Evaluation of Human Brucellosis Patients with Post-Treatment Standard Tube Agglutination Test Titers
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Patient Inclusion/Exclusion Criteria
2.2. Definitions
2.3. Diagnosis of Brucellosis and Follow-Up
2.4. Treatment Regimens and Duration of Therapy
2.5. Standard Tube Agglutination Test
2.6. Statistical Analysis
2.7. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murray, P.R.; Rosenthal, K.S.; Pfaller, M.A. Medical Microbiology, 9th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2021; pp. 293–306. [Google Scholar]
- Gül, H.C.; Erdem, H. Brucellosis. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 9th ed.; Mandell, G.L., Bennett, J.E., Dolin, R., Eds.; Churchill Livingstone: Philadelphia, PA, USA, 2020; pp. 2753–2758. [Google Scholar]
- World Health Organization (WHO). Brucellosis in Humans and Animals; WHO: Geneva, Switzerland. Available online: https://iris.who.int/server/api/core/bitstreams/eb47fd2c-6626-4dd6-bdaf-314b158335fb/content (accessed on 5 November 2025).
- Pappas, G.; Akritidis, N.; Bosilkovski, M.; Tsianos, E. Brucellosis. N. Engl. J. Med. 2005, 352, 2325. [Google Scholar] [CrossRef] [PubMed]
- Bosilkovski, M.; Krteva, L.; Dimzova, M.; Vidinic, I.; Sopova, Z.; Spasovska, K. Human brucellosis in Macedonia—10 years of clinical experience in endemic region. Croat. Med. J. 2010, 51, 327. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, T.B.; Frye, E.; Guarino, C.; Guild, R.F.; Newman, A.P.; Bennett, J.; Goodrich, E.L. A one-health review on brucellosis in the United States. J. Am. Vet. Med. Assoc. 2023, 261, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Şimşek-Yavuz, S.; Özger, S.; Benli, A.; Ateş, C.; Aydın, M.; Aygün, G.; Azap, A.; Başaran, S.; Demirtürk, N.; Kocagül-Çelikbaş, A.; et al. The Turkish Clinical Microbiology and Infectious Diseases Society (KLİMİK) evidence-based guideline for the diagnosis and treatment of brucellosis, 2023. Klimik Derg. 2023, 36, 86–123. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Recommended Strategies for the Prevention and Control of Communicable Diseases; WHO: Geneva, Switzerland, 2001; Available online: https://iris.who.int/server/api/core/bitstreams/08d6baff-3f54-4313-9ab1-d9de65ab227d/content (accessed on 5 November 2025).
- Almuneef, M.; Memish, Z.A. Prevalence of Brucella Antibodies after Acute Brucellosis. J. Chemother. 2003, 15, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, T.M.; Faber, L.C. 2-Mercaptoethanol Brucella Agglutination Test: Usefulness for Predicting Recovery from Brucellosis. J. Clin. Microbiol. 1980, 11, 691–693. [Google Scholar] [CrossRef] [PubMed]
- Copur, B.; Pasa, O. The role of the serum tube agglutination test in the monitoring of human brucellosis: Evaluation of post-treatment SAT titers. Rev. Assoc. Med. Bras. (1992) 2022, 68, 1234–1239. [Google Scholar] [CrossRef] [PubMed]
- Alsubaie, S.A.; Turkistani, S.A.; Zeaiter, A.A.; Thabit, A.K. Lack of correlation of Brucella antibody titers with clinical outcomes and culture positivity of brucellosis. Trop. Dis. Travel. Med. Vaccines 2021, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Ta, N.; Zhao, A.; Muren, H.; Li, X.; Wang, B.C.; Bagen, H.; Wen, Y. A follow-up study of 100 patients with acute brucellosis for its prognosis and prevention. Front Med. 2023, 10, 1110907. [Google Scholar] [CrossRef] [PubMed]
- Çelik, M.; Arslan, Y.; Topçu, E.; Şahinoğlu, M.S.; Altındağ, D.; Gürbüz, E.; Atalay, E.; Kışlak-Demircan, S.; Emre, S.; Kırık, Y.; et al. Investigation of hematologic findings related to brucellosis in Anatolian region. Saudi Med. J. 2024, 45, 495–501. [Google Scholar] [CrossRef]
- Roushan, M.R.H.; Amiri, M.J.S.; Laly, A.; Mostafazadeh, A.; Bijani, A. Follow-up standard agglutination and 2-mercaptoethanol tests in 175 clinically cured cases of human brucellosis. Int. J. Infect. Dis. 2010, 14, e250–e253. [Google Scholar] [CrossRef] [PubMed]
- Baldi, P.C.; Miguel, S.E.; Fossati, C.A.; Wallach, J.C. Serological follow-up of human brucellosis by measuring IgG antibodies to lipopolysaccharide and cytoplasmic proteins of Brucella species. Clin. Infect. Dis. 1996, 22, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Kuyumcu, Ç.A.; Erol, S.; Adaleti, R.; Şenbayrak, S.; Deniz, S.; Barkay, O. Comparison of coombs gel test with ELISA and standard tube agglutination tests used in serological diagnosis of brucellosis. Infect. Dis. Clin. Microbiol. 2020, 1, 1–7. [Google Scholar] [CrossRef]
- Tumturk, A.; Yetkin, M.A.; Tülek, N.; Kilic, D. Serum agglutination test and “Enzyme-linked immunosorbent assay” method in the diagnosis and follow-up of brucellosis. Klimik Derg. 2004, 17, 107–112. [Google Scholar]
- Sayın-Kutlu, S.; Celikbaş, A.; Ergönül, O.; Kutlu, M.; Aksaray, S.; Güvener, E.; Dokuzoğuz, B. The value of the immunoglobulin G avidity test for the serologic diagnosis of brucellosis. Mikrobiyol. Bul. 2003, 37, 261–267. [Google Scholar]
- Bortnick, A.; Allman, D. What Is and What Should Always Have Been: Long-lived Plasma cells Induced by T-cell Independen Antigens. J. Immunol. 2013, 190, 5913–5918. [Google Scholar] [CrossRef] [PubMed]
- Bernasconi, N.L.; Traggiai, E.; Lanzavecchia, A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 2002, 298, 2199–2202. [Google Scholar] [CrossRef]
- Sohrabi, M.; Mobarez, A.M.; Khoramabadi, N.; Doust, R.H.; Behmanesh, M. Efficient Diagnosis and Treatment Follow-Up of Human Brucellosis by a Novel Quantitative TaqMan Real-Time PCR Assay: A Human Clinical Survey. J. Clin. Microbiol. 2014, 52, 4239–4243. [Google Scholar] [CrossRef] [PubMed]
- Çağan, E.; Kızmaz, M.A.; Akalın, E.H.; Oral, H.B.; Tezcan, G.; Budak, F. New biological markers in diagnosis and follow-up of brucellosis cases. Diagn. Microbiol. Infect. Dis. 2025, 111, 116587. [Google Scholar] [CrossRef] [PubMed]
| All Patients (n = 276) | Patients with Decreased SAT (n = 166) | Patients Without Decreased SAT (n = 110) | p Value | |
|---|---|---|---|---|
| Age (mean ± SD) | 45.2 ± 14.5 | 44.2 ± 15 | 46.7 ± 13.7 | 0.125 |
| Gender (n, %) | 0.659 | |||
| Female | 140 (50.7%) | 86 (51.9%) | 54 (49.1%) | |
| Male | 136 (49.3%) | 80 (48.1%) | 56 (50.9%) | |
| Possible risk factors for transmission (n, %) | 0.492 | |||
| Consumption of unpasteurised dairy products | 58 (21%) | 37 (22.2%) | 21 (19%) | |
| Animal husbandry | 151 (54.7%) | 86 (51.8%) | 65 (59%) | |
| Unknown | 67 (24.3%) | 43 (25.9%) | 24 (21.8%) | |
| Place of residence (n, %) | 0.384 | |||
| Village | 144 (52.2%) | 81 (48.7%) | 63 (57.2%) | |
| District | 40 (14.5%) | 26 (15.6%) | 14 (12.7%) | |
| Province | 92 (33.3%) | 59 (35.5%) | 33 (30%) | |
| Osteoarticular involvement (n, %) | 31 (11.2%) | 19 (11.4%) | 12 (10.9%) | 0.890 |
| Spondylodiscitis | 20 (7.2%) | 14 (8.4%) | 6 (5.4%) | 0.350 |
| Arthritis | 11 (3.9%) | 5 (3%) | 6 (5.4%) | 0.442 |
| Treatment regimens (n, %) | 0.738 | |||
| Doxycycline + rifampicin | 140 (50.7%) | 87 (52.4%) | 53 (48.1%) | |
| Doxycycline + streptomycin | 63 (22.8%) | 35 (21%) | 28 (25.4%) | |
| Doxycycline + rifampicin + streptomycin | 53 (19.2%) | 33 (19.8%) | 20 (18.1%) | |
| Doxycycline + rifampicin + ciprofloxacin | 2 (0.7%) | 1 (0.6%) | 1 (0.9%) | |
| Doxycycline + rifampicin + trimethoprim-sulfamethoxazole | 18 (6.5%) | 10 (6%) | 8 (7.2%) | |
| Pre-treatment laboratory results | ||||
| Leukocyte, cell/µL (mean ± SD) | 7493 ± 2206 | 7471 ± 2155 | 7527 ± 2291 | 0.788 |
| ESR (mean ± SD) | 29.2 ± 22.5 | 31.5 ± 23 | 25.8 ± 21.5 | 0.048 |
| CRP, mg/L (mean ± SD) | 23.2 ± 36.3 | 24.6 ± 39.4 | 21.3 ± 31.4 | 0.577 |
| AST, U/L (mean ± SD) | 28 ± 32 | 27.8 ± 37.9 | 28.3 ± 21.4 | 0.232 |
| ALT, U/L (mean ± SD) | 30 ± 28 | 29.2 ± 27.7 | 32 ± 29.7 | 0.213 |
| Lymphocytosis (n, %) | 17 (6.2%) | 14 (8.4%) | 3 (2.7%) | 0.045 |
| Lymphopenia (n, %) | 14 (5.1%) | 8 (4.8%) | 6 (5.4%) | 0.814 |
| Anemia (n, %) | 40 (14.5%) | 26 (15.6%) | 14 (12.7%) | 0.498 |
| Thrombocytopenia (n, %) | 9 (3.3%) | 6 (3.6%) | 3 (2.7%) | 1 |
| SAT = 1/160 (n, %) | 73 (26.4%) | 38 (22.9%) | 35 (31.8%) | 0.100 |
| SAT ≥ 1/320 (n, %) | 203 (73.5%) | 128 (77.1%) | 75 (68.1%) | 0.100 |
| SAT ≥ 1/640 (n, %) | 138 (50%) | 85 (51.2%) | 53 (48.1%) | 0.623 |
| SAT ≥ 1/1280 (n, %) | 90 (32.6%) | 54 (32.5%) | 36 (32.7%) | 0.973 |
| SAT ≥ 1/2560 (n, %) | 4 (1.4%) | 1 (0.6%) | 3 (2.7%) | 0.305 |
| Post-treatment laboratory results | ||||
| Leukocyte, cell/µL (mean ± SD) | 6734 ± 1839 | 6987 ± 1826 | 6435 ± 1818 | 0.062 |
| ESR (mean ± SD) | 19.4 ± 17.1 | 19.2 ± 18 | 19.5 ± 16.3 | 0.607 |
| CRP, mg/L (mean ± SD) | 6.8 ± 14.4 | 7.1 ± 13.8 | 6.5 ± 15.2 | 0.756 |
| AST, U/L (mean ± SD) | 19.9 ± 7.6 | 18.2 ± 5.1 | 22 ± 9.4 | <0.001 |
| ALT, U/L (mean ± SD) | 20.3 ± 13.9 | 18.2 ± 7.5 | 22.9 ± 18.5 | 0.049 |
| All Patients (n = 276) | Patients with Negative SAT (n = 81) | Patients with Positive SAT (n = 195) | p Value | |
|---|---|---|---|---|
| Age (mean ± SD) | 45.2 ± 14.5 | 45.4 ± 15.8 | 45.1 ± 14 | 0.894 |
| Gender (n, %) | 0.301 | |||
| Female | 140 (50.7%) | 36 (44.4%) | 100 (51.2%) | |
| Male | 136 (49.3%) | 45 (55.5%) | 95 (48.7%) | |
| Possible risk factors for transmission (n, %) | 0.255 | |||
| Consumption of unpasteurised dairy products | 58 (21%) | 16 (19.7%) | 42 (21.5%) | |
| Animal husbandry | 151 (54.7%) | 40 (49.3%) | 111 (56.9%) | |
| Unknown | 67 (24.3%) | 25 (30.8%) | 42 (21.5%) | |
| Place of residence (n, %) | 0.365 | |||
| Village | 144 (52.2%) | 37 (45.6%) | 107 (54.8%) | |
| District | 40 (14.5%) | 14 (17.2%) | 26 (13.3%) | |
| Province | 92 (33.3%) | 30 (37%) | 62 (31.7%) | |
| Osteoarticular involvement (n, %) | 31 (11.2%) | 5 (6.1%) | 26 (13.3%) | 0.086 |
| Spondylodiscitis | 20 (7.2%) | 4 (4.9%) | 16 (8.2%) | 0.340 |
| Arthritis | 11 (3.9%) | 1 (1.2%) | 10 (5.1%) | 0.678 |
| Treatment regimens (n, %) | 0.835 | |||
| Doxycycline + rifampicin | 140 (50.7%) | 43 (53%) | 97 (49.7%) | |
| Doxycycline + streptomycin | 63 (22.8%) | 16 (19.7%) | 47 (24.1%) | |
| Doxycycline + rifampicin + streptomycin | 53 (19.2%) | 17 (20.9%) | 36 (18.4%) | |
| Doxycycline + rifampicin + ciprofloxacin | 2 (0.7%) | 0 (0) | 2 (1%) | |
| Doxycycline + rifampicin + trimethoprim-sulfamethoxazole | 18 (6.5%) | 5 (6.1%) | 13 (6.6%) | |
| Pre-treatment laboratory results | ||||
| Leukocyte, cell/µL (mean ± SD) | 7493 ± 2206 | 7210 ± 2126 | 7612 ± 2234 | 0.085 |
| ESR (mean ± SD) | 29.2 ± 22.5 | 32.1 ± 24.2 | 28.2 ± 21.8 | 0.282 |
| CRP, mg/L (mean ± SD) | 23.2 ± 36.3 | 25.7 ± 49.1 | 22.2 ± 29.9 | 0.708 |
| AST, U/L (mean ± SD) | 28 ± 32 | 18.2 ± 5.2 | 20.6 ± 8.2 | 0.311 |
| ALT, U/L (mean ± SD) | 30 ± 28 | 30 ± 32.4 | 30.5 ± 26.8 | 0.353 |
| Lymphocytosis (n, %) | 17 (6.2%) | 4 (4.9%) | 13 (6.6%) | 0.785 |
| Lymphopenia (n, %) | 14 (5.1%) | 6 (7.4%) | 8 (4.1%) | 0.365 |
| Anemia (n, %) | 40 (14.5%) | 18 (22.2%) | 22 (11.2%) | 0.019 |
| Thrombocytopenia (n, %) | 9 (3.3%) | 6 (7.4%) | 3 (1.5%) | 0.021 |
| SAT = 1/160 (n, %) | 73 (26.4%) | 38 (46.9%) | 35 (17.9%) | <0.001 |
| SAT ≥ 1/320 (n, %) | 203 (73.5%) | 43 (53%) | 160 (82%) | <0.001 |
| SAT ≥ 1/640 (n, %) | 138 (50%) | 19 (23.4%) | 119 (61%) | <0.001 |
| SAT ≥ 1/1280 (n, %) | 90 (32.6%) | 11 (13.5%) | 79 (40.5%) | <0.001 |
| SAT ≥ 1/2560 (n, %) | 4 (1.4%) | 0 (0) | 4 (2%) | 0.324 |
| Post-treatment laboratory results | ||||
| Leukocyte, cell/µL (mean ± SD) | 6734 ± 1839 | 6687 ± 1421 | 6752 ± 1976 | 0.869 |
| ESR (mean ± SD) | 19.4 ± 17.1 | 21.2 ± 18.3 | 18.8 ± 16.8 | 0.581 |
| CRP, mg/L (mean ± SD) | 6.8 ± 14.4 | 6.5 ± 7.4 | 6.9 ± 16.2 | 0.518 |
| AST, U/L (mean ± SD) | 19.9 ± 7.6 | 18.2 ± 5.2 | 20.6 ± 8.2 | 0.039 |
| ALT, U/L (mean ± SD) | 20.3 ± 13.9 | 18 ± 7.6 | 21.2 ± 15.4 | 0.165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benli, A.; Ceylan, A.N. Evaluation of Human Brucellosis Patients with Post-Treatment Standard Tube Agglutination Test Titers. Pathogens 2025, 14, 1186. https://doi.org/10.3390/pathogens14111186
Benli A, Ceylan AN. Evaluation of Human Brucellosis Patients with Post-Treatment Standard Tube Agglutination Test Titers. Pathogens. 2025; 14(11):1186. https://doi.org/10.3390/pathogens14111186
Chicago/Turabian StyleBenli, Aysun, and Ayşe Nur Ceylan. 2025. "Evaluation of Human Brucellosis Patients with Post-Treatment Standard Tube Agglutination Test Titers" Pathogens 14, no. 11: 1186. https://doi.org/10.3390/pathogens14111186
APA StyleBenli, A., & Ceylan, A. N. (2025). Evaluation of Human Brucellosis Patients with Post-Treatment Standard Tube Agglutination Test Titers. Pathogens, 14(11), 1186. https://doi.org/10.3390/pathogens14111186

