A 10-Year Study of Neonatal Sepsis from Tuen Mun Hospital, Hong Kong
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EOS | Early-onset sepsis |
LOS | Late-onset sepsis |
CA-LOS | Community-acquired late-onset sepsis |
HA-LOS | Healthcare-associated late-onset sepsis |
V/ELBW | Very low/extremely low birth weight |
N/LBW | Normal/low birth weight |
GBS | Streptococcus agalactiae (group B Streptococcus) |
SBG | Streptococcus bovis group |
CoNS | Coagulase-negative Staphylococcus |
OR | Odds ratio |
CI | Confidence interval |
References
- Fleischmann, C.; Reichert, F.; Cassini, A.; Horner, R.; Harder, T.; Markwart, R.; Tröndle, M.; Savova, Y.; Kissoon, N.; Schlattmann, P.; et al. Global Incidence and Mortality of Neonatal Sepsis: A Systematic Review and Meta-Analysis. Arch. Dis. Child. 2021, 106, 745–752. [Google Scholar] [CrossRef]
- Milton, R.; Gillespie, D.; Dyer, C.; Taiyari, K.; Carvalho, M.J.; Thomson, K.; Sands, K.; Portal, E.A.R.; Hood, K.; Ferreira, A.; et al. Neonatal Sepsis and Mortality in Low-Income and Middle-Income Countries from a Facility-Based Birth Cohort: An International Multisite Prospective Observational Study. Lancet Glob. Health 2022, 10, e661–e672. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.L. Defining Neonatal Sepsis. Curr. Opin. Pediatr. 2016, 28, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Prevention of Group B Streptococcal Early-Onset Disease in Newborns: ACOG Committee Opinion, Number 797. Obstet. Gynecol. 2020, 135, e51–e72. [CrossRef] [PubMed]
- Di Renzo, G.C.; Melin, P.; Berardi, A.; Blennow, M.; Carbonell-Estrany, X.; Donzelli, G.P.; Hakansson, S.; Hod, M.; Hughes, R.; Kurtzer, M.; et al. Intrapartum GBS Screening and Antibiotic Prophylaxis: A European Consensus Conference. J. Matern. Fetal Neonatal Med. 2015, 28, 766–782. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Recommendation on Screening of Pregnant Women for Intrapartum Antibiotic Prophylaxis for the Prevention of Early Onset Group B Streptococcus Disease in Newborns; World Health Organization, Human Reproduction Programme: Geneva, Switzerland, 2024; ISBN 978-92-4-009912-8. [Google Scholar]
- Li, J.; Shen, L.; Qian, K. Global, Regional, and National Incidence and Mortality of Neonatal Sepsis and Other Neonatal Infections, 1990–2019. Front. Public Health 2023, 11, 1139832. [Google Scholar] [CrossRef]
- Briggs-Steinberg, C.; Roth, P. Early-Onset Sepsis in Newborns. Pediatr. Rev. 2023, 44, 14–22. [Google Scholar] [CrossRef]
- Coggins, S.A.; Glaser, K. Updates in Late-Onset Sepsis: Risk Assessment, Therapy, and Outcomes. Neoreviews 2022, 23, 738–755. [Google Scholar] [CrossRef]
- Iroh Tam, P.-Y.; Bendel, C.M. Diagnostics for Neonatal Sepsis: Current Approaches and Future Directions. Pediatr. Res. 2017, 82, 574–583. [Google Scholar] [CrossRef]
- Celik, I.H.; Hanna, M.; Canpolat, F.E. Mohan Pammi, null Diagnosis of Neonatal Sepsis: The Past, Present and Future. Pediatr. Res. 2022, 91, 337–350. [Google Scholar] [CrossRef]
- Zea-Vera, A.; Ochoa, T.J. Challenges in the Diagnosis and Management of Neonatal Sepsis. J. Trop. Pediatr. 2015, 61, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Prusakov, P.; Goff, D.A.; Wozniak, P.S.; Cassim, A.; Scipion, C.E.A.; Urzúa, S.; Ronchi, A.; Zeng, L.; Ladipo-Ajayi, O.; Aviles-Otero, N.; et al. A Global Point Prevalence Survey of Antimicrobial Use in Neonatal Intensive Care Units: The No-More-Antibiotics and Resistance (NO-MAS-R) Study. EClinicalMedicine 2021, 32, 100727. [Google Scholar] [CrossRef] [PubMed]
- Sharland, E.; Qazi, S.; Heath, P.; Balasegaram, M.; Bielicki, J.; Sharland, M. Can the History of Empiric Antibiotic Treatment for Neonatal Sepsis Inform Future Global Trials? Clin. Microbiol. Infect. 2022, 28, 1313–1315. [Google Scholar] [CrossRef]
- World Health Organization. Pocket Book of Hospital Care for Children: Guidelines for the Management of Common Childhood Illnesses, 2nd ed.; World Health Organization: Geneva, Switzerland, 2013; ISBN 978-92-4-154837-3. [Google Scholar]
- Neonatal Infection: Antibiotics for Prevention and Treatment; National Institute for Health and Care Excellence: London, UK, 2021.
- Puopolo, K.M.; Benitz, W.E.; Zaoutis, T.E.; COMMITTEE ON FETUS AND NEWBORN; COMMITTEE ON INFECTIOUS DISEASES; Cummings, J.; Juul, S.; Hand, I.; Eichenwald, E.; Poindexter, B.; et al. Management of Neonates Born at ≥35 0/7 Weeks’ Gestation With Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics 2018, 142, e20182894. [Google Scholar] [CrossRef]
- Harrison, M.L.; Dickson, B.F.R.; Sharland, M.; Williams, P.C.M. Beyond Early- and Late-Onset Neonatal Sepsis Definitions: What Are the Current Causes of Neonatal Sepsis Globally? A Systematic Review and Meta-Analysis of the Evidence. Pediatr. Infect. Dis. J. 2024, 43, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Song, W.S.; Park, H.W.; Oh, M.Y.; Jo, J.Y.; Kim, C.Y.; Lee, J.J.; Jung, E.; Lee, B.S.; Kim, K.-S.; Kim, E.A.-R. Neonatal Sepsis-Causing Bacterial Pathogens and Outcome of Trends of Their Antimicrobial Susceptibility a 20-Year Period at a Neonatal Intensive Care Unit. Clin. Exp. Pediatr. 2022, 65, 350–357. [Google Scholar] [CrossRef]
- 2021 Population Census-District Profiles. Available online: https://www.census2021.gov.hk/en/district_profiles.html (accessed on 22 February 2025).
- Klinger, G.; Bromiker, R.; Zaslavsky-Paltiel, I.; Klinger, S.; Sokolover, N.; Lerner-Geva, L.; Reichman, B. ISRAEL NEONATAL NETWORK Late-Onset Sepsis in Very Low Birth Weight Infants. Pediatrics 2023, 152, e2023062223. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Kaufman, D.A.; Saha, S.; Puopolo, K.M.; Flannery, D.D.; Weimer, K.E.D.; Greenberg, R.G.; Sanchez, P.J.; Eichenwald, E.C.; Cotten, C.M.; et al. Late-Onset Sepsis Among Extremely Preterm Infants During the COVID-19 Pandemic. Pediatrics 2025, 155, e2024067675. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.; Fanaroff, A.A.; Wright, L.L.; Carlo, W.A.; Ehrenkranz, R.A.; Lemons, J.A.; Donovan, E.F.; Stark, A.R.; Tyson, J.E.; et al. Late-Onset Sepsis in Very Low Birth Weight Neonates: The Experience of the NICHD Neonatal Research Network. Pediatrics 2002, 110, 285–291. [Google Scholar] [CrossRef]
- Hayes, R.; Hartnett, J.; Semova, G.; Murray, C.; Murphy, K.; Carroll, L.; Plapp, H.; Hession, L.; O’Toole, J.; McCollum, D.; et al. Neonatal Sepsis Definitions from Randomised Clinical Trials. Pediatr. Res. 2023, 93, 1141–1148. [Google Scholar] [CrossRef]
- Giannoni, E.; Agyeman, P.K.A.; Stocker, M.; Posfay-Barbe, K.M.; Heininger, U.; Spycher, B.D.; Bernhard-Stirnemann, S.; Niederer-Loher, A.; Kahlert, C.R.; Donas, A.; et al. Neonatal Sepsis of Early Onset, and Hospital-Acquired and Community-Acquired Late Onset: A Prospective Population-Based Cohort Study. J. Pediatr. 2018, 201, 106–114.e4. [Google Scholar] [CrossRef] [PubMed]
- Ceparano, M.; Sciurti, A.; Isonne, C.; Baccolini, V.; Migliara, G.; Marzuillo, C.; Natale, F.; Terrin, G.; Villari, P. The Collaborating Group Incidence of Healthcare-Associated Infections in a Neonatal Intensive Care Unit before and during the COVID-19 Pandemic: A Four-Year Retrospective Cohort Study. J. Clin. Med. 2023, 12, 2621. [Google Scholar] [CrossRef] [PubMed]
- Verstraete, E.H.; Blot, K.; Mahieu, L.; Vogelaers, D.; Blot, S. Prediction Models for Neonatal Health Care–Associated Sepsis: A Meta-Analysis. Pediatrics 2015, 135, e1002–e1014. [Google Scholar] [CrossRef] [PubMed]
- Hospital Authority Statistical Report. Available online: https://www3.ha.org.hk/data/HAStatistics/StatisticalReport/ (accessed on 15 February 2025).
- Almeida, A.C.; Granado, M.C.; Sousa, P.; Vieira, M.J. COVID-19 Pandemic Lockdown Effect on Neonatal Hospital Admissions from the Community. J. Neonatal-Perinat. Med. 2022, 15, 583–588. [Google Scholar] [CrossRef]
- Raturi, A.; Chandran, S. Neonatal Sepsis: Aetiology, Pathophysiology, Diagnostic Advances and Management Strategies. Clin. Med. Insights Pediatr. 2024, 18, 11795565241281337. [Google Scholar] [CrossRef]
- Kariniotaki, C.; Thomou, C.; Gkentzi, D.; Panteris, E.; Dimitriou, G.; Hatzidaki, E. Neonatal Sepsis: A Comprehensive Review. Antibiotics 2024, 14, 6. [Google Scholar] [CrossRef]
- Geleta, D.; Abebe, G.; Workneh, N.; Beyene, G. Epidemiologic Features of Neonatal Sepsis and Its COVID-19 Associated Temporal Patterns in Jimma Medical Center, Ethiopia: A Joinpoint Regression Analysis. PLoS ONE 2023, 18, e0291610. [Google Scholar] [CrossRef]
- Dutta, S.; Kumar, P.; Paulpandian, R.; Sajan Saini, S.; Sreenivasan, P.; Mukhopadhyay, K.; Sundaram, V.; Kumar, J.; Ray, P. Relationship Between COVID-19 Lockdown and Epidemiology of Neonatal Sepsis. Pediatr. Infect. Dis. J. 2022, 41, 482–489. [Google Scholar] [CrossRef]
- Mukherjee, M.; Poddar, S.; Mukherjee, A.; Bathia, J.N. Covid-Period-Associated Changes in Organism Profile of Neonatal Sepsis in a Tertiary Center from East India. J. Trop. Pediatr. 2022, 69, fmac106. [Google Scholar] [CrossRef]
- Indrio, F.; Salatto, A.; Amato, O.; Bartoli, F.; Capasso, L.; Corvaglia, L.; Maffei, G.; Mosca, F.; Pettoello Mantovani, M.; Raimondi, F.; et al. COVID-19 Pandemic in the Neonatal Intensive Care Unit: Any Effect on Late-Onset Sepsis and Necrotizing Enterocolitis? Eur. J. Pediatr. 2022, 181, 853–857. [Google Scholar] [CrossRef]
- Palleri, E.; Svenningsson, A.; Markasz, L.; Engstrand Lilja, H. The Incidence of Necrotizing Enterocolitis and Late-Onset Sepsis during the COVID-19 Pandemic in Sweden: A Population-Based Cohort Study. Neonatology 2024, 121, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chan, P.H.Y.; Lau, H.Y.S.; Tsoi, K.; Lam, H.S. Epidemiologic Changes of Neonatal Early-Onset Sepsis After the Implementation of Universal Maternal Screening for Group B Streptococcus in Hong Kong. Pediatr. Infect. Dis. J. 2023, 42, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.T.V.; Lau, S.Y.F.; Hui, S.Y.A.; Ma, T.; Kong, C.W.; Kwong, L.T.; Chan, D.; Lee, D.; Mok, S.L.; Ma, V.; et al. Incidence of Neonatal Sepsis after Universal Antenatal Culture-based Screening of Group B Streptococcus and Intrapartum Antibiotics: A Multicentre Retrospective Cohort Study. Int. J. Obstet. Gynaecol. 2023, 130, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.W.L.; Chan, V.; So, C.H.; Hui, A.S.Y.; Lee, C.N.; Hui, A.P.W.; So, P.L.; Kong, C.W.; Fung, B.; Leung, K.Y. Prevention of Early Onset Group B Streptococcal Disease by Universal Antenatal Culture-Based Screening in All Public Hospitals in Hong Kong. J. Matern. Fetal Neonatal Med. 2018, 31, 881–887. [Google Scholar] [CrossRef]
- Khan, A. Letters to the Editor. J. Paediatr. Child. Health 2009, 45, 474–475. [Google Scholar] [CrossRef]
- Pompilio, A.; Di Bonaventura, G.; Gherardi, G. An Overview on Streptococcus Bovis/Streptococcus Equinus Complex Isolates: Identification to the Species/Subspecies Level and Antibiotic Resistance. Int. J. Mol. Sci. 2019, 20, 480. [Google Scholar] [CrossRef]
- Klatte, J.M.; Clarridge, J.E.; Bratcher, D.; Selvarangan, R. A Longitudinal Case Series Description of Meningitis Due to Streptococcus Gallolyticus Subsp. Pasteurianus in Infants. J. Clin. Microbiol. 2012, 50, 57–60. [Google Scholar] [CrossRef]
- Xing, Y.; Naik, S. Baby’s First Bacteria: Discriminating Colonizing Commensals from Pathogens. Cell Host Microbe 2019, 26, 705–707. [Google Scholar] [CrossRef]
- Klingenberg, C.; Aarag, E.; RØnnestad, A.; Sollid, J.E.; Abrahamsen, T.G.; Kjeldsen, G.; Flægstad, T. Coagulase-Negative Staphylococcal Sepsis in Neonates: Association Between Antibiotic Resistance, Biofilm Formation and the Host Inflammatory Response. Pediatr. Infect. Dis. J. 2005, 24, 817–822. [Google Scholar] [CrossRef]
- França, A. The Role of Coagulase-Negative Staphylococci Biofilms on Late-Onset Sepsis: Current Challenges and Emerging Diagnostics and Therapies. Antibiotics 2023, 12, 554. [Google Scholar] [CrossRef]
- Findlay, E.; Cullen, E.; Abernethy, C. 297 A Study to Assess the Length of Hospital Stay in Pre-Term Babies under 34 Weeks Gestation. In Proceedings of the British Association of Perinatal Medicine and Neonatal Society; BMJ Publishing Group Ltd.: London, UK; Royal College of Paediatrics and Child Health: London, UK, 2022; pp. A136–A137. [Google Scholar]
- Maheshwari, A.; Sah, R.; Kumar, J.; Padhi, B.K.; Manna, S.; Pallepogula, D.R.; Joshi, B.; Aggarwal, A.K. Prevalence of Gram-Negative Bacteria in Maternal Cervical Secretions: A Systematic Review and Meta-Analysis. Newborn 2022, 1, 397–407. [Google Scholar] [CrossRef]
- Bizzarro, M.J.; Raskind, C.; Baltimore, R.S.; Gallagher, P.G. Seventy-Five Years of Neonatal Sepsis at Yale: 1928–2003. Pediatrics 2005, 116, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, V.; Iversen, A.; Tidell, A.; Ininbergs, K.; Giske, C.G.; Navér, L. A Decade of Neonatal Sepsis Caused by Gram-Negative Bacilli-a Retrospective Matched Cohort Study. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1803–1813. [Google Scholar] [CrossRef] [PubMed]
- Anthony, M.; Bedford-Russell, A.; Cooper, T.; Fry, C.; Heath, P.T.; Kennea, N.; McCartney, M.; Patel, B.; Pollard, T.; Sharland, M.; et al. Managing and Preventing Outbreaks of Gram-Negative Infections in UK Neonatal Units. Arch. Dis. Child. Fetal Neonatal Ed. 2013, 98, F549–F553. [Google Scholar] [CrossRef]
- Cuna, A.; Morowitz, M.J.; Ahmed, I.; Umar, S.; Sampath, V. Dynamics of the Preterm Gut Microbiome in Health and Disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 320, G411–G419. [Google Scholar] [CrossRef]
- Lee, C.-C.; Feng, Y.; Yeh, Y.-M.; Lien, R.; Chen, C.-L.; Zhou, Y.-L.; Chiu, C.-H. Gut Dysbiosis, Bacterial Colonization and Translocation, and Neonatal Sepsis in Very-Low-Birth-Weight Preterm Infants. Front. Microbiol. 2021, 12, 746111. [Google Scholar] [CrossRef]
- Hartz, L.E.; Bradshaw, W.; Brandon, D.H. Potential NICU Environmental Influences on the Neonate’s Microbiome: A Systematic Review. Adv. Neonatal Care 2015, 15, 324–335. [Google Scholar] [CrossRef]
- Mulinge, M.M.; Mwanza, S.S.; Kabahweza, H.M.; Wamalwa, D.C.; Nduati, R.W. The Impact of Neonatal Intensive Care Unit Antibiotics on Gut Bacterial Microbiota of Preterm Infants: A Systematic Review. Front. Microbiomes 2023, 2, 1180565. [Google Scholar] [CrossRef]
- Carl, M.A.; Ndao, I.M.; Springman, A.C.; Manning, S.D.; Johnson, J.R.; Johnston, B.D.; Burnham, C.-A.D.; Weinstock, E.S.; Weinstock, G.M.; Wylie, T.N.; et al. Sepsis from the Gut: The Enteric Habitat of Bacteria That Cause Late-Onset Neonatal Bloodstream Infections. Clin. Infect. Dis. 2014, 58, 1211–1218. [Google Scholar] [CrossRef]
- Niu, X.; Daniel, S.; Kumar, D.; Ding, E.Y.; Savani, R.C.; Koh, A.Y.; Mirpuri, J. Transient Neonatal Antibiotic Exposure Increases Susceptibility to Late-Onset Sepsis Driven by Microbiota-Dependent Suppression of Type 3 Innate Lymphoid Cells. Sci. Rep. 2020, 10, 12974. [Google Scholar] [CrossRef]
- Sherman, M.P. New Concepts of Microbial Translocation in the Neonatal Intestine: Mechanisms and Prevention. Clin. Perinatol. 2010, 37, 565–579. [Google Scholar] [CrossRef]
- Schwartz, D.J.; Shalon, N.; Wardenburg, K.; DeVeaux, A.; Wallace, M.A.; Hall-Moore, C.; Ndao, I.M.; Sullivan, J.E.; Radmacher, P.; Escobedo, M.; et al. Gut Pathogen Colonization Precedes Bloodstream Infection in the Neonatal Intensive Care Unit. Sci. Transl. Med. 2023, 15, eadg5562. [Google Scholar] [CrossRef] [PubMed]
- Dermitzaki, N.; Baltogianni, M.; Tsekoura, E.; Giapros, V. Invasive Candida Infections in Neonatal Intensive Care Units: Risk Factors and New Insights in Prevention. Pathogens 2024, 13, 660. [Google Scholar] [CrossRef]
- Menezes, R.P.; Melo, S.G.O.; Oliveira, M.B.; Silva, F.F.; Alves, P.G.V.; Bessa, M.A.S.; Silva, N.B.S.; Araújo, L.B.; Penatti, M.P.A.; Pedroso, R.S.; et al. Healthcare-Associated Infections in High-Risk Neonates: Temporal Trends in a National Surveillance System. Early Hum. Dev. 2021, 158, 105394. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef]
- Hope, W.W.; Castagnola, E.; Groll, A.H.; Roilides, E.; Akova, M.; Arendrup, M.C.; Arikan-Akdagli, S.; Bassetti, M.; Bille, J.; Cornely, O.A.; et al. ESCMID Guideline for the Diagnosis and Management of Candida Diseases 2012: Prevention and Management of Invasive Infections in Neonates and Children Caused by Candida spp. Clin. Microbiol. Infect. 2012, 18, 38–52. [Google Scholar] [CrossRef]
- Turkova, A.; Roilides, E.; Sharland, M. Amphotericin B in Neonates: Deoxycholate or Lipid Formulation as First-Line Therapy - Is There a “right” Choice? Curr. Opin. Infect. Dis. 2011, 24, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, D.K.; Ross, K.; McKinney, R.E.; Benjamin, D.K.; Auten, R.; Fisher, R.G. When to Suspect Fungal Infection in Neonates: A Clinical Comparison of Candida Albicans and Candida Parapsilosis Fungemia with Coagulase-Negative Staphylococcal Bacteremia. Pediatrics 2000, 106, 712–718. [Google Scholar] [CrossRef]
- Greenberg, R.G.; Benjamin, D.K.; Gantz, M.G.; Cotten, C.M.; Stoll, B.J.; Walsh, M.C.; Sánchez, P.J.; Shankaran, S.; Das, A.; Higgins, R.D.; et al. Empiric Antifungal Therapy and Outcomes in Extremely Low Birth Weight Infants with Invasive Candidiasis. J. Pediatr. 2012, 161, 264–269.e2. [Google Scholar] [CrossRef]
- Blyth, C.C.; Barzi, F.; Hale, K.; Isaacs, D. Chemoprophylaxis of Neonatal Fungal Infections in Very Low Birthweight Infants: Efficacy and Safety of Fluconazole and Nystatin. J. Paediatr. Child. Health 2012, 48, 846–851. [Google Scholar] [CrossRef]
- Rundjan, L.; Wahyuningsih, R.; Oeswadi, C.A.; Marsogi, M.; Purnamasari, A. Oral Nystatin Prophylaxis to Prevent Systemic Fungal Infection in Very Low Birth Weight Preterm Infants: A Randomized Controlled Trial. BMC Pediatr. 2020, 20, 170. [Google Scholar] [CrossRef] [PubMed]
- Barcellini, L.; Bresesti, I.; Folgori, L. Neglected Populations Not to Be Forgotten: Tackling Antimicrobial Resistance in Neonatal Infections. Antibiotics 2023, 12, 1688. [Google Scholar] [CrossRef]
- Yusef, D.; Shalakhti, T.; Awad, S.; Algharaibeh, H.; Khasawneh, W. Clinical Characteristics and Epidemiology of Sepsis in the Neonatal Intensive Care Unit in the Era of Multi-Drug Resistant Organisms: A Retrospective Review. Pediatr. Neonatol. 2018, 59, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Ondongo-Ezhet, C.; Motsoaledi, N.; Sharland, M.; Clements, M.; Velaphi, S. Incidence and All-Cause Mortality Rates in Neonates Infected With Carbapenem Resistant Organisms. Front. Trop. Dis. 2022, 3, 832011. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Chu, S.-M.; Hsu, J.-F.; Lien, R.; Huang, H.-R.; Chiang, M.-C.; Fu, R.-H.; Lee, C.-W.; Huang, Y.-C. Risk Factors and Outcomes for Multidrug-Resistant Gram-Negative Bacteremia in the NICU. Pediatrics 2014, 133, e322–e329. [Google Scholar] [CrossRef]
- Cotten, C.M.; McDonald, S.; Stoll, B.; Goldberg, R.N.; Poole, K.; Benjamin, D.K. National Institute for Child Health and Human Development Neonatal Research Network The Association of Third-Generation Cephalosporin Use and Invasive Candidiasis in Extremely Low Birth-Weight Infants. Pediatrics 2006, 118, 717–722. [Google Scholar] [CrossRef]
- Chang, Y.J.; Choi, I.R.; Shin, W.S.; Lee, J.H.; Kim, Y.K.; Park, M.S. The Control of Invasive Candida Infection in Very Low Birth Weight Infants by Reduction in the Use of 3rd Generation Cephalosporin. Korean J. Pediatr. 2013, 56, 68. [Google Scholar] [CrossRef]
- Kaufman, D.A. Challenging Issues in Neonatal Candidiasis. Curr. Med. Res. Opin. 2010, 26, 1769–1778. [Google Scholar] [CrossRef]
- de Man, P.; Verhoeven, B.A.; Verbrugh, H.A.; Vos, M.C.; van den Anker, J.N. An Antibiotic Policy to Prevent Emergence of Resistant Bacilli. Lancet 2000, 355, 973–978. [Google Scholar] [CrossRef]
- Piantino, J.H.; Schreiber, M.D.; Alexander, K.; Hageman, J. Culture Negative Sepsis and Systemic Inflammatory Response Syndrome in Neonates. NeoReviews 2013, 14, e294–e305. [Google Scholar] [CrossRef]
Period | 2014–2018 | 2019–2023 | OR [95% CI] | p-Value | Total | |
---|---|---|---|---|---|---|
Number of Patients | 89 | 29 | 118 | |||
Sex | Male | 44 (49.4%) | 15 (51.7%) | 1.10 [0.44, 2.77] | 1 | 59 (50.0%) |
Female | 45 (50.6%) | 14 (48.3%) | 59 (50.0%) | |||
Birth weight | V/ELBW (<1.5 kg) | 26 (29.2%) | 8 (27.6%) | 0.92 [0.31, 2.52] | 1 | 34 (28.8%) |
N/LBW (≥1.5 kg) | 63 (70.8%) | 21 (72.4%) | 84 (71.2%) | |||
Onset | EOS | 21 (23.6%) | 7 (24.1%) | 1.03 [0.33, 2.96] | 1 | 28 (23.7%) |
LOS | 68 (76.4%) | 22 (75.9%) | 90 (76.3%) | |||
CA-LOS | 17 (19.1%) | 7 (24.1%) | 1.4 [0.41, 4.43] | 0.58 | 24 (20.4%) | |
HA-LOS | 51 (57.3%) | 15 (51.7%) | 66 (55.9%) | |||
Hospitalisation | In-born | 68 (76.4%) | 21 (72.4%) | 0.81 [0.29, 2.44] | 0.8 | 89 (75.4%) |
Out-born | 21 (23.6%) | 8 (27.6%) | 29 (24.6%) | |||
Prior antibiotic in the intrapartum or neonatal period | Naive | 32 (36.0%) | 10 (34.5%) | 0.94 [0.35, 2.43] | 1 | 42 (35.6%) |
Exposed | 57 (64.0%) | 19 (65.5%) | 76 (64.4%) |
2014–2018 | 2019–2023 | OR [95% CI] | p-Value | Total | |
---|---|---|---|---|---|
Culture isolates | 94 | 31 | 125 | ||
Gram-positive bacteria | 49 (52.1%) | 13 (41.9%) | 0.66 [0.27, 1.62] | 0.41 | 62 (49.6%) |
Streptoccocus agalactiae | 13 (13.8%) | 3 (9.7%) | 0.67 [0.11, 2.70] | 0.76 | 16 (12.8%) |
Streptococcus bovis group | 8 (8.5%) | 0 | - | 0.2 | 8 (6.4%) |
Streptococcus mitis group, nonpneumococcal | 2 (2.1%) | 0 | - | 1 | 2 (1.6%) |
Streptococcus pneumoniae | 1 (1.1%) | 0 | - | 1 | 1 (0.8%) |
Coagulase-negative Staphylococcus | 20 (21.3%) | 9 (29.0%) | 1.51 [0.53, 4.10] | 0.46 | 29 (23.2%) |
Staphylococcus aureus | 2 (2.1%) | 0 | - | 1 | 2 (1.6%) |
Enterococcus faecalis | 3 (3.2%) | 1 (3.3%) | 1.01 [0.02, 13.1] | 1 | 4 (3.2%) |
Gram-negative bacteria | 40 (42.6%) | 17 (54.8%) | 1.64 [0.67, 4.04] | 0.3 | 57 (45.6) |
Escherichia coli | 22 (23.4%) | 11 (35.5%) | 1.8 [0.67, 4.67] | 0.24 | 33 (26.4%) |
Klebsiella pneumoniae complex | 7 (7.4%) | 2 (6.5%) | 0.86 [0.08, 4.86] | 1 | 9 (7.2%) |
Klebsiella aerogenes | 3 (3.2%) | 0 | - | 0.57 | 3 (2.4%) |
Enterobacter cloacae complex | 3 (3.2%) | 2 (6.5%) | 2.09 [0.17, 19.1] | 0.6 | 5 (4%) |
Morganella morganii | 0 | 1 (3.3%) | - | 0.25 | 1 (0.8%) |
Salmonella spp. | 2 (2.2%) | 0 | - | 1 | 2 (1.6%) |
Pseudomonas aeruginosa | 1 (1.1%) | 0 | - | 1 | 1 (0.8%) |
Campylobacter jejuni | 1 (1.1%) | 1 (3.3%) | 3.1 [0.04, 246] | 0.44 | 2 (1.6%) |
Neisseria meningitidis | 1 (1.1%) | 0 | - | 1 | 1 (0.8%) |
Yeasts | 5 (5.3%) | 1 (3.2%) | 0.59 [0.01, 5.63] | 1 | 6 (4.8%) |
Candida albicans | 3 (3.2%) | 0 | - | 0.57 | 3 (2.4%) |
Candida tropicalis | 1 (1.1%) | 0 | - | 1 | 1 (1.6%) |
Candida orthopsilosis | 0 | 1 (3.2%) | - | 0.25 | 1 (1.6%) |
Lodderomyces elongisporus | 1 (1.1%) | 0 | - | 1 | 1 (1.6%) |
V/ELBW (<1.5 kg) | N/LBW (≥1.5 kg) | OR [95% CI] | p-Value | ||
---|---|---|---|---|---|
Number of patients | Total | 34 | 84 | ||
Onset | EOS | 5 (14.7%) | 23 (27.4%) | 0.46 [0.12, 1.41] | 0.16 |
LOS | 29 (85.3%) | 61 (72.6%) | |||
Hospitalisation | In-born | 34 (100%) | 55 (65.5%) | - | <0.001 |
Out-born | 0 | 29 (34.5%) | |||
Prior antibiotic in the intrapartum or neonatal period | Naive | 3 (8.8%) | 39 (46.4%) | 0.11 [0.02, 0.41] | 0.001 |
Exposed | 31 (91.2%) | 45 (53.6%) | |||
Culture isolates | Total | 38 | 87 | ||
Gram-positive bacteria | 21 (55.3%) | 41 (47.1%) | 1.39 [0.60, 3.21] | 0.44 | |
Streptoccocus agalactiae | 3 (7.9%) | 13 (14.9%) | 0.49 [0.08, 1.95] | 0.39 | |
Streptococcus bovis group | 1 (2.6%) | 7 (8.0%) | 0.31 [0.01, 2.57] | 0.43 | |
Streptococcus mitis group, nonpneumococcal | 0 | 2 (2.3%) | - | 1 | |
Streptococcus pneumoniae | 0 | 1 (1.1%) | - | 1 | |
Coagulase-negative Staphylococcus | 15 (39.5%) | 14 (16.1%) | 3.40 [1.30, 8.83] | 0.006 | |
Staphylococcus aureus | 1 (2.6%) | 1 (1.1%) | 2.32 [0.03, 185] | 0.52 | |
Enterococcus faecalis | 1 (2.6%) | 3 (3.4%) | 0.76 [0.01, 9.81] | 1 | |
Gram-negative bacteria | 11 (28.9%) | 46 (52.9%) | 0.36 [0.14, 0.88] | 0.019 | |
Escherichia coli | 5 (13.6%) | 28 (32.2%) | 0.32 [0.09, 0.96] | 0.029 | |
Klebsiella pneumoniae complex | 2 (5.3%) | 7 (8.0%) | 0.63 [0.06, 3.58] | 0.72 | |
Klebsiella aerogenes | 1 (2.6%) | 2 (2.3%) | 1.15 [0.02, 22.7] | 1 | |
Enterobacter cloacae complex | 2 (5.3%) | 3 (3.4%) | 1.56 [0.12, 14.1] | 0.64 | |
Morganella morganii | 0 | 1 (1.1%) | - | 1 | |
Salmonella spp. | 0 | 2 (2.3%) | - | 1 | |
Pseudomonas aeruginosa | 1 (2.6%) | 0 | - | 0.3 | |
Campylobacter jejuni | 0 | 2 (2.3%) | - | 1 | |
Neisseria meningitidis | 0 | 1 (1.1%) | - | 1 | |
Yeasts | 6 (15.8%) | 0 | - | <0.001 |
EOS | LOS | OR [95% CI] | p-Value | ||
---|---|---|---|---|---|
Number of patients | 28 | 90 | |||
Birth weight | V/ELBW (<1.5 kg) | 5 (17.8%) | 29 (32.2%) | 2.19 [0.71, 8.07] | 0.16 |
N/LBW (≥1.5 kg) | 23 (82.1%) | 61 (67.8%) | |||
Hospitalisation | In-born | 28 (100%) | 61 (67.8%) | - | <0.001 |
Out-born | 0 | 29 (32.2%) | |||
Prior antibiotic in the intrapartum or neonatal period | Naive | 17 (60.7%) | 25 (27.8%) | 0.25 [0.09, 0.66] | 0.003 |
Exposed | 11 (39.3%) | 65 (72.2%) | |||
Culture isolates | Total | 29 | 96 | ||
Gram-positive bacteria | 18 (62.1%) | 44 (45.8%) | 0.52 [0.20, 1.31] | 0.14 | |
Streptoccocus agalactiae | 9 (32.1%) | 7 (7.3%) | 0.17 [0.05–0.61] | 0.002 | |
Streptococcus bovis group | 7 (24.1%) | 1 (1.0%) | 0.03 [0.0007, 0.29] | <0.001 | |
Streptococcus mitis group, nonpneumococcal | 0 | 2 (2.1%) | - | 1 | |
Streptococcus pneumoniae | 1 (3.4%) | 0 | - | 0.23 | |
Coagulase-negative Staphylococcus | 1 (3.4%) | 28 (31.1%) | 11.5 [1.70, 488] | 0.003 | |
Staphylococcus aureus | 0 | 2 (2.1%) | - | 1 | |
Enterococcus faecalis | 0 | 4 (4.2%) | - | 0.57 | |
Gram-negative bacteria | 11 (37.9%) | 46 (47.9%) | 1.51 [0.60, 3.92] | 0.4 | |
Escherichia coli | 11 (37.9%) | 22 (22.9%) | 0.49 [0.18, 1.33] | 0.15 | |
Non-Escherichia coli | 0 | 24 (25.0%) | - | 0.001 | |
Klebsiella pneumoniae complex | 0 | 9 (9.4%) | - | 0.12 | |
Klebsiella aerogenes | 0 | 3 (3.1%) | - | 1 | |
Enterobacter cloacae complex | 0 | 5 (5.2%) | - | 0.59 | |
Morganella morganii | 0 | 1 (1.0%) | - | 1 | |
Salmonella spp. | 0 | 2 (2.1%) | - | 1 | |
Pseudomonas aeruginosa | 0 | 1 (1.0%) | - | 1 | |
Campylobacter jejuni | 0 | 2 (2.1%) | - | 1 | |
Neisseria meningitidis | 0 | 1 (1.0%) | - | 1 | |
Yeasts | 0 | 6 (6.3%) | - | 0.33 |
CA-LOS | HA-LOS | OR [95% CI] | p-Value | ||
---|---|---|---|---|---|
Number of patients | Total | 24 | 66 | ||
Birth weight | V/ELBW (<1.5 kg) | 0 | 29 (43.9%) | - | <0.001 |
N/LBW (≥1.5 kg) | 24 (100%) | 37 (56.1%) | |||
Hospitalisation | In-born | 0 | 60 (90.9%) | - | <0.001 |
Out-born | 24 (100%) | 6 (9.1%) | |||
Prior antibiotic in the intrapartum or neonatal period | Naive | 13 (54.2%) | 12 (18.2%) | 0.19 [0.06, 0.59] | 0.001 |
Exposed | 11 (45.8%) | 54 (81.8%) | |||
Culture isolates | Total | 24 | 72 | ||
Gram-positive bacteria | 11 (45.8%) | 33 (45.8%) | 1.0 [0.36, 2.83] | 1 | |
Streptoccocus agalactiae | 7 (29.2%) | 0 | - | <0.001 | |
Streptococcus bovis group | 0 | 1 (1.4%) | - | 1 | |
Streptococcus mitis group, nonpneumococcal | 1 (4.2%) | 1 (1.4%) | 0.32 [0.004, 26.5] | 0.44 | |
Streptococcus pneumoniae | 0 | 0 | - | - | |
Coagulase-negative Staphylococcus | 3 (12.5%) | 25 (34.7%) | 3.72 [0.96, 21.2] | 0.042 | |
Staphylococcus aureus | 0 | 2 (2.8%) | - | 1 | |
Enterococcus faecalis | 0 | 4 (5.6%) | - | 0.57 | |
Gram-negative bacteria | 13 (54.2%) | 33 (54.2%) | 0.72 [0.25, 2.00] | 0.49 | |
Escherichia coli | 8 (33.3%) | 14 (19.4%) | 0.48 [0.16, 1.59] | 0.17 | |
Klebsiella pneumoniae complex | 0 | 9 (12.5%) | - | 0.11 | |
Klebsiella aerogenes | 0 | 3 (4.2%) | - | 0.57 | |
Enterobacter cloacae complex | 1 (4.2%) | 4 (5.6%) | 1.35 [0.12, 69.5] | 1 | |
Morganella morganii | 0 | 1 (1.4%) | - | 1 | |
Salmonella spp. | 1 (4.2%) | 1 (1.4%) | 0.32 [0.004, 26.5] | 0.44 | |
Pseudomonas aeruginosa | 0 | 1 (1.4%) | 1 | 1 | |
Campylobacter jejuni | 2 (8.3%) | 0 | - | 0.06 | |
Neisseria meningitidis | 1 (4.2%) | 0 | - | 0.25 | |
Yeasts | 0 | 6 (8.3%) | - | 0.33 |
Patient | Sex | Gestation (Weeks) | Birth Weight (kg) | Age at Which Positive Culture Obtained (Days) | Specimen | Organism | Empirical Antimicrobial(s) Given | Concordance |
---|---|---|---|---|---|---|---|---|
1 | F | 25 | 0.750 | 0 | Blood | Streptococcus agalactiae | Ampicillin, gentamicin | + |
2 | F | 25 | 0.665 | 0 | Blood | Escherichia coli | Died before antimicrobial commenced | N/A |
3 | F | 33 | 1.520 | 9 | Blood | Escherichia coli | Cefotaxime, vancomycin, metronidazole | + |
4 | M | 24 | 0.625 | 6 | Blood | Pseudomonas aeruginosa | Meropenem, vancomycin | + |
5 | M | 23 | 0.520 | 11 | Blood | Candida albicans | Cefotaxime, teicoplanin | − |
6 | M | 24 | 0.690 | 13 | Blood | Candida albicans | Meropenem, vancomycin | − |
7 | M | 23 | 0.670 | 3 | Blood | Candida tropicalis | Cefotaxime, vancomycin | − |
8 | M | 24 | 0.740 | 11 | Blood | Lodderomyces elongisporus | Cefotaxime, vancomycin, metronidazole | − |
Period | Birth Weight | Onset | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Organisms | Antibiotic | 2014–2018 | 2019–2023 | OR [95% CI] | p-Value | N/LBW (≥1.5 kg) | V/ELBW (<1.5 kg) | OR [95% CI] | p-Value | EOS | LOS | OR [95% CI] | p-Value | |
CA-LOS | HA-LOS | |||||||||||||
Staphylococci | Methicillin | 18/22 (81.8%) | 7/9 (77.8%) | 0.78 [0.09, 10.5] | 1.0 | 9/15 (60.0%) | 16/16 (100%) | - | 0.006 | 0/1 | 25/30 (83.3%) | - | 0.19 | |
0/3 | 25/27 (92.6%) | - | 0.003 | |||||||||||
Streptococci | Penicillin | 2/24 (8.3%) | 0/3 | - | 1.0 | 2/23 (8.7%) | 0/4 | - | 1.0 | 0/17 | 2/10 (20%) | - | 0.13 | |
1/8 (12.5%) | 1/2 (50.0%) | - | 0.38 | |||||||||||
Gram-negative bacteria | Ampicillin | 25/28 (89.2%) | 13/15 (86.7%) | 0.78 [0.12, 5.27] | 1.0 | 30/35 (85.7%) | 8/8 (100%) | - | 0.56 | 8/9 (88.9%) | 30/34 (88.2%) | 7.0 [0.04, 626] | 1.0 | |
7/9 (77.8%) | 23/25 (92.0%) | 0.94 [0.02, 11.4] | 0.28 | |||||||||||
Cefotaxime/ceftriaxone | 5/38 (13.2%) | 4/16 (25.0%) | 2.2 [0.37, 12.1] | 0.42 | 4/43 (9.3%) | 5/11 (45.5%) | 8.13 [1.27, 51.8] | 0.01 | 0/11 | 9/43 (20.9%) | 3.29 [0.20, 51.2] | 0.18 | ||
1/11 (9.1%) | 8/32 (25.0%) | - | 0.41 | |||||||||||
Gentamicin | 4/36 (11.1%) | 4/16 (25.0%) | 2.67 [0.42, 16.5] | 0.23 | 7/41 (17.1%) | 1/11 (9.1%) | 0.49 [0.01, 4.65] | 1.0 | 4/11 (36.4%) | 4/41 (9.6%) | 3.33 [0.35, 162] | 0.052 | ||
0/9 | 4/34 (11.8%) | 0.19 [0.03, 1.32] | 1.0 |
Period | Birth Weight | Onset | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antimicrobial | 2014–2018 | 2019–2023 | OR [95% CI] | p-value | N/LBW (≥1.5 kg) | V/ELBW (<1.5 kg) | OR [95% CI] | p-Value | EOS | LOS | OR [95% CI] | p-Value | |
CA-LOS | HA-LOS | ||||||||||||
Penicillin | 2 (2.2%) | 0 | - | 1.0 | 1 (1.2%) | 1 (2.9%) | 2.52 [0.03, 200] | 0.495 | 2 (7.1%) | 0 | - | 0.055 | |
Ampicillin | 55 (61.8%) | 19 (65.5%) | 1.17 [0.45, 3.18] | 0.83 | 68 (81.0%) | 6 (17.6%) | 0.05 [0.02, 0.15] | <0.001 | 25 (89.3%) | 49 (54.4%) | 0.14 [0.03, 0.53] | <0.001 | |
24 (100%) | 25 (37.9%) | - | <0.001 # | ||||||||||
Cefotaxime | 58 (65.2%) | 28 (96.6%) | 15.0 [2.21, 631] | <0.001 | 59 (70.2%) | 27 (79.4%) | 1.63 [0.59, 5.02] | 0.37 | 9 (32.1%) | 77 (85.6%) | 12.5 [4.21, 38.0] | <0.001 | |
22 (91.6%) | 55 (83.3%) | 0.45 [0.05, 2.36] | 0.50 # | ||||||||||
Meropenem | 4 (4.5%) | 0 | - | 0.57 | 1 (1.2%) | 3 (8.8%) | 8.03 [0.61, 427] | 0.07 | 0 | 4 (4.4%) | - | 0.57 | |
0 | 4 (6.1%) | - | 0.57 # | ||||||||||
Gentamicin | 24 (27.0%) | 3 (10.3%) | 0.31 [0.06, 1.18] | 0.08 | 22 (26.2%) | 5 (14.7%) | 0.49 [0.13, 1.50] | 0.23 | 18 (64.3%) | 9 (10.0%) | 0.06 [0.02, 0.19] | <0.001 | |
2 (8.3%) | 7 (10.6%) | 1.31 [0.22, 13.8] | 1.0 # | ||||||||||
Vancomycin | 23 (25.8%) | 10 (34.5%) | 1.51 [0.54, 4.02] | 0.48 | 12 (14.3%) | 21 (61.7%) | 9.69 [3.51, 27.1] | <0.001 | 0 | 33 (36.7%) | - | <0.001 | |
0 | 33 (50.0%) | - | <0.001 # | ||||||||||
Teicoplanin | 1 (1.1%) | 0 | - | 1.0 | 0 | 1 (2.9%) | - | 0.29 | 0 | 1 (1.1%) | - | 1.0 | |
0 | 1 (1.5%) | - | 1.0 # | ||||||||||
Metronidazole | 7 (7.9%) | 3 (10.3%) | 1.35 [0.21, 6.45] | 0.71 | 9 (10.7%) | 1 (2.9%) | 0.25 [0.01, 1.97] | 0.28 | 2 (7.1%) | 8 (8.9%) | 1.27 [0.23, 13.0] | 1.0 | |
0 | 8 (12.1%) | - | 0.10 # | ||||||||||
Amphotericin B | 1 (1.1%) | 0 | - | 1.0 | 0 | 1 (2.9%) | - | 0.29 | 0 | 1 (1.1%) | - | 1.0 | |
0 | 1 (1.5%) | - | 1.0 # |
2014–2018 | 2019–2023 | OR [95% CI] | p-Value | N/LBW (≥1.5 kg) | V/ELBW (<1.5 kg) | OR [95% CI] | p-Value | EOS | LOS | OR [95% CI] | p-Value | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CA-LOS | HA-LOS | ||||||||||||
All antimicrobial prescriptions | 70/86 (81.4%) | 19/28 (67.9%) | 0.48 [0.17, 1.45] | 0.19 | 69/81 (85.2%) | 20/33 (60.6%) | 0.27 [0.10, 0.76] | 0.006 | 25/27 (92.6%) | 64/87 (73.6%) | 0.22 [0.02, 1.03] | 0.06 | |
20/22 (90.9%) | 44/65 (67.7%) | 0.40 [0.18, 0.88] | 0.048 | ||||||||||
Empirical prescriptions that included: | |||||||||||||
Ampicillin and gentamicin | 18/20 (90.0%) | 1/3 (33.3%) | 0.06 [0.0009, 1.84] | 0.07 | 17/21 (81.0%) | 2/2 (100%) | - | 1.0 | 14/16 (87.5%) | 5/7 (71.4%) | 0.36 [0.02, 6.47] | 0.56 | |
1/2 (50.0%) | 4/5 (80.0%) | 4.0 [0.03, 391] | 1.0 | ||||||||||
Ampicillin and cefotaxime | 31/34 (91.2%) | 12/15 (80.0%) | 0.39 [0.05, 3.37] | 0.35 | 41/45 (91.1%) | 2/4 (50.0%) | 0.10 [0.01, 1.83] | 0.07 | 9/9 (100%) | 34/40 (85.0%) | - | 0.58 | |
19/20 (95.0%) | 15/20 (75.0%) | 0.16 [0.003, 1.70] | 0.18 | ||||||||||
Vancomycin and cefotaxime | 13/20 (65.0%) | 5/9 (55.6%) | 0.67 [0.10, 4.64] | 0.69 | 7/11 (63.6%) | 11/18 (61.1%) | 0.90 [0.14, 5.35] | 1.0 | 0 | 0 | 18/29 (62.1%) | - | - |
Other antibiotics | 8/12 (66.7%) | 1/1 (100%) | - | 1.0 | 4/4 (100%) | 5/9 (55.6%) | - | 0.23 | 2/2 (100%) | 0 | 7/11 (63.6%) | - | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, P.; Sin, E.; Yip, K.-T.; Ng, K. A 10-Year Study of Neonatal Sepsis from Tuen Mun Hospital, Hong Kong. Pathogens 2025, 14, 276. https://doi.org/10.3390/pathogens14030276
Lee P, Sin E, Yip K-T, Ng K. A 10-Year Study of Neonatal Sepsis from Tuen Mun Hospital, Hong Kong. Pathogens. 2025; 14(3):276. https://doi.org/10.3390/pathogens14030276
Chicago/Turabian StyleLee, Pascoe, Eugene Sin, Kam-Tong Yip, and Kenneth Ng. 2025. "A 10-Year Study of Neonatal Sepsis from Tuen Mun Hospital, Hong Kong" Pathogens 14, no. 3: 276. https://doi.org/10.3390/pathogens14030276
APA StyleLee, P., Sin, E., Yip, K.-T., & Ng, K. (2025). A 10-Year Study of Neonatal Sepsis from Tuen Mun Hospital, Hong Kong. Pathogens, 14(3), 276. https://doi.org/10.3390/pathogens14030276