Development of a Simple and Accurate Molecular Protocol Using 16SrRNA for Species-Specific Identification of Achromobacter spp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Isolates
2.2. Primers and Probes Design
2.3. DNA Extraction
2.4. Real-Time PCR
3. Results
3.1. Analytical Sensitivity
3.2. Diagnostic Sensitivity and Specificity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CF | Cystic fibrosis |
CFTR | Cystic fibrosis transmembrane conductance regulator |
SNPs | Single-nucleotide polymorphisms |
MLST | Multi-locus sequence typing |
MALDI-TOF MS | Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry |
WGS | Whole-genome sequencing |
LOD | Limit of detection |
NG | New genogroup |
TP | True positive |
FN | False negative |
TN | True negative |
FP | False positive |
References
- Edwards, B.D.; Greysson-Wong, J.; Somayaji, R.; Waddell, B.; Whelan, F.J.; Storey, D.G.; Rabin, H.R.; Surette, M.G.; Parkinset, M.D. Prevalence and outcomes of Achromobacter species infections in adults with cystic fibrosis: A North American cohort study. J. Clin. Microbiol. 2017, 55, 2074–2085. [Google Scholar] [CrossRef] [PubMed]
- Amoureux, L.; Bador, J.; Verrier, T.; Mjahed, H.; De Curraize, C.; Neuwirth, C. Achromobacter xylosoxidans is the predominant Achromobacter species isolated from diverse non-respiratory samples. Epidemiol. Infect. 2016, 144, 3527–3530. [Google Scholar] [CrossRef]
- Neidhöfer, C.; Berens, C.; Parčina, M. An 18-Year Dataset on the Clinical Incidence and MICs to Antibiotics of Achromobacter spp. (Labeled Biochemically or by MAL-DI-TOF MS as A. xylosoxidans), Largely in Patient Groups Other than Those with CF. Antibiotics 2022, 11, 311. [Google Scholar] [CrossRef]
- Traglia, G.M.; Almuzara, M.; Merkier, A.K.; Adams, C.; Galanternik, L.; Vay, C.; Centrón, D.; Ramírezet, S.M. Achromobacter xylosoxidans: An emerging pathogen carrying different elements involved in horizontal genetic transfer. Curr. Microbiol. 2012, 65, 673–678. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, Y.; Ma, Y.; Liu, F.; Lu, N.; Yang, X.; Luan, C.; Yi, Y.; Zhu, B. Genomic insights into intrinsic and acquired drug resistance mechanisms in Achromobacter xylosoxidans. Antimicrob. Agents Chemother. 2015, 59, 1152–1161. [Google Scholar] [CrossRef] [PubMed]
- Farinha, C.M.; Callebaut, I. Molecular mechanisms of cystic fibrosis–how mutations lead to misfunction and guide therapy. Biosci. Rep. 2022, 42, BSR20212006. [Google Scholar] [CrossRef] [PubMed]
- Ciofu, O.; Hansen, C.R.; Høiby, N. Respiratory bacterial infections in cystic fibrosis. Curr. Opin. Pulm. Med. 2013, 19, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Menetrey, Q.; Dupont, C.; Chiron, R.; Jumas-Bilak, E.; Marchandin, H. High Occurrence of Bacterial Competition Among Clinically Documented Opportunistic Pathogens Including Achromobacter xylosoxidans in Cystic Fibrosis. Front. Microbiol. 2020, 11, 558160. [Google Scholar] [CrossRef]
- Firmida, M.C.; Pereira, R.H.V.; Silva, E.A.S.R.; Marques, E.A.; Lopes, A.J. Clinical impact of Achromobacter xylosoxidans colonization/infection in patients with cystic fibrosis. Braz. J. Med. Biol. Res. 2016, 49, 11–15. [Google Scholar] [CrossRef]
- Blanchard, A.C.; Waters, V.J. Opportunistic pathogens in cystic fibrosis: Epidemiology and pathogenesis of lung infection. J. Pediatr. Inf. Dis. Soc. 2022, 11, S3–S12. [Google Scholar] [CrossRef]
- Hansen, R.C.; Pressler, T.; Nielsen, K.G.; Østrup Jensen, P.; Bjarnsholt, T.; Høiby, N. Inflammation in Achromobacter xylosoxidans infected cystic fibrosis patients. J. Cyst. Fibros. 2010, 9, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Hansen, R.C.; Pressler, T.; Høiby, N.; Gormsen, M. Chronic infection with Achromobacter xylosoxidans in cystic fibrosis patients; a retrospective case control study. J. Cyst. Fibros. 2006, 5, 245–251. [Google Scholar] [CrossRef]
- Esposito, S.; Pisi, G.; Fainardi, V.; Principi, N. What is the role of Achromobacter species in patients with cystic fibrosis? Front. Biosci. Res. Inst. 2021, 26, 1613–1620. [Google Scholar] [CrossRef] [PubMed]
- Veschetti, L.; Sandri, A.; Patuzzo, C.; Melotti, P.; Malerba, G.; Lleò, M.M. Genomic characterization of Achromobacter species isolates from chronic and occasional lung infection in cystic fibrosis patients. Microb. Genom. 2021, 7, 000606. [Google Scholar] [CrossRef]
- Coward, A.; Kenna, D.T.D.; Perry, C.; Martin, K.; Doumith, M.; Turton, J.F. Use of nrdA gene sequence clustering to estimate the prevalence of different Achromobacter species among Cystic Fibrosis patients in the UK. J. Cyst. Fibros. 2016, 15, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Spilker, T.; Vandamme, P.; LiPuma, J.J. Identification and distribution of Achromobacter species in cystic fibrosis. J. Cyst. Fibros. 2013, 12, 298–301. [Google Scholar] [CrossRef]
- Veschetti, L.; Sandri, A.; Johansen, H.K.; Lleò, M.M.; Malerba, G. Hypermutation as an evolutionary mechanism for Achromobacter xylosoxidans in cystic fibrosis lung infection. Pathogens 2020, 9, 72. [Google Scholar] [CrossRef]
- Gabrielaite, M.; Bartell, J.A.; Nørskov-Lauritsen, N.; Pressler, T.; Nielsen, F.C.; Johansen, H.K.; Marvig, R.L. Transmission and antibiotic resistance of Achromobacter in cystic fibrosis. J. Clin. Microbiol. 2021, 59, e10–1128. [Google Scholar] [CrossRef]
- Gade, S.S.; Nørskov-Lauritsen, N.; Ridderberg, W. Prevalence and species distribution of Achromobacter sp. cultured from cystic fibrosis patients attending the arhus centre in Denmark. J. Med. Microbiol. 2017, 66, 686–689. [Google Scholar] [CrossRef]
- Papalia, M.; Steffanowski, C.; Traglia, G.; Almuzara, M.; Martina, P.; Galanternik, L.; Vay, C.; Gutkind, G.; Ramírez, M.S.; Radice, M. Diversity of Achromobacter species recovered from patients with cystic fibrosis, in Argentina. Rev. Argent. Microbiol. 2020, 52, 13–18. [Google Scholar] [CrossRef]
- Lambiase, A.; Catania, M.R.; Del Pezzo, M.; Rossano, F.; Terlizzi, V.; Sepe, A.; Raia, V. Achromobacter xylosoxidans respiratory tract infection in cystic fibrosis patients. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.H.V.; Carvalho-Assef, A.P.; Albano, R.M.; Folescu, T.W.; Jones, M.C.M.F.; Leão, R.S.; Marques, E.A. Achromobacter xylosoxidans: Characterization of strains in Brazilian cystic fibrosis patients. J. Clin. Microbiol. 2011, 49, 3649–3651. [Google Scholar] [CrossRef]
- Isler, B.; Kidd, T.J.; Stewart, A.G.; Harris, P.; Paterson, D.L. Achromobacter infections and treatment options. Antimicrob. Agents Chemother. 2020, 64, 1–44. [Google Scholar] [CrossRef]
- Sandri, A.; Veschetti, L.; Saitta, G.M.; Passarelli-Mantovani, R.; Carelli, M.; Burlacchini, G.; Preato, S.; Sorio, C.; Melotti, P.; Montemari, A.L.; et al. Achromobacter spp. adaptation in cystic fibrosis infection and candidate biomarkers of antimicrobial resistance. Int. J. Mol. Sci. 2022, 23, 9265. [Google Scholar] [CrossRef] [PubMed]
- Veschetti, L.; Boaretti, M.; Saitta, G.M.; Passarelli Mantovani, R.; Lleò, M.M.; Sandri, A.; Malerba, G. Achromobacter spp. prevalence and adaptation in cystic fibrosis lung infection. Microbiol. Res. 2022, 263, 127140. [Google Scholar] [CrossRef]
- Kidd, T.J.; Canton, R.; Ekkelenkamp, M.; Johansen, H.K.; Gilligan, P.; LiPuma, J.J.; Bell, S.C.; Elborn, J.S.; Flume, P.A.; VanDevanter, D.R.; et al. Defining antimicrobial resistance in cystic fibrosis. J. Cyst. Fibros. 2018, 17, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Olbrecht, M.; Echahidi, F.; Piérard, D.; Peeters, C.; Vandamme, P.; Wybo, I.; Demuyser, T. In Vitro Susceptibility of Achromobacter Species Isolated from Cystic Fibrosis Patients: A 6-Year Survey. Antimicrob. Agents Chemother. 2023, 67, e00379–23. [Google Scholar] [CrossRef]
- Brisse, S.; Stefani, S.; Verhoef, J.; Van Belkum, A.; Vandamme, P.; Goessens, W. Comparative evaluation of the BD Phoenix and VITEK 2 automated instruments for identification of isolates of the Burkholderia cepacia complex. J. Clin. Microbiol. 2002, 40, 1743–1748. [Google Scholar] [CrossRef]
- Fernández-Olmos, A.; García-Castillo, M.; Morosini, M.-I.; Lamas, A.; Máiz, L.; Cantón, R. MALDI-TOF MS improves routine identification of non-fermenting Gram negative isolates from cystic fibrosis patients. J. Cyst. Fibros. 2012, 11, 59–62. [Google Scholar] [CrossRef]
- Alby, K.; Gilligan, P.H.; Miller, M.B. Comparison of matrix-Assisted laser Desorption ionization-time of flight (MALDI-TOF) mass spectrometry platforms for the identification of gram-negative rods from patients with cystic fibrosis. J. Clin. Microbiol. 2013, 51, 3822–3854. [Google Scholar] [CrossRef]
- Garrigos, T.; Neuwirth, C.; Chapuis, A.; Bador, J.; Amoureux, L.; Collaborators. Development of a database for the rapid and accurate routine identification of Achromobacter species by matrix-assisted laser 106 desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS). Clin. Microbiol. Infect. 2021, 27, 126.e1–126.e5. [Google Scholar] [CrossRef] [PubMed]
- Papalia, M.; Figueroa-Espinosa, R.; Steffanowski, C.; Barberis, C.; Almuzara, M.; Barrio, R.; Vay, C.; Gutkind, G.; Di Conza, J.; Radice, M. Expansion and improvement of MALDI-TOF MS databases for accurate identification of Achromobacter species. J. Microbiol. Methods 2020, 172, 105889. [Google Scholar] [CrossRef]
- Rocca, M.F.; Barrios, R.; Zintgraff, J.; Martinez, C.; Irazu, L.; Vay, C.; Prieto, M. Utility of platforms Viteks MS and Microflex LT for the identification of complex clinical isolates that require molecular methods for their taxonomic classification. PLoS ONE 2019, 14, e0218077. [Google Scholar] [CrossRef]
- McElvania TeKippe, E.; Burnham, C.-A.D. Evaluation of the Bruker Biotyper and VITEK MS MALDI-TOF MS systems for the identification of unusual and/or difficult-to-identify microorganisms isolated from clinical specimens. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 2163–2171. [Google Scholar] [CrossRef]
- Rocchetti, T.T.; Silbert, S.; Gostnell, A.; Kubasek, C.; Jerris, R.; Vong, J.; Widen, R. Rapid detection of four non-fermenting Gram-negative bacteria directly from cystic fibrosis patient’s respiratory samples on the BD MAXTM system. Pract. Lab. Med. 2018, 12, e00102. [Google Scholar] [CrossRef]
- Spilker, T.; Vandamme, P.; LiPuma, J.J. A Multilocus sequence typing scheme implies population structure and reveals several putative novel Achromobacter species. J. Clin. Microbiol. 2012, 50, 3010–3015. [Google Scholar] [CrossRef] [PubMed]
- Veschetti, L.; Sandri, A.; Patuzzo, C.; Melotti, P.; Malerba, G.; Lleò, M.M. Mobilome analysis of Achromobacter spp. isolates from chronic and occasional lung infection in cystic fibrosis patients. Microorganisms 2021, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chu, K. An introduction to sensitivity, specificity, predictive values and likelihood ratios. Emerg. Med. Australas. 2002, 11, 175–181. [Google Scholar] [CrossRef]
- Pérez-Losada, M.; Cabezas, P.; Castro-Nallar, E.; Crandall, K.A. Pathogen typing in the genomics era: MLST and the future of molecular epidemiology. Infect. Genet. Evol. 2013, 16, 38–53. [Google Scholar] [CrossRef]
- Peterson, S.W.; Demczuk, W.; Martin, I.; Adam, H.; Bharat, A.; Mulvey, M.R. Identification of bacterial and fungal pathogens directly from clinical blood cultures using whole genome sequencing. Genomics 2023, 115, 110580. [Google Scholar] [CrossRef] [PubMed]
- Bogaerts, B.; Nouws, S.; Verhaegen, B.; Denayer, S.; Van Braekel, J.; Winand, R.; Fu, Q.; Crombé, F.; Piérard, D.; Marchal, K.; et al. Validation strategy of a bioinformatics whole genome sequencing workflow for Shiga toxin-producing Escherichia coli using a reference collection extensively characterized with conventional methods. Microb. Genom. 2021, 7, 000531. [Google Scholar] [CrossRef] [PubMed]
- Urwyler, S.K.; Glaubitz, J. Advantage of MALDI-TOF-MS over biochemical-based phenotyping for microbial identification illustrated on industrial applications. Lett. Appl. Microbiol. 2016, 62, 130–137. [Google Scholar] [CrossRef]
- Haider, A.; Ringer, M.; Kotroczó, Z.; Mohácsi-Farkas, C.; Kocsis, T. The Current Level of MALDI-TOF MS Applications in the Detection of Microorganisms: A Short Review of Benefits and Limitations. Microbiol. Res. 2023, 14, 80–90. [Google Scholar] [CrossRef]
- Angeletti, S. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J. Microbiol. Methods 2017, 138, 20–29. [Google Scholar] [CrossRef]
- Vinshia, J.J.; Padmavathy, K.; Sathyapriya, B. Comparison of the VITEK® 2 System with Conventional Methods for Species Identification and Antimicrobial Susceptibility Pattern of Staphylococcal Carrier Isolates. Int. Res. J. Multidiscip. Scope 2024, 5, 940–948. [Google Scholar] [CrossRef]
- Garcia-Garrote, F.; Cercenado, E.; Bouza, E. Evaluation of a New System, VITEK 2, for Identification and Antimicrobial Susceptibility Testing of Enterococci. J. Clin. Microbiol. 2000, 38, 2108–2111. [Google Scholar] [CrossRef]
- Ling, T.K.W.; Tam, P.C.; Liu, Z.K.; Cheng, A.F.B. Evaluation of VITEK 2 rapid identification and susceptibility testing system against gram-negative clinical isolates. J. Clin. Microbiol. 2001, 39, 2964–2966. [Google Scholar] [CrossRef] [PubMed]
- Amoureux, L.; Bador, J.; Siebor, E.; Taillefumier, N.; Fanton, A.; Neuwirth, C. Epidemiology and resistance of Achromobacter xylosoxidans from cystic fibrosis patients in Dijon, Burgundy: First French data. J. Cyst. Fibros. 2013, 12, 170–176. [Google Scholar] [CrossRef]
- Rodrigues, E.R.A.; Ferreira, A.G.; Leão, R.S.; Leite, C.C.L.; Carvalho-Assef, A.P.; Albano, R.M.; Marquesa, E.A. Characterization of Achromobacter Species in Cystic Fibrosis Patients: Comparison of blaOXA-114 PCR Amplification, Multilocus Sequence Typing, and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometr. J. Clin. Microbiol. 2015, 53, 3894–3896. [Google Scholar] [CrossRef]
- Price, E.P.; Arango, S.V.; Kidd, T.J.; Fraser, T.A.; Nguyen, T.-K.; Bell, S.C.; Sarovich, D.S. Duplex real-time PCR assay for the simultaneous detection of Achromobacter xylosoxidans and Achromobacter spp. Microb. Genom. 2020, 6, e000406. [Google Scholar] [CrossRef] [PubMed]
Primers | Tm [°C] | GC Content [%] | Probes | Tm [°C] | GC Content [%] | Species |
---|---|---|---|---|---|---|
F1 TTGTAAAGCACTTTTGGCAG | 53.2 | 40 | Probe_A AGAAACGTCG(Y)GGGTTAATAC | 58 | 45.2 | A. xylosoxidans A. dolens |
R1 CCAGTAATTCCGATTAACGC | 55.3 | 45 | Probe_B AGAAACGTCATGGGCTAATAC | 58 | 43 | Achromobacter NG |
Probe_C AGAAACGTCATGGGTTAATAC | 58 | 38 | A. insuavis | |||
F2 CGGTGGATGATGTGGATTAA | 55.3 | 45 | Probe_1 AATGCCGAAGAGATTTGGCAGT | 64 | 41 | A. xylosoxidans |
R2 GGACTTAACCCAACATCTCA | 55.3 | 45 | Probe_2 AATGCCGAAGAGATTTGGTAGT | 60 | 41 | A. insuavis A. dolens |
Probe_3 AATTCCGAAGAGATTTGGAAGT | 60 | 36 | Achromobacter NG |
Species | Identification | ||
---|---|---|---|
A. xylosoxidans | Probe_A | Probe_1 | |
A. insuavis | Probe_C | Probe_2 | |
A. dolens | Probe_A | Probe_2 | Probe_1 * |
Achromobacter NG | Probe_B | Probe_3 |
Probes | LOD |
---|---|
Probe_A | 0.275 pg/µL |
Probe_B | 0.1 pg/µL |
Probe_C | 1 pg/µL |
Probe_1 | 0.05 pg/µL |
Probe_2 | 0.05 pg/µL |
Probe_3 | 0.05 pg/µL |
Species | Identification | Diagnostic Sensitivity | TP | FN |
---|---|---|---|---|
A. xylosoxidans | Probe_A + Probe_1 | 100% | 35 | 0 |
A. insuavis | Probe_C + Probe_2 | 100% | 4 | 0 |
A. dolens | Probe_A + Probe_2 + Probe_1 | 100% | 4 | 0 |
Achromobacter NG | Probe_B + Probe_3 | 100% | 3 | 0 |
Species | Identification | Diagnostic Specificity | TN | FP |
---|---|---|---|---|
A. xylosoxidans | Probe_A + Probe_1 | 100% | 17 | 0 |
A. insuavis | Probe_C + Probe_2 | 100% | 48 | 0 |
A. dolens | Probe_A + Probe_2 + Probe_1 | 100% | 48 | 0 |
Achromobacter NG | Probe_B + Probe_3 | 97.95% | 48 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saitta, G.M.; Veschetti, L.; Feletti, R.; Sandri, A.; Boaretti, M.; Melotti, P.; Carelli, M.; Lleò, M.M.; Malerba, G.; Signoretto, C. Development of a Simple and Accurate Molecular Protocol Using 16SrRNA for Species-Specific Identification of Achromobacter spp. Pathogens 2025, 14, 271. https://doi.org/10.3390/pathogens14030271
Saitta GM, Veschetti L, Feletti R, Sandri A, Boaretti M, Melotti P, Carelli M, Lleò MM, Malerba G, Signoretto C. Development of a Simple and Accurate Molecular Protocol Using 16SrRNA for Species-Specific Identification of Achromobacter spp. Pathogens. 2025; 14(3):271. https://doi.org/10.3390/pathogens14030271
Chicago/Turabian StyleSaitta, Giulia Maria, Laura Veschetti, Rebecca Feletti, Angela Sandri, Marzia Boaretti, Paola Melotti, Maria Carelli, Maria M. Lleò, Giovanni Malerba, and Caterina Signoretto. 2025. "Development of a Simple and Accurate Molecular Protocol Using 16SrRNA for Species-Specific Identification of Achromobacter spp." Pathogens 14, no. 3: 271. https://doi.org/10.3390/pathogens14030271
APA StyleSaitta, G. M., Veschetti, L., Feletti, R., Sandri, A., Boaretti, M., Melotti, P., Carelli, M., Lleò, M. M., Malerba, G., & Signoretto, C. (2025). Development of a Simple and Accurate Molecular Protocol Using 16SrRNA for Species-Specific Identification of Achromobacter spp. Pathogens, 14(3), 271. https://doi.org/10.3390/pathogens14030271