Characterisation of a Novel Pseudomonas Phage and Its Effect on the Survival of Galleria mellonella Larvae
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Isolation, Purification, and Concentration of Bacteriophages
2.3. Determination of the Host Range
2.4. Transmission Electron Microscopy
2.5. One-Step Growth Curve
2.6. Whole Genome Sequencing
2.7. Checkerboard Assay
2.8. In Vivo Model of Phage Antibiotic Combination
2.9. Evaluation of Bacterial Growth in Galleria mellonella Larvae
2.10. Statistical Analysis
3. Results
3.1. Isolation and Characterization of Phages
3.2. The Results of the Checkerboard Assay of the Phage-Antibiotics Combination
3.3. In Vivo Efficacy Studies of Phage Alone and Phage-Ceftazidime (CEF) Combination Treatment in G. mellonella Model
3.4. Bacterial Growth Test Results in Galleria mellonella Larvae
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leroy, A.G.; Caillon, J.; Caroff, N.; Broquet, A.; Corvec, S.; Asehnoune, K. Could azithromycin be part of Pseudomonas aeruginosa acute pneumonia treatment? Front. Microbiol. 2021, 12, 642541. [Google Scholar] [CrossRef]
- WHO. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- Holger, D.J.; Lev, K.L.; Kebriaei, R.; Morrisette, T.; Shah, R.; Alexander, J.; Rybak, M.J. Bacteriophage-antibiotic combination therapy for multidrug-resistant Pseudomonas aeruginosa: In vitro synergy testing. J. Appl. Microbiol. 2022, 133, 1636–1649. [Google Scholar] [CrossRef] [PubMed]
- Barbier, F.; Andremont, A.; Wolff, M.; Bouadma, L. Hospital-acquired pneumonia and ventilator-associated pneumonia: Recent advances in epidemiology and management. Curr. Opin. Pulm. Med. 2013, 19, 216–228. [Google Scholar] [CrossRef]
- Khademi, F.; Maarofi, K.; Arzanlou, M.; Peeri-Dogaheh, H.; Sahebkar, A. Which missense mutations associated with DNA gyrase and topoisomerase IV are involved in Pseudomonas aeruginosa clinical isolates resistance to ciprofloxacin in Ardabil? Gene Rep. 2021, 24, 101211. [Google Scholar] [CrossRef]
- Safarirad, S.; Arzanlou, M.; Mohammadshahi, J.; Vaez, H.; Sahebkar, A.; Khademi, F. Prevalence and characteristics of metallo-beta-lactamase-positive and high-risk clone ST235 Pseudomonas aeruginosa at Ardabil hospitals. Jundishapur J. Microbiol. 2021, 14, e115819. [Google Scholar] [CrossRef]
- Poole, K. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2005, 49, 479–487. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Saeli, N.; Jafari-Ramedani, S.; Ramazanzadeh, R.; Nazari, M.; Sahebkar, A.; Khademi, F. Prevalence and mechanisms of aminoglycoside resistance among drug-resistant Pseudomonas aeruginosa clinical isolates in Iran. BMC Infect. Dis. 2024, 24, 680. [Google Scholar] [CrossRef] [PubMed]
- Namaki, M.; Habibzadeh, S.; Vaez, H.; Arzanlou, M.; Safarirad, S.; Bazghandi, S.A.; Sahebkar, A.; Khademi, F. Prevalence of resistance genes to biocides in antibiotic-resistant Pseudomonas aeruginosa clinical isolates. Mol. Biol. Rep. 2022, 49, 2149–2155. [Google Scholar] [CrossRef] [PubMed]
- Bazghandi, S.A.; Arzanlou, M.; Peeridogaheh, H.; Vaez, H.; Sahebkar, A.; Khademi, F. Prevalence of virulence genes and drug resistance profiles of Pseudomonas aeruginosa isolated from clinical specimens. Jundishapur J. Microbiol. 2021, 14, e118452. [Google Scholar] [CrossRef]
- Silva, A.; Silva, V.; Igrejas, G.; Poeta, P. Carbapenems and Pseudomonas aeruginosa: Mechanisms and epidemiology. In Antibiotics and Antimicrobial Resistance Genes in the Environment; Hashmi, M.Z., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, pp. 253–268. [Google Scholar]
- Wójcicki, M.; Shymialevich, D.; Średnicka, P.; Emanowicz, P.; Ostrowska, A.; Cieślak, H.; Sokołowska, B. Phenotypic Characterization and Genome Analysis of New Broad-Spectrum Virulent Salmophage, Salmonella Phage KKP_3822, for Biocontrol of Multidrug-Resistant Salmonella enterica Strains. Int. J. Mol. Sci. 2024, 25, 12930. [Google Scholar] [CrossRef]
- Behera, M.; De, S.; Ghorai, S.M. The Synergistic and Chimeric Mechanism of Bacteriophage Endolysins: Opportunities for Application in Biotherapeutics, Food, and Health Sectors. Probiotics Antimicrob. Proteins 2025, 17, 807–831. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Ding, Z.; Shi, L.; Xie, Y.; Zhang, Y.; Sao, S.; Liu, Q. Design combinations of evolved phage and antibiotic for antibacterial guided by analyzing the phage resistance of poorly antimicrobial phage. Microbiol. Spectr. 2023, 11, e00958-23. [Google Scholar] [CrossRef]
- Patey, O.; McCallin, S.; Mazure, H.; Liddle, M.; Smithyman, A.; Dublanchet, A. Clinical indications and compassionate use of phage therapy: Personal experience and literature review with a focus on osteoarticular infections. Viruses 2018, 11, 18. [Google Scholar] [CrossRef]
- Trevijano-Contador, N.; Zaragoza, Ó. Immune response of Galleria mellonella against human fungal pathogens. J. Fungi 2019, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Ramarao, N.; Nielsen-Leroux, C.; Lereclus, D. The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J. Vis. Exp. 2012, 70, e4392. [Google Scholar] [PubMed]
- Kavanagh, K.; Fallon, J. Galleria mellonella larvae as models for studying fungal virulence. Fungal Biol. Rev. 2010, 24, 79–83. [Google Scholar] [CrossRef]
- Giammarino, A.; Bellucci, N.; Angiolella, L. Galleria mellonella as a model for the study of fungal pathogens: Advantages and disadvantages. Pathogens 2024, 13, 233. [Google Scholar] [CrossRef]
- Nour El-Din, H.T.; Kettal, M.; Granados Maciel, J.C.; Beaudoin, G.; Oktay, U.; Hrapovic, S.; Chen, W. Isolation, characterization, and genomic analysis of bacteriophages against Pseudomonas aeruginosa clinical isolates from early and chronic cystic fibrosis patients for potential phage therapy. Microorganisms 2025, 13, 511. [Google Scholar] [CrossRef]
- Manohar, P.; Loh, B.; Turner, D.; Tamizhselvi, R.; Mathankumar, M.; Elangovan, N.; Leptihn, S. In vitro and in vivo evaluation of the biofilm-degrading Pseudomonas phage Motto, as a candidate for phage therapy. Front. Microbiol. 2024, 15, 1344962. [Google Scholar] [CrossRef]
- Arumugam, S.N.; Manohar, P.; Sukumaran, S.; Sadagopan, S.; Loh, B.; Leptihn, S.; Nachimuthu, R. Anti-bacterial efficacy of lytic phages against multidrug-resistant Pseudomonas aeruginosa infections in bacteraemia mice models. BMC Microbiol. 2022, 22, 187. [Google Scholar] [CrossRef] [PubMed]
- Alipour-Khezri, E.; Skurnik, M.; Zarrini, G. Pseudomonas aeruginosa bacteriophages and their clinical applications. Viruses 2024, 16, 1051. [Google Scholar] [CrossRef] [PubMed]
- De Soir, S.; Parée, H.; Kamarudin, N.H.N.; Wagemans, J.; Lavigne, R.; Braem, A.; Van Bambeke, F. Exploiting phage-antibiotic synergies to disrupt Pseudomonas aeruginosa PAO1 biofilms in the context of orthopedic infections. Microbiol. Spectr. 2024, 12, e03219–e03223. [Google Scholar] [CrossRef] [PubMed]
- Manohar, P.; Loh, B.; Nachimuthu, R.; Leptihn, S. Phage-antibiotic combinations to control Pseudomonas aeruginosa–Candida two-species biofilms. Sci. Rep. 2024, 14, 9354. [Google Scholar] [CrossRef]
- Teney, C.; Poupelin, J.C.; Briot, T.; Le Bouar, M.; Fevre, C.; Brosset, S.; Ferry, T. Phage therapy in a burn patient colonized with extensively drug-resistant Pseudomonas aeruginosa responsible for relapsing ventilator-associated pneumonia and bacteriemia. Viruses 2024, 16, 1080. [Google Scholar] [CrossRef]
- Loganathan, A.; Bozdogan, B.; Manohar, P.; Nachimuthu, R. Phage-antibiotic combinations in various treatment modalities to manage MRSA infections. Front. Pharmacol. 2024, 15, 1356179. [Google Scholar] [CrossRef]
- Erol, H.B.; Kaskatepe, B.; Yildiz, S.; Altanlar, N.; Bayrakdar, F. Characterization of two bacteriophages specific to Acinetobacter baumannii and their effects on catheters biofilm. Cell Biochem. Funct. 2024, 42, e3966. [Google Scholar] [CrossRef]
- Adams, M.D. Bacteriophages; Interscience Publishers: New York, NY, USA, 1959. [Google Scholar]
- Merabishvili, M.; Pirnay, J.P.; Verbeken, G.; Chanishvili, N.; Tediashvili, M.; Lashkhi, N.; Glonti, T.; Krylov, V.; Mast, J.; Van Parys, L.; et al. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS ONE 2009, 4, e4944. [Google Scholar] [CrossRef]
- Knezevic, P.; Kostanjse, R.; Obreht, D.; Petrovic, O. Isolation of Pseudomonas aeruginosa specific phages with broad activity spectra. Curr. Microbiol. 2009, 59, 173. [Google Scholar] [CrossRef]
- Ackermann, H.W. Basic phage electron microscopy. In Bacteriophages; Clokie, M.R.J., Kropinski, A.M., Eds.; Humana Press: Totowa, NJ, USA, 2009; Volume 501, pp. 113–126. [Google Scholar]
- Jiang, L.; Tan, J.; Hao, Y.; Wang, Q.; Yan, X.; Wang, D.; Tuo, L.; Wei, Z.; Huang, G. Isolation and characterization of a novel myophage Abp9 against pandrug resistant Acinetobacater baumannii. Front. Microbiol. 2020, 11, 2138. [Google Scholar] [CrossRef]
- Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta 2023, 2, e107. [Google Scholar] [CrossRef]
- Nayfach, S.; Camargo, A.; Schulz, F.; Eloe-Fadrosh, E.; Roux, S.; Kyrpides, N. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 2021, 39, 578–585. [Google Scholar] [CrossRef]
- Bouras, G.; Nepal, R.; Houtak, G.; Psaltis, A.J.; Wormald, P.J.; Vreugde, S. Pharokka: A fast scalable bacteriophage annotation tool. Bioinformatics 2022, 39, 1367–4811. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.Y.; Stothard, P. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef] [PubMed]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, I.; Vukovic, D.; Gavric, D.; Cvetanovic, J.; Aleksic Sabo, V.; Gostimirovic, S.; Knezevic, P. An optimized checkerboard method for phage-antibiotic synergy detection. Viruses 2022, 14, 1542. [Google Scholar] [CrossRef]
- Erol, H.B.; Kaskatepe, B.; Ozturk, S.; Oz, Z.S. The comparison of lytic activity of isolated phage and commercial Intesti bacteriophage on ESBL producer E. coli and determination of Ec_P6 phage efficacy with in vivo Galleria mellonella larvae model. Microb. Pathog. 2022, 167, 105563. [Google Scholar] [CrossRef]
- Kaskatepe, B.; Ozturk, S. Assessment of synergistic activity of rhamnolipid and linezolid against methicillin-resistant Staphylococcus aureus in-vitro and in-vivo with Galleria mellonella larvae model. Microb. Pathog. 2023, 174, 105945. [Google Scholar] [CrossRef]
- Xie, N.; Jiang, L.; Chen, M. In vitro and in vivo antibacterial activity of linezolid plus fosfomycin against Staphylococcus aureus with resistance to one drug. Infect. Drug Resist. 2021, 14, 639–649. [Google Scholar] [CrossRef]
- Ménard, G.; Rouillon, A.; Ghukasyan, G. Galleria mellonella larvae as an infection model to investigate sRNA-mediated pathogenesis in Staphylococcus aureus. Front. Cell Infect. Microbiol. 2021, 11, 631710. [Google Scholar] [CrossRef]
- Adamson, D.H.; Krikstopaityte, V.; Coote, P.J. Enhanced efficacy of putative efflux pump inhibitor/antibiotic combination treatments versus MDR strains of Pseudomonas aeruginosa in a Galleria mellonella in vivo infection model. J. Antimicrob. Chemother. 2015, 70, 2271–2278. [Google Scholar] [CrossRef]
- Xiao, G.; Li, J.; Sun, Z. The combination of antibiotic and non-antibiotic compounds improves antibiotic efficacy against multidrug-resistant bacteria. Int. J. Mol. Sci. 2023, 24, 15493. [Google Scholar] [CrossRef]
- Santamaría-Corral, G.; Senhaji-Kacha, A.; Broncano-Lavado, A.; Esteban, J.; García-Quintanilla, M. Bacteriophage–Antibiotic Combination Therapy against Pseudomonas aeruginosa. Antibiotics 2023, 12, 1089. [Google Scholar] [CrossRef]
- Chan, B.; Sistrom, M.; Wertz, J.; Kortright, K.E.; Narayan, D.; Turner, P.E. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep. 2016, 6, 26717. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Zhang, P.; To, K.K.W.; Liu, Y.; Bai, C.; Leung, S.S.Y. Sequential treatment effects on phage-antibiotic synergistic application against multi-drug-resistant Acinetobacter baumannii. Int. J. Antimicrob. Agents 2023, 62, 106951. [Google Scholar] [CrossRef]
- Luo, J.; Xie, L.; Liu, M.; Li, Q.; Wang, P.; Luo, C. Bactericidal Synergism between Phage YC#06 and Antibiotics: A Combination Strategy to Target Multidrug-Resistant Acinetobacter baumannii In Vitro and In Vivo. Microbiol. Spectr. 2022, 10, e0009622. [Google Scholar] [CrossRef] [PubMed]
- Aslam, S.; Courtwright, A.M.; Koval, C.; Lehman, S.M.; Morales, S.; Furr, C.L.L.; Rosas, F.; Brownstein, M.J.; Fackler, J.R.; Sisson, B.M. Early clinical experience of bacteriophage therapy in 3 lung transplant recipients. Am. J. Transplant. 2019, 19, 2631–2639. [Google Scholar] [CrossRef]
- Knezevic, P.; Curcin, S.; Aleksic, V.; Petrusic, M.; Vlaski, L. Phage-antibiotic synergism: A possible approach to combatting Pseudomonas aeruginosa. Res. Microbiol. 2013, 164, 55–60. [Google Scholar] [CrossRef]
- Gu Liu, C.; Green, S.I.; Min, L.; Clark, J.R.; Salazar, K.C.; Terwilliger, A.L.; Maresso, A.W. Phage-antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry. MBio 2020, 11, 10–1128. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, J.; Kim, S. Phage-antibiotic synergy review: Mechanisms, applications, and future prospects. J. Bacteriol. Virol. 2025, 55, 91–110. [Google Scholar] [CrossRef]
- Liu, C.; Hong, Q.; Chang, R.Y.K.; Kwok, P.C.L.; Chan, H.-K. Phage–Antibiotic Therapy as a Promising Strategy to Combat Multidrug-Resistant Infections and to Enhance Antimicrobial Efficiency. Antibiotics 2022, 11, 570. [Google Scholar] [CrossRef]
- Rieper, F.; Wittmann, J.; Bunk, B.; Spröer, C.; Häfner, M.; Willy, C.; Jahn, D. Systematic bacteriophage selection for the lysis of multiple Pseudomonas aeruginosa strains. Front. Cell. Infect. Microbiol. 2025, 15, 1597009. [Google Scholar]
- Chaplin, A.V.; Sykilinda, N.N.; Skvortsov, G.A.; Troshin, K.S.; Vasilyeva, A.A.; Shuraleva, S.A.; Malkov, A.A.; Simonov, V.S.; Efimov, B.A.; Kafarskaia, L.I. Pseudomonas Phage Banzai: Genomic and Functional Analysis of Novel Pbunavirus with Lytic Activity Against Pseudomonas aeruginosa. Viruses 2025, 17, 1088. [Google Scholar] [CrossRef] [PubMed]
- Weiner, I.; Kahan-Hanum, M.; Buchstab, N.; Zelcbuch, L.; Navok, S.; Sherman, I.; Nicenboim, J.; Axelrod, T.; Berko-Ashur, D.; Olshina, M. Phage Therapy with Nebulized Cocktail BX004-A for Chronic Pseudomonas aeruginosa Infections in Cystic Fibrosis: A Randomized First-in-Human Trial. Nat. Commun. 2025, 16, 5579. [Google Scholar] [CrossRef]
- Majlesain, F.; Abbasifard Semnani, A.; Abolmaali, S.; Sadeghi, M. Isolation and characterization of a novel Pbunavirus with promising antibiofilm activity against Pseudomonas aeruginosa. Curr. Microbiol. 2025, 82, 507. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, J.; Shigehisa, R.; Nasukawa, T. Piperacillin and ceftazidime produce the strongest synergistic phage–antibiotic effect in Pseudomonas aeruginosa. Arch. Virol. 2018, 163, 1941–1948. [Google Scholar] [CrossRef] [PubMed]
- Engeman, E.; Freyberger, H.R.; Corey, B.W.; Ward, A.M.; He, Y.; Nikolich, M.P.; Filippov, A.A.; Tyner, S.D.; Jacobs, A.C. Synergistic Killing and Re-Sensitization of Pseudomonas aeruginosa to Antibiotics by Phage-Antibiotic Combination Treatment. Pharmaceuticals 2021, 14, 184. [Google Scholar] [CrossRef]




| Bacteria | Antibiotic | Alone | Combination | FICi Value | Comments |
|---|---|---|---|---|---|
| P12 | Ceftazidime | 32 | 8 | 0.25 | Synergy |
| vB_PaMB13 | 1012 | 108/16 | |||
| Ceftazidime | 32 | 8 | 0.406 | Synergy | |
| vB_PaMB17 | 107 | 108/64 | |||
| Tobramycin | 256 | 16 | 0.0125 | Synergy | |
| vB_PaMB13 | 1012 | 109/64 | |||
| Tobramycin | 256 | 4 | 0.0218 | Synergy | |
| vB_PaMB17 | 108 | 107/16 | |||
| P6 | Ceftazidime | 8092 | 16 | 0.0157 | Synergy |
| vB_PaMB13 | 1012 | 109 | |||
| Ceftazidime | 8092 | 128 | 0.126 | Synergy | |
| vB_PaMB17 | 1012 | 1011/64 | |||
| Tobramycin | >640 | 16 | 0.0157 | Synergy | |
| vB_PaMB13 | 1012 | 109/8 | |||
| Tobramycin | >640 | 32 | 0.34 | Synergy | |
| vB_PaMB17 | 109 | 1010/32 | |||
| P24 | Ceftazidime | 8 | 8 | 1 | Additive effect |
| vB_PaMB13 | 1012 | 108/512 | |||
| Ceftazidime | 8 | 2 | 0.25 | Synergy | |
| vB_PaMB17 | 1011 | 106/8 | |||
| Tobramycin | 2 | 0.5 | 0.25 | Synergy | |
| vB_PaMB13 | 1012 | 104/512 | |||
| Tobramycin | 2 | 0.5 | 0.25 | Synergy | |
| vB_PaMB17 | 1011 | 104/512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozturk, S.; Erol, H.B.; Kaskatepe, B.; Huang, W.-T. Characterisation of a Novel Pseudomonas Phage and Its Effect on the Survival of Galleria mellonella Larvae. Pathogens 2025, 14, 1248. https://doi.org/10.3390/pathogens14121248
Ozturk S, Erol HB, Kaskatepe B, Huang W-T. Characterisation of a Novel Pseudomonas Phage and Its Effect on the Survival of Galleria mellonella Larvae. Pathogens. 2025; 14(12):1248. https://doi.org/10.3390/pathogens14121248
Chicago/Turabian StyleOzturk, Sukran, Hilal Basak Erol, Banu Kaskatepe, and Wan-Ting Huang. 2025. "Characterisation of a Novel Pseudomonas Phage and Its Effect on the Survival of Galleria mellonella Larvae" Pathogens 14, no. 12: 1248. https://doi.org/10.3390/pathogens14121248
APA StyleOzturk, S., Erol, H. B., Kaskatepe, B., & Huang, W.-T. (2025). Characterisation of a Novel Pseudomonas Phage and Its Effect on the Survival of Galleria mellonella Larvae. Pathogens, 14(12), 1248. https://doi.org/10.3390/pathogens14121248

