mun Hospital, Hong Kong" Pathogens 14, no. 3: 276. https://doi.org/10.3390/pathogens14030276
APA StyleLee, P., Sin, E., Yip, K.-T., & Ng, K. (2025). A 10-Year Study of Neonatal Sepsis from Tuen Mun Hospital, Hong Kong. Pathogens, 14(3), 276. https://doi.org/10.3390/pathogens14030276