Exploring the Causal Effects of Micronutrient Supplementation on Susceptibility to Viral Pneumonia: A Mendelian Randomization Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Genetic Variants Selection Criteria
2.3. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lanks, C.W.; Musani, A.I.; Hsia, D.W. Community-Acquired Pneumonia and Hospital-Acquired Pneumonia. Med. Clin. N. Am. 2019, 103, 487–501. [Google Scholar] [CrossRef] [PubMed]
- Patwardhan, V.; Gil, G.F.; Arrieta, A.; Cagney, J.; DeGraw, E.; Herbert, M.E.; Khalil, M.; Mullany, E.C.; O’Connell, E.M.; Spencer, C.N.; et al. Differences across the Lifespan between Females and Males in the Top 20 Causes of Disease Burden Globally: A Systematic Analysis of the Global Burden of Disease Study 2021. Lancet Public Health 2024, 9, e282–e294. [Google Scholar] [CrossRef] [PubMed]
- Furman, C.D.; Leinenbach, A.; Usher, R.; Elikkottil, J.; Arnold, F.W. Pneumonia in Older Adults. Curr. Opin. Infect. Dis. 2021, 34, 135. [Google Scholar] [CrossRef] [PubMed]
- Cavallazzi, R.; Ramirez, J.A. Influenza and Viral Pneumonia. Infect. Dis. Clin. N. Am. 2024, 38, 183–212. [Google Scholar] [CrossRef]
- Havers, F.P.; Fry, A.M.; Goswami, D.; Nahar, K.; Sharmin, A.T.; Rahman, M.; Brooks, W.A. Population-Based Incidence of Childhood Pneumonia Associated With Viral Infections in Bangladesh. Pediatr. Infect. Dis. J. 2019, 38, 344. [Google Scholar] [CrossRef]
- Pagliano, P.; Sellitto, C.; Conti, V.; Ascione, T.; Esposito, S. Characteristics of Viral Pneumonia in the COVID-19 Era: An Update. Infection 2021, 49, 607–616. [Google Scholar] [CrossRef]
- Wu, F.; Wang, C.; Li, S.; Ye, Y.; Cui, M.; Liu, Y.; Jiang, S.; Qian, J.; Yuan, J.; Shu, Y.; et al. Association between Statins Administration and Influenza Susceptibility: A Systematic Review and Meta-Analysis of Longitudinal Studies. Viruses 2024, 16, 278. [Google Scholar] [CrossRef]
- Wang, C.; Ma, F.; Sun, C. Special Issue: “Innate Immunity to Virus Infection, 1st Edition”. Viruses 2023, 15, 2060. [Google Scholar] [CrossRef]
- Zhang, S.; Li, N.; Wu, S.; Xie, T.; Chen, Q.; Wu, J.; Zeng, S.; Zhu, L.; Bai, S.; Zha, H.; et al. C-FLIP Facilitates ZIKV Infection by Mediating Caspase-8/3-Dependent Apoptosis. PLoS Pathog. 2024, 20, e1012408. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Liu, X.; Zhao, J.; Lang, B.; Wu, F.; Wen, Z.; Sun, C. IFN-Inducible SerpinA5 Triggers Antiviral Immunity by Regulating STAT1 Phosphorylation and Nuclear Translocation. Int. J. Mol. Sci. 2023, 24, 5458. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, J.; Li, M.; Chen, M.; Sun, C. Multifaceted Functions of CH25H and 25HC to Modulate the Lipid Metabolism, Immune Responses, and Broadly Antiviral Activities. Viruses 2020, 12, 727. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, J.; Wang, C.; Liu, Y.; Li, M.; Li, Y.; Li, R.; Han, Z.; Wang, J.; Chen, L.; et al. Kynurenine-3-Monooxygenase (KMO) Broadly Inhibits Viral Infections via Triggering NMDAR/Ca2+ Influx and CaMKII/IRF3-Mediated IFN-β Production. PLoS Pathog. 2022, 18, e1010366. [Google Scholar] [CrossRef] [PubMed]
- Weger-Lucarelli, J.; Auerswald, H.; Vignuzzi, M.; Dussart, P.; Karlsson, E.A. Taking a Bite out of Nutrition and Arbovirus Infection. PLoS Negl. Trop. Dis. 2018, 12, e0006247. [Google Scholar] [CrossRef] [PubMed]
- Millward, D.J. Nutrition, Infection and Stunting: The Roles of Deficiencies of Individual Nutrients and Foods, and of Inflammation, as Determinants of Reduced Linear Growth of Children. Nutr. Res. Rev. 2017, 30, 50–72. [Google Scholar] [CrossRef] [PubMed]
- Macallan, D.C. Nutrition and Immune Function in Human Immunodeficiency Virus Infection. Proc. Nutr. Soc. 1999, 58, 743–748. [Google Scholar] [CrossRef]
- Govers, C.; Calder, P.C.; Savelkoul, H.F.J.; Albers, R.; van Neerven, R.J.J. Ingestion, Immunity, and Infection: Nutrition and Viral Respiratory Tract Infections. Front. Immunol. 2022, 13, 841532. [Google Scholar] [CrossRef]
- Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef]
- Shah, K.; Varna, V.P.; Sharma, U.; Mavalankar, D. Does Vitamin D Supplementation Reduce COVID-19 Severity?: A Systematic Review. QJM Int. J. Med. 2022, 115, 665–672. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, Y.; Liu, Z.; Peng, Y.; Peng, W.; Tong, L.; Wang, J.; Liu, Q.; Wang, P.; Cheng, G. A Volatile from the Skin Microbiota of Flavivirus-Infected Hosts Promotes Mosquito Attractiveness. Cell 2022, 185, 2510–2522.e16. [Google Scholar] [CrossRef]
- Larsson, S.C.; Butterworth, A.S.; Burgess, S. Mendelian Randomization for Cardiovascular Diseases: Principles and Applications. Eur. Heart J. 2023, 44, 4913–4924. [Google Scholar] [CrossRef]
- UK Biobank. Available online: http://www.nealelab.is/uk-biobank (accessed on 10 December 2024).
- Kurki, M.I.; Karjalainen, J.; Palta, P.; Sipilä, T.P.; Kristiansson, K.; Donner, K.M.; Reeve, M.P.; Laivuori, H.; Aavikko, M.; Kaunisto, M.A.; et al. FinnGen Provides Genetic Insights from a Well-Phenotyped Isolated Population. Nature 2023, 613, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Risteys. J10_VIRALPNEUMO. Available online: https://risteys.finngen.fi/endpoints/J10_VIRALPNEUMO (accessed on 10 December 2024).
- Brion, M.-J.A.; Shakhbazov, K.; Visscher, P.M. Calculating Statistical Power in Mendelian Randomization Studies. Int. J. Epidemiol. 2013, 42, 1497–1501. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-H.; Brown, D.W.; Machiela, M.J. LDtrait: An Online Tool for Identifying Published Phenotype Associations in Linkage Disequilibrium. Cancer Res. 2020, 80, 3443–3446. [Google Scholar] [CrossRef]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.R.; Yarmolinsky, J.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Higgins, J.P.T.; Timpson, N.J.; Dimou, N.; et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. JAMA 2021, 326, 1614–1621. [Google Scholar] [CrossRef]
- Mirick, G.S.; Leftwich, W.B.; With the Technical Assistance of Miss Elizabeth I. Corddry. The effect of diet on the susceptibility of the mouse to pneumonia virus of mice (PVM): II. influence of pyridoxine administered in the period before as well as after the inoculation of virus. J. Exp. Med. 1949, 89, 175–184. [Google Scholar] [CrossRef]
- Ueland, P.M.; McCann, A.; Midttun, Ø.; Ulvik, A. Inflammation, Vitamin B6 and Related Pathways. Mol. Asp. Med. 2017, 53, 10–27. [Google Scholar] [CrossRef]
- Kesel, A.J. A System of Protein Target Sequences for Anti-RNA-Viral Chemotherapy by a Vitamin B6-Derived Zinc-Chelating Trioxa-Adamantane-Triol. Bioorganic Med. Chem. 2003, 11, 4599–4613. [Google Scholar] [CrossRef]
- Maggini, S.; Wintergerst, E.S.; Beveridge, S.; Hornig, D.H. Selected Vitamins and Trace Elements Support Immune Function by Strengthening Epithelial Barriers and Cellular and Humoral Immune Responses. Br. J. Nutr. 2007, 98, S29–S35. [Google Scholar] [CrossRef]
- Chandra, R.K.; Sudhakaran, L. Regulation of Immune Responses by Vitamin B6. Ann. N. Y. Acad. Sci. 1990, 585, 404–423. [Google Scholar] [CrossRef]
- Rail, L.C.; Meydani, S.N. Vitamin B6 and Immune Competence. Nutr. Rev. 1993, 51, 217–225. [Google Scholar] [CrossRef]
- Trakatellis, A.; Dimitriadou, A.; Trakatelli, M. Pyridoxine Deficiency: New Approaches in Immunosuppression and Chemotherapy. Postgrad. Med. J. 1997, 73, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Tenforde, M.W.; Yadav, A.; Dowdy, D.W.; Gupte, N.; Shivakoti, R.; Yang, W.-T.; Mwelase, N.; Kanyama, C.; Pillay, S.; Samaneka, W.; et al. Vitamin A and D Deficiencies Associated With Incident Tuberculosis in HIV-Infected Patients Initiating Antiretroviral Therapy in Multinational Case-Cohort Study. JAIDS J. Acquir. Immune Defic. Syndr. 2017, 75, e71. [Google Scholar] [CrossRef] [PubMed]
- Khare, D.; Godbole, N.M.; Pawar, S.D.; Mohan, V.; Pandey, G.; Gupta, S.; Kumar, D.; Dhole, T.N.; Godbole, M.M. Calcitriol [1, 25[OH]2 D3] Pre- and Post-Treatment Suppresses Inflammatory Response to Influenza A (H1N1) Infection in Human Lung A549 Epithelial Cells. Eur. J. Nutr. 2013, 52, 1405–1415. [Google Scholar] [CrossRef] [PubMed]
- Guillin, O.M.; Vindry, C.; Ohlmann, T.; Chavatte, L. Selenium, Selenoproteins and Viral Infection. Nutrients 2019, 11, 2101. [Google Scholar] [CrossRef]
- Bermano, G.; Méplan, C.; Mercer, D.K.; Hesketh, J.E. Selenium and Viral Infection: Are There Lessons for COVID-19? Br. J. Nutr. 2021, 125, 618–627. [Google Scholar] [CrossRef]
- Beck, M.A.; Nelson, H.K.; Shi, Q.; Van Dael, P.; Schiffrin, E.J.; Blum, S.; Barclay, D.; Levander, O.A. Selenium Deficiency Increases the Pathology of an Influenza Virus Infection. FASEB J. 2001, 15, 1481–1483. [Google Scholar] [CrossRef]
- Beck, M.A.; Matthews, C.C. Micronutrients and Host Resistance to Viral Infection. Proc. Nutr. Soc. 2000, 59, 581–585. [Google Scholar] [CrossRef]
- Beck, M.A. Nutritionally Induced Oxidative Stress: Effect on Viral Disease. Am. J. Clin. Nutr. 2000, 71, 1676S–1679S. [Google Scholar] [CrossRef]
- Rataan, A.O.; Geary, S.M.; Zakharia, Y.; Rustum, Y.M.; Salem, A.K. Potential Role of Selenium in the Treatment of Cancer and Viral Infections. Int. J. Mol. Sci. 2022, 23, 2215. [Google Scholar] [CrossRef]
- Zhang, J.; Saad, R.; Taylor, E.W.; Rayman, M.P. Selenium and Selenoproteins in Viral Infection with Potential Relevance to COVID-19. Redox Biol. 2020, 37, 101715. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Al-Quraishy, S.; Dkhil, M.A.; Wunderlich, F.; Sies, H. Dietary Selenium in Adjuvant Therapy of Viral and Bacterial Infections. Adv. Nutr. 2015, 6, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Girodon, F.; Galan, P.; Monget, A.-L.; Boutron-Ruault, M.-C.; Brunet-Lecomte, P.; Preziosi, P.; Arnaud, J.; Manuguerra, J.-C.; Hercberg, S.; The MIN.VIT.AOX. Geriatric Network. Impact of Trace Elements and Vitamin Supplementation on Immunity and Infections in Institutionalized Elderly Patients: A Randomized Controlled Trial. Arch. Intern. Med. 1999, 159, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Alpcan, A.; Tursun, S.; Kandur, Y. Vitamin D Levels in Children with COVID-19: A Report from Turkey. Epidemiol. Infect. 2021, 149, e180. [Google Scholar] [CrossRef]
- Olivé-Cirera, G.; Fonseca, E.; Cantarín-Extremera, V.; Vázquez-López, M.; Jiménez-Legido, M.; González-Álvarez, V.; Ribeiro-Constante, J.; Camacho-Salas, A.; Martí, I.; Cancho-Candela, R.; et al. Impact of COVID-19 in Immunosuppressed Children With Neuroimmunologic Disorders. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1101. [Google Scholar] [CrossRef]
- Yılmaz, K.; Şen, V. Is Vitamin D Deficiency a Risk Factor for COVID-19 in Children? Pediatr. Pulmonol. 2020, 55, 3595–3601. [Google Scholar] [CrossRef]
- Kosmeri, C.; Balomenou, F.; Rallis, D.; Baltogianni, M.; Giapros, V. The Role of Serum Vitamin 25(OH)D Concentration in the COVID-19 Pandemic in Children. Br. J. Nutr. 2023, 130, 417–422. [Google Scholar] [CrossRef]
- Wang, J.-G.; Dou, H.-H.; Liang, Q.-Y. Vitamin D Levels in Children and Adolescents Are Associated with Coronavirus Disease-2019 Outcomes: A Systematic Review and Meta-Analysis. Medicine 2024, 103, e40245. [Google Scholar] [CrossRef]
- Wong, R.S.; Tung, K.T.S.; So, H.-K.; Wong, W.H.S.; Wong, S.Y.; Tsang, H.W.; Tung, J.Y.L.; Chua, G.T.; Ho, M.H.K.; Wong, I.C.K.; et al. Impact of COVID-19 Pandemic on Serum Vitamin D Level among Infants and Toddlers: An Interrupted Time Series Analysis and before-and-after Comparison. Nutrients 2021, 13, 1270. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Ciavardelli, D.; Pastore, A.; Lupisella, S.; Cristofaro, R.C.; Di Felice, G.; Salierno, R.; Infante, M.; De Stefano, A.; Onetti Muda, A.; et al. Contribution of Vitamin D3 and Thiols Status to the Outcome of COVID-19 Disease in Italian Pediatric and Adult Patients. Sci. Rep. 2023, 13, 2504. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, Y.; Jin, S.; Bai, S.; Tang, X.; Liu, Q.; Wang, L.; Ji, R.; Liu, H.; Zhong, W.; et al. Changing Clinical Characteristics of Pediatric Inpatients with Pneumonia during COVID-19 Pandamic: A Retrospective Study. Ital. J. Pediatr. 2024, 50, 84. [Google Scholar] [CrossRef]
- Darren, A.; Osman, M.; Masilamani, K.; Ali, S.H.; Kanthimathinathan, H.K.; Chikermane, A.; Al-Abadi, E.; Welch, S.B.; Hackett, S.; Scholefield, B.R.; et al. Vitamin D Status of Children with Paediatric Inflammatory Multisystem Syndrome Temporally Associated with Severe Acute Respiratory Syndrome Coronavirus 2 (PIMS-TS). Br. J. Nutr. 2022, 127, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Durá-Travé, T.; Gallinas-Victoriano, F. COVID-19 in Children and Vitamin D. Int. J. Mol. Sci. 2024, 25, 12205. [Google Scholar] [CrossRef] [PubMed]
- Miraglia del Giudice, M.; Indolfi, C.; Dinardo, G.; Decimo, F.; Decimo, A.; Klain, A. Vitamin D Status Can Affect COVID-19 Outcomes Also in Pediatric Population. Pharma Nutr. 2022, 22, 100319. [Google Scholar] [CrossRef]
- Mamishi, S.; Olfat, M.; Pourakbari, B.; Eshaghi, H.; Abdolsalehi, M.R.; Shahbabaie, M.A.; Jalali, F.; Safari, F.; Mahmoudi, S. Multisystem Inflammatory Syndrome Associated with SARS-CoV-2 Infection in Children: Update and New Insights from the Second Report of an Iranian Referral Hospital. Epidemiol. Infect. 2022, 150, e179. [Google Scholar] [CrossRef] [PubMed]
- Feketea, G.; Vlacha, V.; Bocsan, I.C.; Vassilopoulou, E.; Stanciu, L.A.; Zdrenghea, M. Vitamin D in Corona Virus Disease 2019 (COVID-19) Related Multisystem Inflammatory Syndrome in Children (MIS-C). Front. Immunol. 2021, 12, 648546. [Google Scholar] [CrossRef]
- Shah, K.; Varna, V.P.; Pandya, A.; Saxena, D. Low Vitamin D Levels and Prognosis in a COVID-19 Pediatric Population: A Systematic Review. QJM Int. J. Med. 2021, 114, 447–453. [Google Scholar] [CrossRef]
- AlSafar, H.; Grant, W.B.; Hijazi, R.; Uddin, M.; Alkaabi, N.; Tay, G.; Mahboub, B.; Al Anouti, F. COVID-19 Disease Severity and Death in Relation to Vitamin D Status among SARS-CoV-2-Positive UAE Residents. Nutrients 2021, 13, 1714. [Google Scholar] [CrossRef]
- Urashima, M.; Segawa, T.; Okazaki, M.; Kurihara, M.; Wada, Y.; Ida, H. Randomized Trial of Vitamin D Supplementation to Prevent Seasonal Influenza A in Schoolchildren. Am. J. Clin. Nutr. 2010, 91, 1255–1260. [Google Scholar] [CrossRef]
- Doğan, A.; Dumanoğlu Doğan, İ.; Uyanık, M.; Köle, M.T.; Pişmişoğlu, K. The Clinical Significance of Vitamin D and Zinc Levels with Respect to Immune Response in COVID-19 Positive Children. J. Trop. Pediatr. 2022, 68, fmac072. [Google Scholar] [CrossRef]
- Vlieg- Boerstra, B.; de Jong, N.; Meyer, R.; Agostoni, C.; De Cosmi, V.; Grimshaw, K.; Milani, G.P.; Muraro, A.; Oude Elberink, H.; Pali- Schöll, I.; et al. Nutrient Supplementation for Prevention of Viral Respiratory Tract Infections in Healthy Subjects: A Systematic Review and Meta-Analysis. Allergy 2022, 77, 1373–1388. [Google Scholar] [CrossRef]
- Christakis, D.A. Pediatrics and COVID-19. JAMA 2020, 324, 1147–1148. [Google Scholar] [CrossRef] [PubMed]
- Hon, K.L.E.; Leung, K.K.Y. Pediatric COVID-19: What Disease Is This? World J. Pediatr. 2020, 16, 323–325. [Google Scholar] [CrossRef] [PubMed]
GWAS ID | Exposure | Outcome | Inverse Variance Weighted | MR Egger | ||
---|---|---|---|---|---|---|
OR (95%CI) | p-Value | OR (95%CI) | p-Value | |||
20084_473 | Glucosamine/chondroitin | Viral Pneumonia | 1.44 (0.20, 10.304) | 0.72 | 163.39 (2.62 × 10−5, 1.02 × 109) | 0.59 |
20084_475 | Vitamin A | 0.07 (3.49 × 10−4, 12.49) | 0.31 | 2.14 (1.55 × 10−3, 2.96 × 103) | 0.86 | |
20084_476 | Vitamin B6 | 0.01 (2.74 × 10−4, 0.54) | 0.02 | 1.72 × 10−3 (3.59 × 10−10, 8.21 × 103) | 0.5 | |
20084_477 | Vitamin B12 | 0.10 (2.51 × 10−3, 3.94) | 0.22 | 5.48 × 10−3 (1.70 × 10−6, 17.62) | 0.26 | |
20084_478 | Vitamin C | 0.22 (2.38 × 10−3, 19.68) | 0.5 | NA * | NA | |
20084_479 | Vitamin D | 0.42 (0.01, 17.25) | 0.65 | 18.28 (0.35, 962.57) | 0.25 | |
20084_480 | Vitamin E | 0.06 (1.14 × 10−3, 3.35) | 0.17 | 1.14×10−5 (9.55 × 10−13, 135.68) | 0.22 | |
20084_481 | Folic acid | 58.82 (1.33 × 10−2, 2.60 × 105) | 0.34 | 28.17 (4.08 × 10−6, 1.94 × 108) | 0.75 | |
20084_482 | Chromium | 1.66 (0.16, 16.80) | 0.67 | 0.20 (5.90 × 10−3, 6.68) | 0.38 | |
20084_483 | Magnesium | 0.46 (1.14 × 10−3, 1.85 × 102) | 0.8 | 9.82 (7.30 × 10−10, 1.32 × 1011) | 0.86 | |
20084_484 | Selenium | 103.389 (1.20, 8.92 × 103) | 0.04 | 304.92 (0.04, 2.44 × 106) | 0.25 | |
20084_485 | Calcium | 0.46 (1.14 × 10−3, 1.85 × 102) | 0.8 | 9.82 (7.30 × 10−10, 1.32 × 1011) | 0.86 | |
20084_486 | Iron | 0.11 (5.79 × 10−3, 1.96) | 0.13 | 0.30 (3.74 × 10−3, 23.48) | 0.6 | |
20084_487 | Zinc | 0.96 (0.86, 1.08) | 0.49 | 0.94 (0.81, 1.09) | 0.46 |
GWAS ID | Exposure | Outcome | Weighted Median | |
---|---|---|---|---|
OR (95%CI) | p-Value | |||
20084_473 | Glucosamine/chondroitin | Viral Pneumonia | 0.88 (8.93 × 102, 8.68) | 0.91 |
20084_475 | Vitamin A | 0.05 (1.59 × 10−4, 14.81) | 0.31 | |
20084_476 | Vitamin B6 | 0.01 (1.32 × 10−4, 0.91) | 0.047 | |
20084_477 | Vitamin B12 | 0.03 (8.84 × 10−5, 5.50) | 0.19 | |
20084_478 | Vitamin C | NA * | NA | |
20084_479 | Vitamin D | 1.22 (0.06, 27.13) | 0.9 | |
20084_480 | Vitamin E | 4.10 × 10−3 (1.86 × 10−5, 0.90) | 0.04 | |
20084_481 | Folic acid | 71.3 (4.30 × 10−3, 1.18 × 106) | 0.38 | |
20084_482 | Chromium | 0.92 (0.03, 26.90) | 0.96 | |
20084_483 | Magnesium | 0.13 (2.91 × 10−4, 55.91) | 0.5 | |
20084_484 | selenium | 247.27 (1.15, 5.34 × 10−4) | 0.07 | |
20084_485 | Calcium | 0.13 (3.10 × 10−4, 52.48) | 0.5 | |
20084_486 | Iron | 0.12 (5.00 × 10−3, 2.72) | 0.18 | |
20084_487 | Zinc | 0.96 (0.85, 1.08) | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Cui, M.; Song, Z.; Yuan, J.; Sun, C. Exploring the Causal Effects of Micronutrient Supplementation on Susceptibility to Viral Pneumonia: A Mendelian Randomization Study. Pathogens 2025, 14, 263. https://doi.org/10.3390/pathogens14030263
Li S, Cui M, Song Z, Yuan J, Sun C. Exploring the Causal Effects of Micronutrient Supplementation on Susceptibility to Viral Pneumonia: A Mendelian Randomization Study. Pathogens. 2025; 14(3):263. https://doi.org/10.3390/pathogens14030263
Chicago/Turabian StyleLi, Shunran, Mingting Cui, Ziwen Song, Jianhui Yuan, and Caijun Sun. 2025. "Exploring the Causal Effects of Micronutrient Supplementation on Susceptibility to Viral Pneumonia: A Mendelian Randomization Study" Pathogens 14, no. 3: 263. https://doi.org/10.3390/pathogens14030263
APA StyleLi, S., Cui, M., Song, Z., Yuan, J., & Sun, C. (2025). Exploring the Causal Effects of Micronutrient Supplementation on Susceptibility to Viral Pneumonia: A Mendelian Randomization Study. Pathogens, 14(3), 263. https://doi.org/10.3390/pathogens14030263