Detection, Isolation, and Identification of Mycobacteria That Cause Nontuberculous Mycobacterial Disease and Tuberculosis
Abstract
1. Introduction
2. Materials and Methods
3. Nontuberculous Mycobacterial Pulmonary Disease and Pulmonary Tuberculosis Diagnostic Methods
3.1. Clinical Signs/X-Ray Diagnostics (Especially Computer Tomography) and Their Difficulties
3.2. Observing Mycobacteria and Their Identification
3.2.1. Microscopy
3.2.2. Culture
3.2.3. Molecular Methods
3.3. Histology
3.4. The Future: Computer Vision
3.5. Immunological Tests
3.6. Immunohistochemistry (IHC)
4. Conclusions
5. Perspectives
6. Limitations of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeon, D. Infection Source and Epidemiology of Nontuberculous Mycobacterial Lung Disease. Tuberc. Respir. Dis. 2019, 82, 94–101. [Google Scholar] [CrossRef]
- Falkinham, J.O. Nontuberculous Mycobacteria in the Environment. Clin. Chest Med. 2002, 23, 529–551. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, M.; Fan, W.; Sun, S.; Fan, X. The impact of Mycobacterium tuberculosis complex in the environment on one health approach. Front. Public Health 2022, 10, 7. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Haas, M.K.; Kasperbauer, S.H.; Calado Nogueira de Moura, V.; Eddy, J.J.; Mitchell, J.D.; Khare, R.; Griffith, D.E.; Chan, E.D.; Daley, C.L. Nontuberculous Mycobacterial Pulmonary Disease: Patients, Principles, and Prospects. Clin. Infect. Dis. 2024, 79, e27–e47. [Google Scholar] [CrossRef]
- Prevots, D.R.; Loddenkemper, R.; Sotgiu, G.; Migliori, G.B. Nontuberculous Mycobacterial Pulmonary Disease: An Increasing Burden with Substantial Costs. Eur. Respir. J. 2017, 49, 1700374. [Google Scholar] [CrossRef]
- Diel, R.; Lipman, M.; Hoefsloot, W. High Mortality in Patients with Mycobacterium Avium Complex Lung Disease: A Sys-tematic Review. BMC Infect. Dis. 2018, 18, 206. [Google Scholar] [CrossRef] [PubMed]
- Anisimova, A.; Pavlova, M.; Pavlova, L.; Sapozhnikova, N.; Chernokhaeva, I.; Gavrilov, P.; Sokolovich, E. Mycobacteriosis of the lungs: Difficulties of diagnosis and treatment (literature review). MedAlliance 2020, 8, 25–31. [Google Scholar] [CrossRef]
- Mezhebovskiy, V.R.; Shmakova, E.V.; Mezhebovskiy, A.V.; Pashkova, N.A.; Trebesova, A.A. Detection of Nontuberculosis Mycobacteria among Patients with Pulmonary Tuberculosis Living in Territories with Different Environmental Burden. Mod. Probl. Sci. Educ. 2021, 3, 153. [Google Scholar] [CrossRef]
- Karpina, N.L.; Asanov, R.B.; Shishkina, E.R.; Larionova, E.E.; Shabalina, I.Y.; Ergeshov, A.E. Clinical and Microbiological Issues of the Diagnosis of Nontuberculous Mycobacterioses in Patients with Pulmonary Cavities. Clin. Trials Regist. India Bull. 2020, 1, 73–80. [Google Scholar]
- Stepanyan, I.E.; Bagdasaryan, T.R.; Larionova, E.E.; Smirnova, T.G.; Andreevskaya, S.N.; Zaytseva, A.S.; Chernousova, L.N.; Ergeshov, A.E. Pulmonary Tuberculosis Co-Infection with Pulmonary Mycobacteriosis in One Patient: The Peculiarities of Diagnosis and Treatment. Clin. Trials Regist. India Bull. 2019, 1, 84–90. [Google Scholar]
- Aksamit, T.R.; Philley, J.V.; Griffith, D.E. Nontuberculous Mycobacterial (NTM) Lung Disease: The Top Ten Essentials. Respir. Med. 2014, 108, 417–425. [Google Scholar] [CrossRef]
- Winthrop, K.L.; Chang, E.; Yamashita, S.; Iademarco, M.F.; LoBue, P.A. Nontuberculous Mycobacteria Infections and Anti–Tumor Necrosis Factor-α Therapy. Emerg. Infect. Dis. 2009, 15, 1556–1561. [Google Scholar] [CrossRef]
- Ryu, Y.J.; Koh, W.J.; Daley, C.L. Diagnosis and Treatment of Nontuberculous Mycobacterial Lung Disease: Clinicians’ Perspec-tives. Tuberc. Respir. Dis. 2016, 79, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Gopalaswamy, R.; Shanmugam, S.; Mondal, R.; Subbian, S. Of Tuberculosis and Non-Tuberculous Mycobacterial Infections—A Comparative Analysis of Epidemiology, Diagnosis and Treatment. J. Biomed. Sci. 2020, 27, 74. [Google Scholar] [CrossRef]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of Nontuberculous Myco-bacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Eur. Respir. J. 2020, 56, 2000535. [Google Scholar] [CrossRef] [PubMed]
- Cowman, S.; van Ingen, J.; Griffith, D.E.; Loebinger, M.R. Non-Tuberculous Mycobacterial Pulmonary Disease. Eur. Respir. J. 2019, 54, 1900250. [Google Scholar] [CrossRef]
- Kumar, K.; Ponnuswamy, A.; Capstick, T.G.; Chen, C.; McCabe, D.; Hurst, R.; Morrison, L.; Moore, F.; Gallardo, M.; Keane, J.; et al. Non-Tuberculous My-cobacterial Pulmonary Disease (NTM-PD): Epidemiology, Diagnosis and Multidisciplinary Management. Clin. Med. 2024, 24, 100017. [Google Scholar] [CrossRef] [PubMed]
- Pennington, K.M.; Vu, A.; Challener, D.; Rivera, C.G.; Shweta, F.N.U.; Zeuli, J.D.; Temesgen, Z. Approach to the Diagnosis and Treatment of Non-Tuberculous Mycobacterial Disease. J. Clin. Tuberc. Other Mycobact. Dis. 2021, 24, 100244. [Google Scholar] [CrossRef]
- Feng, J.Y.; Chen, W.C.; Chen, Y.Y.; Su, W.J. Clinical Relevance and Diagnosis of Nontuberculous Mycobacterial Pulmonary Disease in Populations at Risk. J. Formos. Med. Assoc. 2020, 119, S23–S31. [Google Scholar] [CrossRef]
- Aceves-Sánchez, B.; Rajme-López, S.; Martínez-Guerra, B.A.; Rivera-Villegas, H.; Román-Montes, C.M.; Tamez-Torres, K.M.; González-Vázquez, L.E.; Guadarrama-Torres, S.; Lazcano-Delgadillo, O.; Nares-López, R.; et al. Distinct Clinical Features of Extrapulmonary and Disseminated Tuberculosis in HIV- and Non-HIV-Associated Immunosuppression: A Retrospective Cohort Study. Open Forum Infect. Dis. 2025, 12, ofaf239. [Google Scholar] [CrossRef]
- Lee, E.H.; Chin, B.; Kim, Y.K.; Yoo, J.S.; Choi, Y.H.; Kim, S.; Lee, K.H.; Lee, S.J.; Kim, J.; Baek, Y.J.; et al. Clinical characteristics of nontuberculous mycobacterial disease in people living with HIV/AIDS in South Korea: A multicenter, retrospective study. PLoS ONE 2022, 17, e0276484. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, C.; Park, H.S.; Oh, Y.S.; Jo, K.-W.; Shim, T.S.; Kim, M.Y. Comparison of Chest CT Findings in Nontuberculous Mycobacterial Diseases vs. Mycobacterium Tuberculosis Lung Disease in HIV-Negative Patients with Cavities. PLoS ONE 2017, 12, e0174240. [Google Scholar] [CrossRef]
- Li, X.; Sun, D.; Liang, C.; Gu, W. Characterization of Non-Tuberculous Mycobacterial Pulmonary Disease and Pulmonary Tuberculosis in Patients with AFB Smear-Positive Sputum: A Retrospective Comparative Study. Heliyon 2024, 10, e37434. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Lee, K.S.; Koh, W.J.; Han, J.; Kim, T.S.; Kwon, O.J. Nontuberculous Mycobacterial Pulmonary Infection in Immuno-competent Patients: Comparison of Thin-Section CT and Histopathologic Findings. Radiology 2004, 231, 880–886. [Google Scholar] [CrossRef]
- Iseman, M.D.; Buschman, D.L.; Ackerson, L.M. Pectus Excavatum and Scoliosis: Thoracic Anomalies Associated with Pulmonary Disease Caused by Mycobacterium Avium Complex. Am. Rev. Respir. Dis. 1991, 144, 914–916. [Google Scholar] [CrossRef]
- Dettmer, S.; Ringshausen, F.C.; Fuge, J.; Maske, H.L.; Welte, T.; Wacker, F.; Rademacher, J. Computed Tomography in Adults with Bronchiectasis and Nontuberculous Mycobacterial Pulmonary Disease: Typical Imaging Findings. J. Clin. Med. 2021, 10, 2736. [Google Scholar] [CrossRef] [PubMed]
- Griffith, D.E.; Aksamit, T.; Brown-Elliott, B.A.; Catanzaro, A.; Daley, C.; Gordin, F.; Holland, S.M.; Horsburgh, R.; Huitt, G.; Iademarco, M.F.; et al. ATS Mycobacterial Diseases Subcommittee. American Thoracic Society. Infectious Disease Society of America. An Official ATS/IDSA Statement: Diagnosis, Treatment, and Prevention of Nontuberculous Mycobacterial Diseases. Am. J. Respir. Crit. Care Med. 2007, 175, 367–416. [Google Scholar] [CrossRef] [PubMed]
- Orosz, A.; Deb, A. Mycobacterial and Fungal Infections in Persons with HIV. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK586304/ (accessed on 30 May 2025).
- Zhang, K.; Liu, X.; Shen, J.; Li, Z.; Sang, Y.; Wu, X.; Zha, Y.; Liang, W.; Wang, C.; Wang, K.; et al. Clinically Applicable AI System for Accurate Diagnosis, Quantitative Measurements, and Prognosis of COVID-19 Pneumonia Using Computed Tomography. Cell 2020, 181, 1423–1433.e4. [Google Scholar] [CrossRef]
- Kim, N.; Yi, J.; Chang, C.L. Recovery Rates of Non-Tuberculous Mycobacteria from Clinical Specimens Are Increasing in Korean Tertiary-Care Hospitals. J. Korean Med. Sci. 2017, 32, 1263–1267. [Google Scholar] [CrossRef]
- Dzodanu, E.G.; Afrifa, J.; Acheampong, D.O.; Dadzie, I. Diagnostic Yield of Fluorescence and Ziehl-Neelsen Staining Techniques in the Diagnosis of Pulmonary Tuberculosis: A Comparative Study in a District Health Facility. Tuberc. Res. Treat. 2019, 2019, 4091937. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, E.M.; Kwon, O.J.; Lee, J.H.; Ki, C.S.; Lee, N.Y.; Koh, W.-J. Direct application of the PCR restriction analysis method for identifying NTM species in AFB smear-positive respiratory specimens. Int. J. Tuberc. Lung Dis. 2008, 12, 1344–1346. [Google Scholar]
- Ledesma, Y.; Echeverría, G.; Claro-Almea, F.E.; Silva, D.; Guerrero-Freire, S.; Rojas, Y.; Bastidas-Caldes, C.; Navarro, J.C.; de Waard, J.H. The Re-Identification of Previously Unidentifiable Clinical Non-Tuberculous Mycobacterial Isolates Shows Great Species Diversity and the Presence of Other Acid-Fast Genera. Pathogens 2022, 11, 1159. [Google Scholar] [CrossRef] [PubMed]
- Lewinsohn, D.M.; Leonard, M.K.; LoBue, P.A.; Cohn, D.L.; Daley, C.L.; Desmond, E.; Keane, J.; Lewinsohn, D.A.; Loeffler, A.M.; Mazurek, G.H.; et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. Clin. Infect. Dis. 2017, 64, e1–e33. [Google Scholar] [CrossRef]
- Gupta, P.; Khare, V.; Srivastava, A.; Bajpai, A.; Bano, S.; Choudhury, M.; Rao, R.; Gupta, D.; Viswanathan, R.; Das, R.; et al. A Prospective Observational Multicentric Clinical Trial to Evaluate Microscopic Examination of Acid-Fast Bacilli in Sputum by Artificial Intelligence-Based Microscopy System. J. Investig. Med. 2023, 71, 716–721. [Google Scholar] [CrossRef]
- Risso, K.; Michelangeli, C.; Gaudart, A.; Buscot, M.; Chamorey, E.; Courjon, J.; Carles, M. Time-to-Detection in Culture of Mycobacterium Tuberculosis: Performance for Assessing Index Cases Contact-Positivity. Int. J. Infect. Dis. 2023, 134, 280–284. [Google Scholar] [CrossRef]
- Campelo, T.A.; de Sousa, P.R.C.; Nogueira, L.d.L.; Frota, C.C.; Antas, P.R.Z. Revisiting the Methods for Detecting Mycobacterium Tuberculosis: What Has the New Millennium Brought Thus Far? Access Microbiol. 2021, 3, 000245. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, G.S.; Sarao, M.S.; Kalra, D.; Bandyopadhyay, K.; John, A.R. Methods of Phenotypic Identification of Non-Tuberculous Mycobacteria. Pract. Lab. Med. 2018, 12, e00107. [Google Scholar] [CrossRef]
- Sharma, B.; Pal, N.; Malhotra, B.; Vyas, L. Evaluation of a Rapid Differentiation Test for Mycobacterium Tuberculosis from Other Mycobacteria by Selective Inhibition with P-Nitrobenzoic Acid Using MGIT 960. J. Lab. Physicians 2010, 2, 89–92. [Google Scholar] [CrossRef]
- Moore, D.F.; Guzman, J.A.; Mikhail, L.T. Reduction in turn-around time for laboratory diagnosis of pulmonary tuberculosis by routine use of a nucleic acid amplification test. Diagn. Microbiol. Infect. Dis. 2005, 52, 247–254. [Google Scholar] [CrossRef]
- Hawkins, J.E.; Wallace, R.J., Jr.; Brown, B.A. Antibacterial drug susceptibility tests: Mycobacteria. In Manual of Clinical Microbiology, 5th ed.; American Society for Microbiology: Washington, DC, USA, 1991; pp. 1138–1152. [Google Scholar]
- Yao, L.; Gui, X.; Wu, X.; Yu, X.; Zhou, K.; Du, X.; Zhang, Y.; Zhou, Y.; Gu, H.; Sun, Z.; et al. Rapid Identification of Non-tuberculous Mycobacterium Species from Respiratory Specimens Using Nucleotide MALDI-TOF MS. Microorganisms 2023, 11, 1975. [Google Scholar] [CrossRef] [PubMed]
- Bacanelli, G.; Araujo, F.R.; Verbisck, N.V. Improved MALDI-TOF MS Identification of Mycobacterium tuberculosis by Use of an Enhanced Cell Disruption Protocol. Microorganisms 2023, 11, 1692. [Google Scholar] [CrossRef] [PubMed]
- Genc, G.; Demir, M.; Yaman, G.; Kayar, B.; Koksal, F.; Satana, D. Evaluation of MALDI-TOF MS for identification of nontu-berculous mycobacteria isolated from clinical specimens in mycobacteria growth indicator tube medium. New Microbiol. 2018, 41, 214–219. [Google Scholar] [PubMed]
- Wang, X.; Zhao, L.; Zhao, H.; Wang, M.S.; Li, Z.; He, Y. Diagnostic Performance of MALDI-TOF MS for Non-Tuberculous Mycobacteria: A Systematic Review and Meta-Analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2025, 2025, 1–15. [Google Scholar] [CrossRef]
- Shu, C.C.; Ato, M.; Wang, J.T.; Jou, R.; Wang, J.Y.; Kobayashi, K.; Lai, H.-C.; Yu, C.-J.; Lee, L.-N.; Luh, K.-T. Sero-diagnosis of Mycobacterium avium complex lung disease using serum immunoglobulin A antibody against glycopeptidolipid antigen in Taiwan. PLoS ONE 2013, 8, e80473. [Google Scholar] [CrossRef]
- Bemer, P.; Palicova, F.R.; Rusch-Gerdes, S.; Drugeon, H.B.; Pfyffer, G.E. Multicenter evaluation of fully automated BACTEC Mycobacteria Growth Indicator Tube 960 system for susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol. 2002, 40, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Drowart, A.; Cambiaso, C.L.; Huygen, K.; Serruys, E.; Portaels, F.; Jann, E.; Van Vooren, J.P. Detection of Rifampicin and Isoniazid Resistances of Mycobacterium Tuberculosis Strains by Particle Counting Immunoassay (PACIA). Int. J. Tuberc. Lung Dis. 1997, 1, 284–288. [Google Scholar]
- Miotto, P.; Zhang, Y.; Cirillo, D.M.; Yam, W.C. Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology 2018, 23, 1098–1113. [Google Scholar] [CrossRef]
- Saunders, B.M.; Cooper, A.M. Restraining mycobacteria: Role of granulomas in mycobacterial infections. Immunol. Cell Biol. 2000, 78, 334–341. [Google Scholar] [CrossRef]
- Nelson, M.; Bracchi, M.; Hunter, E.; Ong, E.; Pozniak, A.; van Halsema, C. British HIV Association Guidelines on the Man-agement of Opportunistic Infection in People Living with HIV: The Clinical Management of Non-Tuberculous Mycobacteria 2024. HIV Med. 2024, 25, 3–25. [Google Scholar] [CrossRef]
- Dowdy, D.W.; Maters, A.; Parrish, N.; Beyrer, C.; Dorman, S.E. Cost-effectiveness analysis of the gen-probe amplified Myco-bacterium tuberculosis direct test as used routinely on smear-positive respiratory specimens. J. Clin. Microbiol. 2003, 41, 948–953. [Google Scholar] [CrossRef] [PubMed]
- Guerra, R.L.; Hooper, N.M.; Baker, J.F.; Alborz, R.; Armstrong, D.T.; Maltas, G.; Kiehlbauch, J.A.; Dorman, S.E. Use of the amplified Mycobacterium tuberculosis direct test in a public health laboratory: Test performance and impact on clinical care. Chest 2007, 132, 946–951. [Google Scholar] [CrossRef]
- Lawn, S.D.; Nicol, M.P. Xpert(R) MTB/RIF assay: Development, evaluation and implementation of a new rapid molecular di-agnostic for tuberculosis and rifampicin resistance. Future Microbiol. 2011, 6, 1067–1082. [Google Scholar] [CrossRef]
- Tortoli, E.; Nanetti, A.; Piersimoni, C.; Cichero, P.; Farina, C.; Mucignat, G.; Scarparo, C.; Bartolini, L.; Valentini, R.; Nista, D.; et al. Performance assessment of new multiplex probe assay for identification of myco-bacteria. J. Clin. Microbiol. 2001, 39, 1079–1084. [Google Scholar] [CrossRef]
- Nurwidya, F.; Handayani, D.; Burhan, E.; Yunus, F. Molecular Diagnosis of Tuberculosis. Chonnam Med. J. 2018, 54, 1–9. [Google Scholar] [CrossRef]
- Doyle, R.M.; Burgess, C.; Williams, R.; Gorton, R.; Booth, H.; Brown, J.; Bryant, J.M.; Chan, J.; Creer, D.; Holdstock, J.; et al. Direct whole-genome sequencing of sputum accurately identifies drug-resistant Mycobacterium tuberculosis faster than MGIT culture sequencing. J. Clin. Microbiol. 2018, 56, e00666-18. [Google Scholar] [CrossRef]
- Nimmo, C.; Doyle, R.; Burgess, C.; Williams, R.; Gorton, R.; McHugh, T.D.; Brown, M.; Morris-Jones, S.; Booth, H.; Breuer, J. Rapid identification of a Mycobacterium tuberculosis full genetic drug resistance profile through whole genome sequencing directly from sputum. Int. J. Infect. Dis. 2017, 62, 44–46. [Google Scholar] [CrossRef]
- Witney, A.A.; Cosgrove, C.A.; Arnold, A.; Hinds, J.; Stoker, N.G.; Butcher, P.D. Clinical use of whole genome sequencing for Mycobacterium tuberculosis. BMC Med. 2016, 14, 46. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Infantes, M.S.; Ruiz-Serrano, M.J.; Martinez-Sanchez, L.; Ortega, A.; Bouza, E. Evaluation of the MB/BacT mycobacterium detection system for susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol. 2000, 38, 1988–1989. [Google Scholar] [CrossRef] [PubMed]
- Heidari, L.; Rafiei Dehbidi, G.; Farhadi, A.; Kashkooli, G.S.; Zarghampoor, F.; Namdari, S.; Seyyedi, N.; Fard, S.A.; Behzad-Behbahani, A. Simultaneous detection and differentiation of Mycobacterium tuberculosis and nontuberculous mycobacteria coexisting in patients with pulmonary tuberculosis by single-tube multiplex PCR. Iran. J. Microbiol. 2023, 15, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, N.; Uçar, E.; Sağlam, L. Mycobacterium Tuberculosis and Nontuberculous Mycobacteria Coinfection of the Lungs. Turk. Thorac. J. 2017, 18, 23–26. [Google Scholar] [CrossRef]
- Fei, Z.; Zhou, D.; Huang, W.; Liu, P.; Lu, Q.; Li, H.; Yang, Y.; Ye, D.; Liu, X.; Xia, L. Clinical Characteristics and Outcomes of Tuberculosis and Non-Tuberculous Mycobacteria Infections: A Population-Based Study of Concurrent and Sequential Infections. Eur. J. Clin. Microbiol. Infect. Dis. 2025, 44, 1879–1887. [Google Scholar] [CrossRef]
- Franco-Alvarez de Luna, F.; Ruiz, P.; Gutierrez, J.; Casal, M. Evaluation of the GenoType Mycobacteria Direct assay for detection of Mycobacterium tuberculosis complex and four atypical mycobacterial species in clinical samples. J. Clin. Microbiol. 2006, 44, 3025–3027. [Google Scholar] [CrossRef]
- Seagar, A.L.; Prendergast, C.; Emmanuel, F.X.; Rayner, A.; Thomson, S.; Laurenson, I.F. Evaluation of the GenoType Mycobacteria Direct assay for the simultaneous detection of the Mycobacterium tuberculosis complex and four atypical mycobacterial species in smear-positive respiratory specimens. J. Med. Microbiol. 2008, 57, 605–611. [Google Scholar] [CrossRef]
- Haworth, C.S.; Banks, J.; Capstick, T.; Fisher, A.J.; Gorsuch, T.; Laurenson, I.F.; Leitch, A.; Loebinger, M.R.; Milburn, H.J.; Nightingale, M.; et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 2017, 72, ii1–ii64. [Google Scholar] [CrossRef]
- Sehgal, V.; Sharma, M.; LNU, P.; Sharma, K.; Sharma, A.; Sharma, N.; Modi, M. Comparison of Protein B Polymerase Chain Reaction (PCR) With IS6110 PCR for Diagnosis of Tuberculous Meningitis Patients. Cureus 2023, 15, e33783. [Google Scholar] [CrossRef]
- Khairullah Sedeeq, Z.; Samadzade, R.; Maçin, S.; Türk Dağı, H.; Fındık, D. Comparison of Culture, Direct Microscopy, and Polymerase Chain Reaction Results for Detection of Mycobacterium tuberculosis Complex in Clinical Specimens. Genel Tıp Derg. 2022, 32, 520–524. [Google Scholar] [CrossRef]
- Sharma, S.K.; Vishwanath, U. Epidemiology, Diagnosis & Treatment of Non-Tuberculous Mycobacterial Diseases. Indian J. Med. Res. 2020, 152, 185–226. [Google Scholar] [CrossRef] [PubMed]
- Dorman, S.E.; Schumacher, S.G.; Alland, D.; Nabeta, P.; Armstrong, D.T.; King, B.; Hall, S.L.; Chakravorty, S.; Cirillo, D.M.; Tukvadze, N.; et al. Xpert MTB/RIF Ultra for Detection of Mycobacterium Tuberculosis and Rifampicin Resistance: A Prospective Multicentre Diagnostic Accuracy Study. Lancet Infect. Dis. 2018, 18, 76–84. [Google Scholar] [CrossRef]
- Laurent, K.; Kremer, L. Acid-Fast Positive and Acid-Fast Negative Mycobacterium Tuberculosis: The Koch Paradox. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef]
- Warren, J.R.; Bhattacharya, M.; DE Almeida, K.N.F.; Trakas, K.; Peterson, L.R. A Minimum 5.0 mL of Sputum Improves the Sensitivity of Acid-Fast Smear for Mycobacterium Tuberculosis. Am. J. Respir. Crit. Care Med. 2000, 161, 1559–1562. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.W.T.; Lam, J.K.S.; Lam, R.K.W.; Ng, W.H.; Lee, E.N.L.; Lee, V.T.Y.; Sze, P.P.; Rajwani, R.; Fung, K.S.C.; To, W.K.; et al. Comprehensive Evaluation of the MBT STAR-BL Module for Simultaneous Bacterial Identification and β-Lactamase-Mediated Resistance Detection in Gram-Negative Rods from Cultured Isolates and Positive Blood Cultures. Front. Microbiol. 2018, 9, 334. [Google Scholar] [CrossRef]
- Farhi, D.C.; Mason, U.G., III; Horsburgh, C.R., Jr. Pathologic Findings in Disseminated Mycobacterium Avium-Intracellulare Infection: A Report of 11 Cases. Am. J. Clin. Pathol. 1986, 85, 67–72. [Google Scholar] [CrossRef]
- Rosen, Y. Pathology of Granulomatous Pulmonary Diseases. Arch. Pathol. Lab. Med. 2022, 146, 233–251. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.R.; Rosenthal, K.S.; Pfaller, M.A. Medical Microbiology E-Book, 7th ed.; Elsevier: Philadelphia, PA, USA, 2013; 1023p. [Google Scholar]
- Jain, D.; Ghosh, S.; Teixeira, L.; Mukhopadhyay, S. Pathology of pulmonary tuberculosis and non-tuberculous mycobacterial lung disease: Facts, misconceptions, and practical tips for pathologists. Semin. Diagn. Pathol. 2017, 34, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.-J.; Yoo, C.-Y.; Im, S.-Y.; Yeo, C.-D.; Jung, J.-H.; Choi, H.-J.; Yoo, J.-Y. A Possible Complementary Tool for Diagnosing Tuberculosis: A Feasibility Test of Immunohistochemical Markers. Int. J. Clin. Exp. Pathol. 2015, 11, 13900–13910. [Google Scholar]
- Shibata, Y.; Horita, N.; Yamamoto, M.; Tsukahara, T.; Nagakura, H.; Tashiro, K.; Watanabe, H.; Nagai, K.; Nakashima, K.; Ushio, R.; et al. Diagnostic test accuracy of antiglyco-peptidolipid-core IgA antibodies for Mycobacterium avium complex pulmonary disease: Systematic review and meta-analysis. Sci. Rep. 2016, 6, 29325. [Google Scholar] [CrossRef]
- Ferroni, A.; Sermet-Gaudelus, I.; Le Bourgeois, M.; Pierre-Audigier, C.; Offredo, C.; Rottman, M.; Guillemot, D.; Bernède, C.; Vincent, V.; Berche, P.; et al. Measurement of immunoglobulin G against mycobacterial antigen A60 in patients with cystic fibrosis and lung infection due to Mycobacterium abscessus. Clin. Infect. Dis. 2005, 40, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Vankayalapati, R.; Wizel, B.; Samten, B.; Griffith, D.E.; Shams, H.; Galland, M.R.; Von Reyn, C.F.; Girard, W.M.; Wallace, J.R., Jr.; Barnes, P.F. Cytokine profiles in immunocompetent persons infected with Mycobacterium avium complex. J. Infect. Dis. 2001, 183, 478–484. [Google Scholar] [CrossRef]
- Hunter, R.L.; Welsh, K.J.; Risin, S.A.; Actor, J.K. Immunopathology of Postprimary Tuberculosis: Increased T-Regulatory Cells and DEC-205-Positive Foamy Macrophages in Cavitary Lesions. Clin. Dev. Immunol. 2011, 2011, 307631. [Google Scholar] [CrossRef]
- Broger, T.; Sossen, B.; du Toit, E.; Kerkhoff, A.D.; Schutz, C.; Reipold, E.I.; Ward, A.; Barr, D.A.; Macé, A.; Trollip, A.; et al. Novel Lipoarabinomannan Point-of-Care Tuberculosis Test for People with HIV: A Diagnostic Accuracy Study. Lancet Infect. Dis. 2019, 19, 852–861. [Google Scholar] [CrossRef]
- Ochayo, A.; Wamalwa, R.; Barasa, E.; Zablon, J.; Sowayi, G.; Were, T.; Gitonga, G.; Shaviya, N. Prevalence of Non-Tuberculosis Myco-bacterium Pulmonary Disease in HIV-1 Patients with Presumptive Pulmonary Tuberculosis in Western Kenya. Ethiop. J. Health Sci. 2023, 33, 735–742. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, Y.; Dai, B.; Zhou, X.; Liu, H.; Wu, W.; Yu, F.; Zhu, B. Diagnostic value of metagenomic next-generation sequencing for mul-ti-pathogenic pneumonia in HIV-infected patients. Infect. Drug Resist. 2023, 16, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Lobo, F.D.; Adiga, D.S.; Gupta, A.A. Histomorphological pattern analysis of pulmonary Tuberculosis in lung autopsy and surgically resected specimens. Pathol. Res. Int. 2016, 2016, 8132741. [Google Scholar] [CrossRef]
- Corrin, B.; Nicholson, A.G. Infectious diseases—Chronic bacterial infections. Pathol. Lungs 2011, 3, 197–221. [Google Scholar]
- Basaraba, R.J.; Hunter, R.L. Pathology of Tuberculosis: How the Pathology of Human Tuberculosis Informs and Directs Animal Models. Microbiol. Spectr. 2017, 5, 117–129. [Google Scholar] [CrossRef]
- Cadena, A.M.; Fortune, S.M.; Flynn, J.L. Heterogeneity in Tuberculosis. Nat. Rev. Immunol. 2017, 17, 691–702. [Google Scholar] [CrossRef]
- Karimi, S.; Shamaei, M.; Pourabdollah, M.; Sadr, M.; Karbasi, M.; Kiani, A. Immunohistochemical findings of the granulomatous reaction associated with tuberculosis. Int. J. Mycobacteriol. 2016, 5, S234–S235. [Google Scholar] [CrossRef]
- Bahmad, H.F.; Azimi, R.; Kilinc, E.; Tuda, C.; Vincentelli, C. Pulmonary Granulomas and Mycobacterial Infection: Concordance between the Results of Special Stains Performed on Lung Tissue Sections and Tissue Cultures. Diseases 2022, 10, 96. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y. Offense and Defense in Granulomatous Inflammation Disease. Front. Cell. Infect. Microbiol. 2022, 12, 797749. [Google Scholar] [CrossRef] [PubMed]
- Lepekha, L.N.; Krasnikova, E.V.; Tarasov, R.V.; Nikitin, S.S. Morphological Diagnosis of Nontuberculous Mycobacteriosis in the Surgical Material of Patients with Pulmonary Tuberculosis. Bull. Med. Inst. “Reaviz” (Rehabil. Dr. Health) 2023, 13, 16–22. [Google Scholar] [CrossRef]
- Abengozar-Muela, M.; Esparza, M.V.; Garcia-Ros, D.; Vásquez, C.E.; Echeveste, J.I.; Idoate, M.A.; Lozano, M.D.; Melero, I.; de Andrea, C.E. Diverse Immune Environments in Human Lung Tuberculosis Granulomas Assessed by Quantitative Multiplexed Immunofluorescence. Mod. Pathol. 2020, 33, 2507–2519. [Google Scholar] [CrossRef] [PubMed]
- Giller, D.B.; Shcherbakova, G.V.; Gerasimov, A.N.; Smerdin, S.V.; Martel, I.I.; Kesaev, O.S.; Koroev, V.V.; Severova, L.P. Surgical Treatment of Nontuberculous Mycobacterial Pulmonary Disease and a Combination of Nontuberculous Mycobacterium Pulmonary Disease and Pulmonary Tuberculosis. Int. J. Infect. Dis. 2022, 120, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Asay, B.C.; Edwards, B.B.; Andrews, J.; Ramey, M.E.; Richard, J.D.; Podell, B.K.; Gutiérrez, J.F.M.; Frank, C.B.; Magunda, F.; Robertson, G.T.; et al. Digital Image Analysis of Heterogeneous Tuberculosis Pulmonary Pathology in Non-Clinical Animal Models Using Deep Convolutional Neural Networks. Sci. Rep. 2020, 10, 6047. [Google Scholar] [CrossRef]
- Cuong, N.K.; Thanh, D.V.; Luong, D.V.; Manh The, N.; Duc Thai, T.; Tran Thi Tuan, A.; Thu Ha, D.; Dat, V.Q. Histopathological features in the clinical specimens with tuberculosis diagnosis by BACTEC MGIT 960 culture. J. Clin. Tuberc. Other Mycobact. Dis. 2023, 33, 100401. [Google Scholar] [CrossRef]
- Schiller, I.; Oesch, B.; Vordermeier, H.M.; Palmer, M.V.; Harris, B.N.; Orloski, K.A.; Buddle, B.M.; Thacker, T.C.; Lyashchenko, K.P.; Waters, W.R. Bovine tuberculosis: A review of current and emerging diagnostic techniques in view of their relevance for disease control and eradication. Transbound. Emerg. Dis. 2010, 57, 205. [Google Scholar] [CrossRef]
- Tukey, M.H.; Wiener, R.S. Population-based estimates of transbronchial lung biopsy utilization and complications. Respir. Med. 2012, 106, 1559–1565. [Google Scholar] [CrossRef]
- Reddy, D.B.; Raju, G.C.; Kumari, G.S. Pattern of tuberculosis—A review based on an autopsy study. Indian J. Tuberc. 1975, 22, 115–118. [Google Scholar]
- Steingart, K.R.; Henry, M.; Ng, V.; Hopewell, P.C.; Ramsay, A.; Cunningham, J.; Urbanczik, R.; Perkins, M.; Aziz, M.A.; Pai, M. Fluorescence versus conventional sputum smear microscopy for tuberculosis: A systematic review. Lancet Infect. Dis. 2006, 6, 570–581. [Google Scholar] [CrossRef]
- Jarzembowski, J.A.; Young, M.B. Nontuberculous mycobacterial infections. Arch. Pathol. Lab. Med. 2008, 132, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Gal, A.A. Granulomatous lung disease: An approach to the differential diagnosis. Arch. Pathol. Lab. Med. 2010, 134, 667–690. [Google Scholar] [CrossRef]
- Mukhopadhyay, S. Role of histology in the diagnosis of infectious causes of granulomatous lung disease. Curr. Opin. Pulm. Med. 2011, 17, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Beresford, R.; Fyfe, J.; Henderson, C. Clinical and histopathological features of cutaneous nontuberculous mycobacterial infection: A review of 13 cases. J. Cutan. Pathol. 2017, 44, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Bartralot, R.; Pujol, R.M.; García-Patos, V.; Sitjas, D.; Martín-Casabona, N.; Coll, P.; Alomar, A.; Castells, A. Cutaneous infections due to nontuberculous mycobacteria: Histopathological review of 28 cases. Comparative study between lesions observed in immu-nosuppressed patients and normal hosts. J. Cutan. Pathol. 2000, 27, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.; Tyagi, M.; Ramam, M.; Khaitan, B.K. Cutaneous Atypical Mycobacterial Infections: A Brief Review. Indian Dermatol. Online J. 2024, 15, 909–919. [Google Scholar] [CrossRef]
- Kraus, M.; Benharroch, D.; Kaplan, D.; Vardy, S.; Leiberman, A.; Dima, H.; Shoham, I.; Fliss, D.M. Mycobacterial Cervical Lymphadenitis: The Histological Features of Non-tuberculous Mycobacterial Infection. Histopathology 1999, 35, 534–538. [Google Scholar] [CrossRef]
- Samsonova, M.V.; Chernyaev, A.L. Granulomatous lung diseases. Pulmonology 2017, 27, 250–261. [Google Scholar] [CrossRef]
- Sawyer, A.J.; Patrick, E.; Edwards, J.; Wilmott, J.S.; Fielder, T.; Yang, Q.; Barber, D.L.; Ernst, J.D.; Britton, W.J.; Palendira, U.; et al. Spatial Mapping Reveals Granuloma Diversity and Histopathological Superstructure in Human Tuberculosis. J. Exp. Med. 2023, 220, e20221392. [Google Scholar] [CrossRef]
- McCaffrey, E.F.; Donato, M.; Keren, L.; Chen, Z.; Delmastro, A.; Fitzpatrick, M.B.; Gupta, S.; Greenwald, N.F.; Baranski, A.; Graf, W.; et al. The Immunoregulatory Landscape of Human Tuberculosis Granulomas. Nat. Immunol. 2022, 23, 318–329. [Google Scholar] [CrossRef]
- Keren, L.; Bosse, M.; Thompson, S.; Risom, T.; Vijayaragavan, K.; McCaffrey, E.; Marquez, D.; Angoshtari, R.; Greenwald, N.F.; Fienberg, H.; et al. MIBI-TOF: A Multiplexed Imaging Platform Relates Cellular Phenotypes and Tissue Structure. Sci. Adv. 2019, 5, eaax5851. [Google Scholar] [CrossRef]
- Bukhary, Z.A. Evaluation of anti-A60 antigen IgG enzyme-linked immunosorbent assay for serodiagnosis of pulmonary tuberculosis. Ann. Thorac. Med. 2007, 2, 47–51. [Google Scholar] [CrossRef]
- Cohen, S.B.; Gern, B.H.; Urdahl, K.B. The Tuberculous Granuloma and Preexisting Immunity. Annu. Rev. Immunol. 2022, 40, 589–614. [Google Scholar] [CrossRef]
- Bromley, J.D.; Ganchua, S.K.C.; Nyquist, S.K.; Maiello, P.; Chao, M.; Borish, H.J.; Rodgers, M.; Tomko, J.; Kracinovsky, K.; Mugahid, D.; et al. CD4+ T Cells Re-Wire Granuloma Cellularity and Regulatory Networks to Promote Immuno-modulation Following Mtb Reinfection. Immunity 2024, 10, 2380–2398.e6. [Google Scholar] [CrossRef] [PubMed]
- Barry, C.E.; Boshoff, H.I.; Dartois, V.; Dick, T.; Ehrt, S.; Flynn, J.A.; Schnappinger, D.; Wilkinson, R.J.; Young, D. The Spectrum of Latent Tuberculosis: Rethinking the Biology and Intervention Strategies. Nat. Rev. Immunol. 2009, 7, 845–855. [Google Scholar] [CrossRef] [PubMed]
- Mertaniasih, N.M.; Kusumaningrum, D.; Koendhori, E.B.; Soedarsono; Kusmiati, T.; Dewi, D.N. Nontuberculous Mycobacterial Species and Mycobacterium Tuberculosis Complex Coinfection in Patients with Pulmonary Tuberculosis in Dr. Soetomo Hospital, Surabaya, Indonesia. Int. J. Mycobacteriology 2017, 6, 9–13. [Google Scholar] [CrossRef] [PubMed]
| Type of Diagnostic Methods | Diagnostic Method/Key Characteristics | Sensitivity | Specificity | Turnaround Time | Accessibility/Cost | Notes | References |
|---|---|---|---|---|---|---|---|
| Microscopy | Acid-fast staining (AFS) Ziehl–Neelsen | Low–moderate 20–75% | <90% | Hours to 3 days (very fast) | High | Cannot differentiate between MTBC and NTM. | [32,33,34,37,71,72] |
| Acid-fast staining (AFS) fluorochrome | 60–80% | exceeding 90% | Intermediate | ||||
| Culture | Mycobacterial culture (solid media, e.g., Löwenstein–Jensen) | 80–95% High * (gold standard) | close to 100% (gold standard) | 30–60 days (slow) | High, but time-consuming. | Cheap. Poor success rate for finding NTM due to rare bacterioexcretion | [36,37,38,41,47] |
| Mycobacterial culture (liquid media, e.g., MGIT) | 95–100% * | Close to 100% | 15–30 days | Intermediate. Availability depends on state-of-the-art laboratory equipment | Intermediate. Reference standard. Used for subsequent drug susceptibility test (DST). | ||
| Culture (phenotypic identification) | Biochemical tests (e.g., PNB inhibition) | High * for MTB | High * for differentiation | Weeks (after culture growth) | High. Specialized laboratory | Relies on prior culture growth. NTM resistance to PNB. MTBC is inhibited by PNB, while NTM grows. | [37,38,39] |
| High-performance liquid chromatography (HPLC) analysis of the number of carbon atoms in mycolic acid found in the cell walls of NTM species. | Variable Varies by species:
| Varies by species and database. Very high * for common species | Weeks | Low. Requires specialized equipment | This method identifies slowly growing NTM species such as MAC and M. kansasii, but it is less specific in identifying rapidly growing mycobacteria (RGM) accurately | [37,69] | |
| MALDI-TOF Mass Spectrometry | High (for identification from culture) | Very high (>95% for common species) | Minutes to hours (after culture growth) | Low. Requires specialized equipment and an updated database | Revolutionizes workflow by providing rapid, accurate species identification from positive cultures. Performance is database-dependent | [37,44,73] | |
| Molecular | Nucleic Acid Amplification Test (NAAT)—General (e.g., MTD test) | High for MTBC 90–95% | High for MTB >95% | 1–2 days | Intermediate | The MTD test is specific for MTB and does not detect NTM. | [37,52,53] |
| Xpert MTB/RIF Assay | High * for MTB | Up to 99%. Very high for MTB | <2 h | Low | Specifically diagnoses MTBC and detects rifampicin resistance. Cannot detect NTM. | [37,57] | |
| Line Probe Assays (LiPA) | High * | Up to 99%. Very high * | 1–4 days | Low | Can differentiate between the MTB complex and various NTM species. | [37,57] | |
| Quantitative Multiplex PCR (Newer assays) | High * | Up to 99%. Very high * | 1–4 days | Low | Some newer assays can simultaneously detect and differentiate MTBC and NTM in a single test. | [37,61] | |
| Next-Generation Sequencing (NGS) | Very High 100% | Up to 99%. Very High * | Days to weeks | Low | Can identify all species and detect resistance mutations directly from sputum. | [37,57,58,59,60] | |
| Microscopy | Histology and Microscopy (Granuloma assessment) | Low * for organism detection | Low * for etiology | Days | Intermediate–High | Necrotizing granulomas suggest mycobacterial disease but cannot reliably distinguish MTBC from NTM. | [37,74,75,76,77] |
| Immunohistochemistry (IHC) | Very High (for antigen detection) 100% | High * | Days | Low | Can detect mycobacterial antigens in tissue with higher sensitivity than AFS but may not differentiate MTBC from NTM. | [37,77,78] | |
| Immuno- diagnostic | Serological Tests (e.g., Anti-GPL, A60 antibodies) | Variable, low to moderate Up to 87% | Variable, low to moderate Up to 95% | Days | Low. Primarily for research use | Not recommended for routine diagnosis due to cross-reactivity (e.g., with TB) and lack of standardization. | [37,79,80] |
| Interferon Gamma Release Assays (IGRAs) | High * for MTB infection | High * for MTB infection | Days | Intermediate. Widely available | Not used for NTM diagnosis due to cross-reactivity and high false-positive rates. | [81,82] | |
| Urinary Lipoarabinomannan (LAM) Test | Low * to moderate for MTB | High * for mycobacteria | Minutes | Intermediate. Point-of-care | Highly specific for MTBC; very low cross-reactivity with NTM. | [83] |
| Source | Object of Study | Methods | Characteristics of NTM Granulomas | Characteristics of TB Granulomas | Conclusions |
|---|---|---|---|---|---|
| Jing Jing Li et al. [105] | Skin biopsies (NTM infection) from 13 patients | Histology (H&E, AFB) (PCR) on the paraffin blocks | In immunocompetent patients: pseudoepitheliomatous epidermal hyperplasia, intraepithelial abscesses, transepidermal elimination, and dermal granulomatous inflammation with necrosis and suppuration. In immunocompromised patients: suppurative inflammation with little granuloma formation and numerous acid-fast bacilli. | N/A | According to this study, paraffin block PCR (positive in 4 of 13 cases, 31%) is not superior to conventional culture (positive in 11 of 13 cases, 85%) in detecting cutaneous NTM infection. |
| R. Bartralot et al. [106] | Skin biopsies (NTM infection) from 27 patients | Histology | Epidermal changes like acanthosis and pseudoepitheliomatous hyperplasia were primarily associated with M. marinum. In immunosuppressed patients, the infiltrate was deeper, involving subcutaneous tissue (100%) with frequent abscesses. A marked granulomatous reaction was seen in 83% of immunocompetent versus 60% of immunosuppressed patients, with chronicity correlating to granuloma formation in the latter. A foamy histiocytic infiltrate was noted in three AIDS patients, and panniculitis was found in 8 biopsies. | N/A | Suppurative granulomas are the most characteristic feature in skin biopsy specimens from cutaneous NTM infections. Some histopathological patterns seem more prevalent in immunosuppressed patients. |
| D. Jain et al. [77] | Review of acid-fast bacteria (AFB) detection tips | Histology | Necrotizing granulomas. Pink (“caseating”) necrosis. Not specific to tuberculosis. | Lung biopsies are seldom indicated unless non-invasive modalities fail to provide a diagnosis, or the clinical setting is atypical, or if rapid diagnosis is essential. Lung biopsies are commonly performed in the evaluation of individuals with lung nodules or masses, since such lesions often raise the possibility of other granulomatous infections or lung cancer. Necrotizing granulomas are the most common benign finding in core needle biopsies, and mycobacteria can be demonstrated in a subset of these cases. | M. tuberculosis and NTM cannot be reliably distinguished by tissue reaction or bacterial morphology on acid-fast stains. The presence of AFB in necrotizing granulomas does not confirm tuberculosis, as NTM can present similarly. Morphological differences were mostly observed in immunocompromised patients with NTM and were not directly compared to classical tuberculosis. The presence of mycobacteria within spindle cell pseudotumors or macrophage sheets is more suggestive of NTM/MAC, but the practical utility of this feature remains questionable. |
| N. Mehta et al. [107] | Brief overview of skin atypical mycobacterial infections | Histology | Histopathology typically reveals a mixed suppurative and granulomatous reaction, which is the most common pattern (80%). Two less common variants are a predominantly suppurative form with neutrophilic abscesses and no granulomas (15%), and a predominantly granulomatous form with minimal neutrophils, with or without caseous necrosis (4%). | N/A | The histopathology of NTM infections is not specific and cannot reliably differentiate them from other causes. Although the yield of special staining varies significantly, a biopsy is required in all suspected NTM cases. |
| M. Kraus et al. [108] | Computed tomographic (CT) studies and clinical courses of eleven patients with laboratory-confirmed diagnosis of NTM | Radiology, overview | Microabscess. Several histopathological features, including predominantly noncaseating granulomas, ill-defined granulomas, the presence of microabscesses, and a relatively small number of giant cells, support the clinical diagnosis of NTM infection. | Caseating granuloma Well-defined granuloma Numerous giant cells | Cervical lymphadenitis with classic NTM symptoms likely stems from atypical mycobacteria. Key histological indicators include noncaseating and ill-defined granulomas, microabscesses, and a minimal presence of giant cells. |
| M. Samsonova and A. Chernyaev [109] | lungs | Histology, overview | Granulomas in NTM are more variable and may include microabscesses. | Classical TB granulomas | The author believes that TB and NTM granulomas are indistinguishable. |
| L. Lepekha et al. [93] | Operating material from 69 patients (lungs, lymph nodes) | Histology, partially immunohistochemistry | Infections caused by M. avium and M. intracellulare feature extensive lymphocytic infiltrates and non-necrotic, histiocytic macrophage granulomas. These granulomas often merge into larger aggregates with diffuse fibrosis. In the lung, dense peribronchial lymphocytic infiltrates and granulomas can compress airways, causing lumen narrowing and epithelial metaplasia. A key change in terminal acinar regions, especially with fast-growing mycobacteria, is chronic constrictive bronchiolitis, characterized by epithelial necrosis, luminal mucus, and lymphocytic infiltration of the walls. | Characteristic morphological features of TB, with classical TB granulomas, reflecting high, moderate, or low activity of the inflammatory process, have been identified. The development is accompanied by fullness, impairment of permeability of the circulatory stream, and the presence of vascular fistulas, the detection of which varies depending on the activity of tuberculosis. | NTMD develops against a background of tuberculous inflammation and in areas unaffected by tuberculosis foci. The histological features differ between slow-growing and fast-growing species, characterized by productive changes in the former and more pronounced, destructive changes in the latter. |
| Sources | Marker | Context of Use | Behavior in TB | Data/Assumptions for NTM | Comments/Limitations |
|---|---|---|---|---|---|
| [50,75,77,82,86,90,94,105,106] | CD68 | General macrophage marker to identify the primary cellular component of granulomas. | Presumed to be highly expressed in granuloma macrophages. | Presumed to be expressed in granuloma macrophages. | A ubiquitous marker for histiocytic cells; likely not useful for differentiating TB from NTM but essential for confirming granulomatous inflammation. |
| [90,94,105] | CD20 | Marker for B lymphocytes; used to assess B-cell presence and potential tertiary lymphoid structure formation within granulomas. | N/A | N/A | The provided data focuses on T-cell and cytokine markers. |
| [77,81,82,90,94,102,105] | CD3 | Pan-T-cell marker to identify total T-cell infiltrate within granulomatous tissue. | Presumed to be highly expressed, indicating a significant T-cell presence. | Presumed to be expressed. | Like CD68, it is a general marker for the adaptive immune response but lacks specificity for distinguishing the type of mycobacterial infection. |
| [77,81,82,90,94,110,114,115] | CD4 | Identifies T-helper cells, crucial for granuloma formation and macrophage activation via IFN-γ. | Described as essential for immune control. A specific subset re-wires granuloma networks upon reinfection. They are a major source of IFN-γ. | Assumed to be present, but the specific spatial organization and functional state (e.g., expression of CXCR3) may differ from TB. | Critical for protective immunity. Their functional state (e.g., cytokine production and expression of inhibitory markers) is more informative than mere presence. |
| [77,80,81,90,94,110] | CD8 | Identifies cytotoxic T cells; can contribute to killing infected cells. | Present in granulomas, but their specific role is less defined compared to CD4+ T cells | Not specifically mentioned for NTM. | There is no clear comparative analysis of CD8+ T cells between TB and NTM. |
| [12,50,81,82,111,116] | TNF-α | Pro-inflammatory cytokine critical for maintaining granuloma structure and containing infection. | Essential for granuloma integrity. The amount and location of TNF are crucial; too much can be associated with worse outcomes. A few T cells in the granuloma produce it. | Assumed to be involved in granuloma maintenance. | Its role is complex; absolute levels are less important than its localized and controlled production within the granuloma. |
| [78] | TNF-beta | Cytokine analyzed as a potential discriminatory IHC marker. | Lower expression in tuberculous granulomas compared to nontuberculous granulomas. | Higher expression in nontuberculous granulomas compared to TB. | While TNF-beta (lymphotoxin-alpha) is conventionally recognized as a pro-inflammatory cytokine, whose upregulation would be expected in chronic inflammatory conditions like tuberculosis, findings from some studies present a counterintuitive picture. Specifically, the immunohistochemical analysis by Seo et al. [98] reveals a paradoxical decrease in TNF-beta expression within tuberculous granulomas compared to their nontuberculous counterparts. This inverse relationship underscores its potential role as a valuable discriminatory marker in the differential diagnosis of TB and NTM lymphadenitis, particularly when integrated into a multi-marker panel. |
| [115] | CD137 | Marker of T-cell activation. | Expressed on a high frequency of MTB-specific CD4+ T cells within granulomas, indicating recent antigen recognition and activation. | N/A | A promising marker for detecting actively engaged T cells in TB, but its utility for TB vs. NTM differentiation is unknown. |
| [110,114] | PD-1 | Inhibitory receptor marking T-cell exhaustion; target for checkpoint blockade. | Highly expressed on antigen-specific CD4+ T cells during active TB. The granuloma core is enriched for its ligand, PD-L1. | N/A | High expression in TB suggests T-cell functional impairment. Blockade may improve outcomes but risks immunopathology. |
| [78,105,106] | LACT (Lactoferrin) | Iron-binding protein involved in host defense; investigated as a discriminatory IHC marker. | Higher expression in tuberculous granulomas. Shows high specificity (100%) but relatively weak staining. | Lower expression in nontuberculous granulomas. | Despite high specificity, its weak and variable expression limits its use as a standalone test. It is a key component of the best combined marker score. |
| [78,114] | IDO | Immunosuppressive enzyme that modulates T-cell responses. | Higher expression in tuberculous granulomas. Plays an immunosuppressive role, and its blockade may reorganize the granuloma to improve bacterial control. | Lower expression in nontuberculous granulomas. | Has a dual role as both a useful diagnostic marker and a potential immunotherapeutic target. Part of the effective combined marker score. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Severova, L.; Giller, D.; Enilenis, I.; Gadzhieva, P.; Shcherbakova, G.; Kesaev, O.; Koroev, V.; Frolova, O.; Popova, A.; Ilyukhin, A.; et al. Detection, Isolation, and Identification of Mycobacteria That Cause Nontuberculous Mycobacterial Disease and Tuberculosis. Pathogens 2025, 14, 1302. https://doi.org/10.3390/pathogens14121302
Severova L, Giller D, Enilenis I, Gadzhieva P, Shcherbakova G, Kesaev O, Koroev V, Frolova O, Popova A, Ilyukhin A, et al. Detection, Isolation, and Identification of Mycobacteria That Cause Nontuberculous Mycobacterial Disease and Tuberculosis. Pathogens. 2025; 14(12):1302. https://doi.org/10.3390/pathogens14121302
Chicago/Turabian StyleSeverova, Lyudmila, Dmitrii Giller, Inga Enilenis, Patimat Gadzhieva, Galina Shcherbakova, Oleg Kesaev, Vadim Koroev, Olga Frolova, Anna Popova, Alexandr Ilyukhin, and et al. 2025. "Detection, Isolation, and Identification of Mycobacteria That Cause Nontuberculous Mycobacterial Disease and Tuberculosis" Pathogens 14, no. 12: 1302. https://doi.org/10.3390/pathogens14121302
APA StyleSeverova, L., Giller, D., Enilenis, I., Gadzhieva, P., Shcherbakova, G., Kesaev, O., Koroev, V., Frolova, O., Popova, A., Ilyukhin, A., Basangova, V., Belova, E., Pahlevani Gazi, E., Taushkanova, I., & Martel, I. (2025). Detection, Isolation, and Identification of Mycobacteria That Cause Nontuberculous Mycobacterial Disease and Tuberculosis. Pathogens, 14(12), 1302. https://doi.org/10.3390/pathogens14121302

